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Abstract In this article, we propose a simplified version of
the maximum information per time unit method (MIT; Fan,
Wang, Chang, & Douglas, Journal of Educational and
Behavioral Statistics 37: 655–670, 2012), or MIT-S, for com-
puterized adaptive testing. Unlike the original MIT method,
the proposedMIT-Smethod does not require fitting a response
timemodel to the individual-level response time data. It is also
computationally efficient. The performance of the MIT-S
method was compared against that of the maximum informa-
tion (MI) method in terms of measurement precision, testing
time saving, and item pool usage under various item response
theory (IRT) models. The results indicated that when the un-
derlying IRT model is the two- or three-parameter logistic
model, the MIT-S method maintains measurement precision
and saves testing time. It performs similarly to the MI method
in exposure control; both result in highly skewed item expo-
sure distributions, due to heavy reliance on the highly discrim-
inating items. If the underlying model is the one-parameter
logistic (1PL) model, the MIT-S method maintains the mea-
surement precision and saves a considerable amount of testing
time. However, its heavy reliance on time-saving items leads
to a highly skewed item exposure distribution. This weakness
can be ameliorated by using randomesque exposure control,
which successfully balances the item pool usage. Overall, the

MIT-S method with randomesque exposure control is recom-
mended for achieving better testing efficiency while maintain-
ing measurement precision and balanced item pool usage
when the underlying IRT model is 1PL.

Keywords Maximum information per time unit . Response
time . Computerized adaptive testing . Item exposure control .

Test efficiency

Tailored testing or adaptive testing is known for its “efficiency”
over traditional linear testing. The idea is to find the most suit-
able items from a large bank for each examinee. In the simplest
case of educational testing, highly capable test takers should not
be asked many easy questions and struggling test takers should
not be presented with too many difficult questions. Delivering
questions that are too easymay cause boredomwhile delivering
items that are too difficult may cause anxiety or other forms of
construct irrelevant meta-cognitive activity. In addition, re-
sponses to items that are too easy or too hard provide little
information from the perspective of testing efficiency and are
not helpful in quickly zeroing in on an examinee’s ability.

Adaptive testing seeks to avoid these difficulties by deliv-
ering assessment tasks that are tailored to each examinee’s
ability. When the maximum information (MI) method is used
for item selection (Weiss, 1982) adaptive testing can achieve
the same level of measurement precision with as few as half
the number of items required of linear tests. Following this
approach, the ability estimate of an examinee is updated every
time he or she responds to a question (Lord, 1980). The MI
method then identifies the most informative item in the bank
for a particular examinee with certain ability, best approximat-
ed by the most recent ability estimate—and administers that
item to the examinee. By applying this method at every step,
the MI method asymptotically leads to the largest test
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information possible given the number of items administered
to each examinee

Although it is commonplace to conceptualize test length in
terms of the number of items delivered, in practice the length
of time involved with a test is often of equal or greater impor-
tance. Wainer et al. (2000) noted that adaptive testing in this
fashion allows Bindividuals to work at their own pace . . . aside
from the practical necessity of having rough limits on the time
of testing^ (p. 11). Hypothetically, a test can run long in time if
the informative items chosen under theMImethod also tend to
be time-consuming. van der Linden, Scrams, and Schnipke
(1999) point out that this is not unlikely to happen for capable
examinees, because for them, adaptive testing Bresults in more
difficult items, and more difficult items generally require more
time^ (van der Linden & van Krimpen-Stoop, 2003, p. 251).

Accordingly, an Befficient^ test from the perspective of
accumulating more information given a fixed number of items
may turn out to be inefficient in terms of the length of admin-
istration time. Naturally another approach to evaluating test
efficiency is to achieve high test information in a fixed amount
of time. We will call the first concern Bform length efficiency^
(FLE) and the second, Bdelivery time efficiency^ (DTE).
When concerned with delivery time efficiency, a maximizing
information per time unit (MIT) strategy makes better sense
than the MI method. If an adaptive test is of fixed length in
terms of the number of items, the MIT strategy would lead to
reduced testing time.

Fan, Wang, Chang, and Douglas (2012) introduced the
first implementation of the MIT method. The Fan et al.
(2012) approach requires individual-level response time
information, and fitting the log-normal model to the re-
sponse time data. It also requires real-time update of the
working speed parameter estimate for each examinee.
Issues of potential model misfit, as well as high demand
in data and computational resources of the original MIT
method have prompted us to propose a simplified version,
MIT-S, in this article. The performance of the MIT-S meth-
od is evaluated under various item response theory (IRT)
models against the performance of the MI method in terms
of measurement precision, savings in test completion time,
and item pool usage.

Background

The MI method is one of the most widely used item selection
strategies in IRT-based computerized adaptive testing (CAT)
(van der Linden, 2003). Mathematically, the MI method se-
lects the (t + 1)th item as

max
l

I l θ̂
tð Þ� �

: l ∈ Rt

� �
; ð1Þ

where θ is ability, θ̂
tð Þ
is the ability estimate after t items, Rt

is the eligible set of items in the pool after t items have

been administered, and I l θ̂
tð Þ� �

is the information of item l

evaluated at θ̂
tð Þ
: Asymptotically the resulting test maximizes

information at the true θ, or equivalently, reaches the highest
measurement precision, for a given number of items (form
length) L.

The MI method has its disadvantages. For example, it is
recognized that the MI method favors more discriminating
items. Under the IRT models, except for the model that as-
sumes an equal discrimination parameter across items (i.e., the
one-parameter logistic model or 1PLmodel), item information
relies heavily on the discrimination parameter. For example,
the two-parameter logistic (2PL) model specifies the probabil-
ity of an examinee of latent trait θ giving a correct response to
item l, denoted by ul, as follows:

P ul ¼ 1 θ;γljð Þ ¼ exp al θ−blð Þ½ �
1 þ exp al θ−blð Þ½ � ; ð2Þ

where ul = 1 if the answer is correct and ul = 0 otherwise. The
item parameters γl = (al, bl) ′, where al and bl are the item
discrimination and difficulty parameters, respectively.
Hereafter P(ul = 1|θ,γl) will be denoted by Pl(θ) for short.
Compared to the 2PL model, the three-parameter logistic
(3PL) model adds one extra item parameter, the
pseudoguessing parameter, cl. The 1PL model, on the other
hand, simplifies the 2PL model by assuming that all items
have the same discrimination parameter, and al therefore
drops out of Eq. (2). The item information function for the
2PL model is given by

I l θð Þ ¼ a2l Pl θð ÞQl θð Þ: ð3Þ

FromEq. 3, it is clear that other things being equal, a higher
discrimination parameter leads to higher information. This
holds true for item information computed on the basis of the
3PL model, as well. Given a limited item pool, the MI method
therefore keeps selecting the most discriminating items.
Depending on the item pool size and the presence of content
constraints, such highly exposed items may pose a security
threat to the CAT program (Chang & Zhang, 2002). This is
why the evaluation of a CAT program will typically not only
involve evaluation of measurement precision, but also item
pool usage in terms of how frequently each item is used or
exposed.

Despite its disadvantage in exposure control, the MI meth-
od is the most widely used item selection method for adaptive
testing, due to its superior efficiency in FLE. This method,
however, does not take into account response time, and there-
by does not address DTE. An item may provide more infor-
mation but also require much longer to answer. Since all tests
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are likely to have time limits based on construct-relevant con-
straints or practical limitations of delivery contexts, and
examinee and proctor time always has some cost, considering
statistical approaches to DTE as well as FLE is an important
issue in the psychometrics of applied assessment.

To address DTE, Fan et al. (2012) therefore proposed
selecting the next item that maximizes the information per
time unit as

max
l

I l θ̂
tð Þ� �

E Tl

���τ̂ tð Þ	 
 : l ∈ Rt

8>><
>>:

9>>=
>>;; ð4Þ

where τ is the latent working speed (analogous to the latent

trait θ in the 2PL model). The denominator, E Tljτ̂ tð Þ
h i

, is the

expected time of an examinee takes to answer item l, given his

or her most recent estimate of working speed, τ̂ tð Þ: The person
parameters, θ and τ, are assumed to follow multivariate nor-
mal distribution, often with a positive correlation assumed
between θ and τ. In a CAT, θ and τ can be updated
simultaneously.

Fan et al. (2012) used the log-normal model for response
time that was proposed by van der Linden (2006):

Tile f tilð Þ ¼ αlffiffiffiffiffiffi
2π

p
til
exp −

1

2
αl lntil− βl−τ ið Þð Þ½ �2

� �
;

ð5Þ

where Til is the response time for the ith examinee to answer
item l. The item parameters are αl and βl, which are analogous
to the item discrimination (al) and difficulty parameters (bl) in
a usual IRT model. Here βl is the time intensity parameter.
Larger βl suggests the item is more time-consuming. Similar
to the 2PL model, which can be estimated if item response
data are available, the αl and βl in the log-normal response
time model can be calibrated given individual and item level

response time data and used in CAT. In CAT, similar toθ̂ ; τ̂
can be updated using the maximum likelihood method every

time an item is answered. Then E Tl τ̂
tð Þ��h i

; the expected time

required to finish item l given the examinee’s speed of τ̂ tð Þ;
can be computed as

E Tl

���τ̂ tð Þ	 

¼ exp βl−τ̂

tð Þ
þ 1

2α2
l

� �
: ð6Þ

Fan et al. (2012) found that on average, the MIT method, as
compared to theMImethod, saves substantial testing time, with
only a small loss of measurement precision. Unfortunately, it
also results in substantially worse item pool usage. Fan et al.
(2012) proposed addressing these concerns by combining the
MIT method with the a-stratified-with-b-blocking method

(Chang, Qian, & Ying, 2001) to control item exposure. They
found that the hybrid method is effective in balancing item pool
usage. These findings hold when a) the item responses follow
the 3PL model; and b) when the item response time follows the
log-normal model of van der Linden (2006).

The implementation of theMITmethod as introduced in Fan
et al. (2012) requires individual- and item-level response time
information, as well as fitting the log-normal model to the re-
sponse time data. Good model fit is therefore a prerequisite to
using this method. There are a plethora of models to choose
from to model response time in the psychological and
educational-testing literatures, including parametric models
based on the log-normal (van der Linden, 2006) distribution,
which is motivated by distribution fitting, as well as theWeibull
distribution (Rouder, Sun, Speckman, Lu, & Zhou, 2003), gam-
ma distribution (Maris, 1993), and Poisson counter process
(Ratcliff & Smith, 2004), which are motivated by modeling
the psychological process producing the response time. Some
of these models try to capture the cognitive process underlying
reaction time of simple tasks in psychological experiments. For
example, the sequential sampling models characterize response
time of respondents making decisions between two choices
(Ratcliff & Smith, 2004), where these decisions are simple,
Brapid, one-process decisions (e.g., less than 1,000–1,500-ms
mean RT at a maximum)^ (Ratcliff & Smith, 2004, p. 335).
Such models are therefore not suitable for modeling response
time in educational testing. In addition, it has been found that
the shapes of empirical response time distributions for items
within a test and of similar types of tests can vary (Klein
Entink, Kuhn, Hornke, & Fox, 2009; Ranger & Kuhn, 2012).
Thus, even though many models for response time can be cho-
sen from, Bgiven the diversity of response time distributions
that the items in a large, operational item pool might exhibit^
in educational testing, no single model may universally fit well
all items in an item bank (Patton, 2014, p. 58). As a conse-
quence, the original MITmethod could face serious challenges.

The MIT method also requires real-time updating of the
person working speed parameter estimate τ̂ : The time intensity
measure in the denominator of Eq. 4 is thus individualized.
Interestingly, such an individualized measure does not make
any difference in rank-ordering the items for item selection.
In other words, the rank-ordering of the items in terms of
I l θ̂

tð Þ� 

E Tl jτ̂ tð Þ½ � does not change for students with high versus lowwork-

ing-speed estimate. This is because, E Tljτ̂ tð Þ
i

h i
is equal to exp

βl þ 1
2α2

l
−τ̂ tð Þ

i

� �
when the log-normal model holds, where τ̂ tð Þ

i

is the working speed estimate of examinee i after t items are

answered. The working speed estimate τ̂ tð Þ
i does not change with

l, and does not affect the rank-ordering of the items. It therefore
calls into question if it is necessary to have an individualized
estimate in the denominator of the objective function in Eq. 4.
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To broaden the applicability of methods focused on improv-
ing CAT delivery in terms of DTE, we propose a simplified
version of the MIT method, denoted byMIT-S, which does not
require model fitting or real-time estimation of the working-
speed parameter. Aside from the simplification in item selec-
tion, there are two additional important differences between this
study and Fan et al. (2012). First, we evaluated the item selec-
tion algorithms under various IRT models, in particular the
1PL. This model is a popular candidate for CAT (e.g.,
Chuesathuchon&Waugh, 2010), especially with the increasing
use of IRT in medical research (Elhan et al., 2008; Öztuna et al.,
2010; Velozo, Wang, Lehman, & Wang, 2008), and the rise of
adaptive and computer-based delivery of assessment in large
scale learning systems (e.g., Behrens, Mislevy, DiCerbo &
Levy, 2012). The investigation of the 1PL case is particularly
important, because it is unclear whether the time-adjusted item
selection methods will have exposure control issues under the
1PLmodel. Recall that under the 2PL and 3PLmodels, both the
MI and the MIT methods favor highly discriminating items.
Under the 1PL model, all items are equally discriminating.
Does that mean there will not be any issue regarding item
exposure under the 1PL model? Will highly time-saving items
be favored under the MIT strategy? If so, to what degree will
time-saving items be favored when item discrimination is not a
factor? These questions need to be answered.

The second difference between the present study and Fan et
al. (2012) is that we retain relationships among the item pa-
rameter estimates by using an empirical instead of a simulated
item bank. This may have important implications on the per-
formance of the item selection method, especially in terms of
exposure control and testing time saving. For example, it is
well-known that in an operational item pool, the item discrim-
ination and difficulty parameters are often positively correlat-
ed. It also makes intuitive sense that difficult items tend to be
more time-consuming. If item discrimination, item difficulty,
and time intensity are a positively correlated trio, then the
appeal of highly discriminating items may be offset by their
time intensity. In that case, would the highly discriminating
items still be favored? With these questions in mind, we next
examine the performance of the MIT-S method under various
IRT models using an empirical item bank.

The MIT-S Method

The simplified MIT method, or MIT-S, replaces the denomi-
nator in Eq. 4 with the average time it takes to answer an item.
In other words, the item is selected following

max
l

I l θ̂
tð Þ� �

lnTil

; l ∈ Rt

8>><
>>:

9>>=
>>;; ð7Þ

where lnT il is the average of log-transformed response time to
item l. If the log-normal model holds,

lnTil αl;βl; τ ið ÞeN βl−τ ið Þ; 1

α2
l

� �
:

����
So, E(lnTil|(αl,βl, τi)) =βl− τi, and

lnTil αl;βlð ÞeN βl−μτð Þ; 1

α2
l

� �
:

����
In this context, lnT il as the average log-transformed re-

sponse time is the maximum likelihood estimate of the mean
of the log-normal distribution over the examinee population,
which is E(βl − τi) = βl − μτ, where μτis the mean working

speed of the examinee population. In other words, lnTil serves
as an estimate of the difference between the time intensity
parameter of an item and the group-level speed. A more
time-consuming item and slower test takers will lead to larger

lnTil . Apparently, lnTil ignores the individual difference in
working speed, thereby serving as a non-individualized time
intensity measure. But as discussed earlier, in item selection
only the rank order of items is of concern. Consequently, the
individualized time intensity measure in the denominator of

Eq. 4 does not matter, and lnTil may suffice as a measure of
time intensity for the purpose of item selection.

This simplification means that we do not need response
time data from each individual on every item, but only require
the average time spent on each item. The simplification also
means that it is not necessary to fit a particular response time
model to the data and this type of model misfit is no longer a
concern. Furthermore, we do not need to obtain precise esti-
mates of the parameters of the response time model for them to
be used in CAT. Additionally, real-time updating of the work-
ing speed estimate, τ̂ ; is not needed. In summary, the MIT-S
method is less demanding in terms of data, preprocessing (i.e.,
model fit and item calibration), and computational resources.

Whereas this mathematical simplification is demonstrable, it
is still important to investigate whether theMIT-Smethodmain-
tains the time-saving advantage of the MIT method. In question
is also how the time-adjusted item selection indices will perform
when the underlying IRT model is 1PL. In addition, it is impor-
tant to understand the implications of these insights on applica-
tions using a real item bank in which one keeps the relationship
among the item parameters intact. Such a casemay, for example,
maintain a correlation between item discrimination and difficul-
ty, as well as between item discrimination and the time intensity

of an item (now measured by lnT il ).
The Fan et al. (2012)’s simulation study investigated the

case in which (a) an examinee’s working speed and ability
have a moderate positive correlation (.5) or no correlation
(0), and (b) an item’s time intensity (measured by βl) and
difficulty have a small positive correlation (.25) or no
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correlation (0). The correlation between speed and ability is
supported by theory and empirical research; that is, across
examinees, speed and ability have a positive correlation (van
der Linden, 2009), even though within an examinee there can
be accuracy–speed trade-off. For the correlation between time
intensity and difficulty, empirical studies show mixed results:
Some studies have indicated that the time intensity and item
difficulty of an item are positively correlated, and other studies
have yielded negative correlations (van der Linden, 2009).
The results are mixed, but most of the empirical correlations
are positive and significant. Intuitively, this makes sense—
difficult items tend to be more time-consuming. Some of the
nonsignificant, or negative, correlations may be artifacts of
missing data, because the response time data often come from
CAT, meaning that the difficult items are only seen by capable
examinees. The reader is referred to van der Linden (2009) for
a discussion of conceptual issues and a summary of empirical
findings with respect to response time modeling.

In their work, Fan et al. (2012) assumed that item difficulty
(bl) and discrimination (al) are independent. These authors
also assumed that item discrimination (al) and time intensity
(measured by βl) are independent. It is well-known that in
operational item banks the item difficulty (bl) and discrimina-
tion (al) have substantial correlation (Chang, Qian, & Ying,
2001). It is yet unknown whether item discrimination and time
intensity are independent. We argue that the assumption of
independence between these parameters has practical implica-
tions for exposure control using the MIT method. If highly
discriminating items tend to be highly time-consuming, the
MIT method may not favor the highly discriminating items
as the MI method would, even under the 2PL or 3PL model.
For these reasons, we used item parameters from a real rather
than a simulated item bank in this study, and we chose to use
non-CAT data to calibrate the items.

Simulation study 1

We used data from a large item bank of mathematics place-
ment test items. Instructors or administrators are given access
to a large catalog of mathematics topics and corresponding
items that can be used to create postsecondary mathematics
placement examinations. All of the students of one instructor
receive the same questions. Across instructors, many of the
data are missing. However, no question is chosen tailored to
an individual examinee. The missingness is therefore
accounted for by class membership and is not related to the
underlying latent constructs, such as ability or work speed.We
consider this an advantage for fitting IRT models.

Using a subset of the data from recent years of the large-
scale math placement test, we calibrated the 3PL model pa-
rameters for the 595 items of pre-algebra. The average item
response time ranged from 23.17 to 539.01 s, with a skew of
1.48 and a kurtosis of 3.98. Clearly the average item response

time was positively skewed. As expected, a positive and sig-
nificant correlation (.564) was found between item difficulty

and lnTil (the time intensity measure of the MIT-S method).
The correlation between item discrimination and difficulty
was .350, which is statistically significant. This positive and
significant correlation is consistent with previous findings re-
ported (Chang et al., 2001). The correlation between item
discrimination and time intensity was .205, which is statisti-
cally significant and reflects the fact that discriminating items
tend to be more time-consuming. Descriptive statistics and
correlations of the item parameter estimates and the time in-

tensity measure lnTil are provided in Table 1. The first three
rows of the table show correlations, and the bottom rows show
descriptive statistics. The item bank, with an average difficulty
of .44, is a little on the difficult side. It has over twice as many
items that are hard (bl > 0) as items that are easy (bl < 0). The
items are also highly discriminating, with an average discrim-
ination parameter of 1.61.

On the basis of the item parameter estimates of usual IRT

models and the time intensity measure lnTil from the large-
scale math placement test data, we conducted a simulation
study to examine the performance of the MIT-S method.
Parallel to Fan et al. (2012), the performance of the MIT-S
and MI methods were compared in terms of measurement
precision, time saving, and exposure control. In the simulation
study, tests of length 20 and 40 were simulated, because test
length has implications for test completion time. As expected,
the MIT strategy would likely select the best items that were
both discriminating and time saving. There might not be many
items of this type in the bank, however. If the test is long, the
MIT strategy could exhaust its favorite type of items and start
selecting less favorable items. As a result, the advantage of
time savingmight not be as pronounced if the test is long. This
is the rationale for including two test lengths.

A sample of 5,000 examinees was generated, and their
abilities followed N(0, 1). The first item of the CAT was se-

lected randomly. The ability estimate θ̂
tð Þ
was updated by an

expected a posteriori for which the prior of θ was N(0, 1).
Measurement precision was evaluated by means of the bias

and the mean squared error (MSE) of θ̂; as well as the

Table 1 Correlation and descriptive statistics of IRT item parameter
estimates and time intensity

3PL_a 3PL_b 3PL_c Time Intensity

3PL_a 1 .350** –.363** .205**

3PL_b .350** 1 –.226** .564**

3PL_c –.363** –.226** 1 –.043

Minimum 0.27 –3.65 0.00 4.77

Maximum 2.88 4.12 0.40 6.29

Mean 1.61 0.51 0.10 4.77
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correlation between the true θ and the final θ̂ —that is, ρ

θ; θ̂
� �

: For each examinee, ∑lnTil was computed. Then the

average of∑lnTil over all 5,000 examinees was computed as a
measure of the average time to finish the fixed-length (in terms
of the number of items administered) CAT. Note that in
Tables 2, 3, 4, 5 and 6, the completion time is reported on

the raw response time scale—that is, exp ∑lnTil
� 


is reported.
Item pool usage was measured as the percentages of un-

used (i.e., exposure rate=0), underused (i.e., exposure rate <
2%), and overexposed (i.e., exposure rate > .20) items. Ideally,
we would like to see the item exposure spread among items,
instead of concentrating on a few items. In other words, low
percentages of unused, underused, and overused items are
desirable. A summary statistic of the item pool usage
(Chang & Ying, 1999) was also used, given by

χ2 ¼
XM
j¼1

er j − �er
� 
2

�er
; ð8Þ

where M is the total number of items in the bank, erj is the
observed exposure rate of item j, and ēr is the expected item
exposure rate if no item is favored over others, or �er ¼ L

M :

Large χ2 values indicate unbalanced item pool usage.

Results of study 1

Table 2 shows the performances of the MIT-S method and the
MI method in terms of measurement precision, exposure con-
trol, and testing time under the 3PL model. Again, measure-
ment precision is captured by bias, MSE, and the correlation
between the true θ and the final θ̂—that is, ρ θ; θ̂

� �
: According

to these indices, the MIT-S method is comparable to the MI
method in measurement precision, regardless of test length. In
terms of exposure control, the χ2 index indicates that neither

theMI nor theMIT-Smethod does very well in balancing item
pool usage. If the item pool usage is completely balanced (i.e.,
every item is used equally frequently), the χ2 index should be
0. A larger χ2 index suggests worse item pool usage. These
results suggest that the MIT-S method results in only slightly
worse item pool usage than does the MIT method. This is true
regardless of test length. The percentages of never used, un-
derused, and overused items are very comparable between the
MI and MIT-S methods. This is in stark contrast to the find-
ing in Fan et al. (2012), which indicated that trying to
select time-saving items with the MIT method led to worse
item pool usage than did the MI method. As the test
lengthens, both the MI and MIT-S methods do better
balancing item pool usage, because some items that were
never used are now exposed. At the same time, the propor-
tion of overexposed items also increases. With respect to
time saving, the MIT-S method does better, with on aver-
age a 12% reduction in testing time, regardless of the test
length. This is not as impressive as the value reported in
Fan et al. (2012), which showed a reduction in response
time by about 1/3. So the simplification of the MIT-S as
compared to the MIT method results in some loss in time
saving.

In summary, theMIT-Smethod maintains the measurement
precision and reduces testing time by about 12%. The perfor-
mance of MIT-S in exposure control is very similar to that of
the MI method. For MIT-S, the correlation between the item
exposure rate and item discrimination is .39 when the test
length is 20. The item exposure rates under the MIT-S method
and the MI method correlate at .95. Correlations of similar
magnitudes are observed when the test length is 40. This in-
dicates that item selection under the MIT-S method, as under
theMImethod, still favors highly discriminating items. This is
the reason that the a-stratified method was effective in con-
trolling item exposure with the MIT method in Fan et al.
(2012). For the same reason, we expect the a-stratification
method would be effective with the MIT-S method, as well,
when the underlying IRT model was 2PL or 3PL.

Table 2 Performance of the MIT-S and MI methods under the 3PL model

20 Items 40 Items

MI MIT-S MI MIT-S

Average test completion time (mins) 37.76 33.32 79.19 70.03

Measurement precision Bias .001 .000 .001 .003

MSE .033 .032 .019 .020

ρ θ; θ̂
� �

.984 .985 .991 .990

Exposure control χ2 115.36 118.52 102.00 104.09

No exposure 73.9% 74.1% 54.3% 53.9%

Underexposed (<.02) 79.5% 79.8% 61.3% 60.5%
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Next, we fixed the pseudo-guessing parameter to 0 for
all of the items, and the resulting item parameters were
used for the 2PL simulation. These results are summarized
in Table 3. The patterns are very similar to those under the
3PL model (see Table 2). The MIT-S method achieves the
same level of measurement precision as the MI method.
The item bank usages are very similar when we look at
the proportions of items that are not used at all, underused,
and overused. Meanwhile, the MIT-S method reduces the
testing time by 14% (for test length = 20) and 12% (for test
length = 40). Although the time saving is indeed more
pronounced with a shorter test, the difference is small un-
der the 2PL model.

A key question we are trying to answer is how MIT-S
performs when the underlying IRT model is the 1PL model.
In this case, all items have the same item discrimination pa-
rameter. Therefore, we do not expect item selection under the
MI or MIT-S to favor highly discriminating items. However,
item selection under the MIT-S method might favor highly
time-saving items, so we further constrained the discrimina-
tion parameters from the 2PL model to 1.0. Note that the
correlation between item difficulty and time intensity is still
maintained. The results are summarized in Table 4 for test
lengths of 20 and 40.

This table indicates that the MIT-S method results in a very
skewed item exposure distribution. When the test length is 20,
78.2% of the items are never used, and 82.7% of the items in
the pool are used less than 2% of the time. This indicates that
the majority of the items are dormant. When the test length is
40, about 66.6% of the items are underused. In terms of mea-
surement precision, the MIT-S method does as well as the MI
method, as indicated by the extremely similar bias, MSE, and

ρ θ; θ̂
� �

: In addition, the MIT-S method leads to substantial

time saving when the underlying model is 1PL. The total
testing time is reduced by 54.4% when the test length is 20,

and by 46.4% when the test length is 40. Here again, we see
the time saving is more pronounced when the test is short.

In summary, the MIT-S method does well in maintaining
the measurement precision, while reducing the testing time
dramatically in comparison to the MIT approach, when the
underlying true IRTmodel is 1PL. However, it performsmuch
worse than the MI method in exposure control, insofar as a
large portion of the item bank is wasted, and the exposure
concentrates on a very small subset of items. In fact, the highly
exposed items tend to be the highly time-saving ones. The
correlations between item exposure rate and time intensity
are –.40 (when the test length is 20) and –.54 (when the test
length is 40), indicating that time-consuming items are used
less frequently.

Exposure control under the 1PL model and simulation
study 2

We investigated how we can address the exposure control
problem with the MIT-S method when the model is 1PL.
Recall that Fan et al. (2012) found that the item bank usage
was very unbalanced under the 2PL and 3PL models;
therefore, they combined the a-stratification design with
the MIT strategy to control and balance exposure rates.
The a-stratification design, first proposed by Chang and
Ying (1999) and later modified by Chang, Qian, and
Ying (2001), was a novel design for exposure control.
The design used in Fan et al. (2012) was a-stratified CAT
with b-blocking, the modified version introduced in 2001.
It involves first rank-ordering the items in the pool accord-
ing to their difficulty parameters. Items that are similar in
difficulty are then grouped to form a Bb-block,^ and the
items within each block are rank-ordered again by their a
parameters. The low-a stratum is formed by pooling the
low-a items from all b-blocks, and the high-a stratum is

Table 3 Performance of the MIT-S and MI methods under the 2PL model

20 Items 40 Items

MI MIT-S MI MIT-S

Average test completion time (mins) 34.52 29.83 72.98 64.06

Measurement precision Bias .002 .002 .001 .001

MSE .025 .025 .015 .015

ρ θ; θ̂
� �

.988 .988 .993 .993

Exposure control χ2 108.5 114.78 95.68 100.18

No exposure 73.4% 73.9% 52.9% 54.8%

Underexposed (<.02) 78.8% 78.8% 60.3%

61.2%

Overexposed (>.20) 5.7% 6.1% 13.4% 13.8%
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formed by pooling the high-a items. In this way, the strata
have increasing levels of average item discrimination, but
the distributions of difficulty remain similar across strata.
Examinees are only allowed to see items from the low-a
stratum in the beginning of the test when our knowledge of
the true θ is minimal; higher-a items are reserved for the
later stage. As a result, not only the highly discriminating
items, but also the less discriminating items, are used, and
the item bank usage is more balanced. By forming b-blocks
in addition to a-stratification, the stratification design takes
into account the positive correlation between the discrimi-
nation and difficulty parameters in operational item banks,
and consequently maintains measurement precision while
balancing item pool usage (Chang et al., 2001). When used
in conjunction with the MIT strategy, the method was suc-
cessful in controlling for item exposure, as well (Fan et al.,
2012).

This method is, however, no longer applicable when the
underlying model is 1PL. The discrimination parameters are
all equal, so there is no basis for a-stratification. Some other
well-known item exposure control methods are still appropri-
ate, though, such as the randomesque method (Kingsbury &
Zara, 1989) and the progressive restrictive method (Revuelta
& Ponsoda, 1998).

In contrast to the MI or MIT methods, which choose the
best single item in the bank according to an item selection
criterion, the randomesque method randomly picks an item
out of the n best items, where n can be 5 or 10, for example.
In our study, we used n = 5, and the resulting item selection
method is denoted as MIT-S-R5. In this approach, at every

step the five items that lead to the largest ratio of I l θ̂
tð Þ� 


∑lnTil
will

be identified, and one will be randomly chosen from those five
to be given to the examinee.

The progressive restrictive method also tries to impose
some randomness onto the item selection process.When com-
bined with the MIT-S method, instead of choosing the item

that yields the largest ratio of item information to average
response time, the progressive restrictive method tries to max-
imize the weighted sum of the ratio and a random number
generated within the range of 0 and the maximum ratio of
I l θ̂

tð Þ� 

∑lnTil

achieved on previous items, evaluated at the current

θ̂
tð Þ. Early in the test, the weight on the random component is

heavy, and the weight decreases as testing progresses. In
Revuelta and Ponsoda (1998), the weight on the random com-
ponent was set to be 1 – t/L. If the test length is 20, and ten
items have been administered, the weight is .5. This is the
Bprogressive^ part of the progressive restrictive method. On
the other hand, the exposure rates of items are monitored over
time. Once an item’s exposure rate is over a set limit, the item
is set aside, or Bhibernates,^ and becomes ineligible for sub-
sequent item selection. As testing progresses and the item’s
exposure rate drops below the preset limit, the item is “awak-
ened” and becomes eligible once again for item selection. This
is the Brestrictive^ part of the progressive restrictive method. It
effectively prevents an item from being overexposed. These
types of techniques are important in a high-stakes assessment
situation that requires high security, and thereby strict expo-
sure control. We used the progressive restrictive method with
MIT-S and denoted the resulting procedure as MIT-S-PR.
Under the MIT-S-PR method, items are selected sequentially
following

max
l

1−
t
L

� �
r tð Þ þ t

L

I l θ̂
tð Þ� �

X
lnTil

; l ∈ Rt

8>><
>>:

9>>=
>>;; ð9Þ

where r
(t)
is the random number generated at stage t, and Rt is

the set of eligible items at this stage. Note that because of the
Brestrictive^ nature of the method, items with real-time expo-
sure rates higher than the set limit (in this study, .2) are inel-
igible for selection.

Table 4 Performance of the MIT-S and MI methods under the 1PL model

20-Item 40-Item

MI MIT-S MI MIT-S

Average test completion time (mins) 37.58 17.13 75.70 40.56

Measurement precision Bias .001 .001 –.002 –.002

MSE .076 .075 .038 .039

ρ θ; θ̂
� �

.963 .963 .982 .981

Exposure control χ2 14.81 153.26 23.25 133.51

No exposure 6.4% 78.2% 0.5% 59.8%

Underexposed (<.02) 50.6% 82.7% 15.1% 66.6%

Overexposed (>.20) 0 5.9% 2.9% 13.1%
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Other aspects of the simulation study remained the same
as those in Simulation Study 1. We fixed the discrimination
parameter from the 3PL model parameter estimates to 1,
and the pseudoguessing parameter to 0 for all the items.
The resulting item parameters were used for the 1PL sim-
ulation. Two test lengths were again chosen, 20 and 40,
and the item selection methods were compared in terms
of measurement precision, time saving, and item bank us-
age. Table 5 summarizes the performance of the MIT-S
method in conjunction with the randomesque method when
n = 5 (i.e., MIT-S-R5) and the progressive restrictive meth-
od (i.e., MIT-S-PR), and contrasts them with the MI and
basic MIT-S methods. To facilitate the comparison, the
corresponding columns for the MI and MIT-S methods
from Table 4 are included in Table 5. The test length is
20, and the underlying true IRT model is 1PL. Note that
in this case the MIT-S-R5 method improves the item pool
usage substantially. As compared to the MIT-S method, for
MIT-S-R5 the χ2 decreases from 153.26 to 25.61, the per-
centage of unused items in the pool is reduced by more
than half (from 78.2% to 33.9%), and no item is
overexposed. It maintains the time-saving advantage of
the MIT-S method, so that the testing time is reduced from
37.58 (for the MI method) to 23.19 min, a reduction of
almost 40%. The MIT-S-PR method also helps improve
item pool usage, but it is not as effective as the
randomesque method. Its advantage in time saving is
slightly more pronounced, though (a reduction of the aver-
age total testing time by 43%). Note that it also keeps any
item from being overexposed, indicating that the progres-
sive restrictive method is effective in protecting the secu-
rity of the test items. Comparison of the MIT-S, MIT-S-PR,
and MIT-S-R5 methods suggests that exposure control
slightly reduces the time-saving advantage, because the
item selection algorithm is forced to use some of the more
time-consuming items. However, MIT-S-R5 still leads to
substantial reductions in testing time and balances the item
pool usage, with nearly no loss of measurement precision,

since the differences in bias, MSE, and ρ θ; θ̂
� �

occur only

in the third decimal place.
Table 6 provides the same comparison of methods when

the test length is 40. The corresponding columns of Table 4 are
included in Table 6 to facilitate comparison. The general pat-
terns we observed in Table 5 are again observed in Table 6.
Between the two exposure control methods, the randomesque
approach performs better in exposure control, because it more
effectively promotes exposure of the items that are selected
less often. Both approaches are successful in keeping any item
from being overexposed. The MIT-S-R5 method leads to a
10% reduction in testing time, whereas the MIT-S-PR method
leads to a 30% reduction.

Overall, the MIT-S method does very well reducing testing
time, but it leads to very unbalanced item pool usage under the
1PL model. When used in conjunction with the randomesque
method, however, it successfully maintains measurement pre-
cision, saves testing time (though not as much as the original
MIT-Smethod), and leads to good exposure control. The time-
saving advantage of the MIT-S-R5 method is more evident
when the test is short.

Summary and Discussion

In this study, we investigated the performance of the MIT-S
method under various IRTmodels. This is a simplified version
of the original MITmethod proposed by Fan et al. (2012). Our
results indicate that the MIT-S method effectively reduces
testing time without compromising measurement precision.
In terms of item pool usage, it is comparable to the MI method
when the underlying IRT model is 2PL or 3PL. This result is
in contrast to the prior findings of Fan et al. (2012), which
suggest that trying to save time exacerbates the unbalanced
item pool usage. The difference in results may be due to the
fact that item discrimination and time intensity are correlated
in the empirical item bank. From this perspective, Fan et al.

Table 5 Performance of the MIT-S and MI methods with exposure control under the 1PL model, test length = 20

MI MIT-S MIT-S-R5 MIT-S-PR

Average test completion time (mins) 37.58 17.13 23.19 21.50

Measurement precision Bias .001 .001 .005 .001

MSE .076 .075 .082 .078

ρ θ; θ̂
� �

.963 .963 .960 .961

Exposure control χ2 14.81 153.26 25.61 54.22

No exposure 6.4% 78.2% 33.9% 37.5%

Underexposed (<.02) 50.6% 82.7% 57.0% 72.3%

Overexposed (>.20) 0 5.9% 0 0
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(2012) might have sold the MIT method a little short. Its
advantage in testing time savings does not necessarily come
at the expense of worse exposure control than under the MI
method. This indicates that item bank structure might have
substantial influence on CAT outcomes.

TheMIT-Smethod leads to substantial time savings when the
underlying IRT model is 1PL, but as we would expect, it results
in poor item bank usage, because it favors highly time-saving
items. When the MIT-S method is used with randomesque ex-
posure control, the item bank usage is much improved.

These results suggest the need for future research in
several directions. First, the MIT method and the MIT-S
method should be compared when the log-normal model
fits and when the assumption of the log-normal model is
violated (i.e., model misfit). We expect that the MIT-S
method will be more robust against model misfit. On the
other hand, as a reviewer pointed out, both the MIT and
MIT-S methods conduct item selection by maximizing an
information-gain-to-time-cost ratio. When the time cost
function is defined differently, the information gain is
expressed in a different metric. Many arbitrary choices
exist regarding the gain-to-cost-ratio metric, some more
justifiable than others. A well-justified metric that de-
serves further study is to use the estimate of the average
raw response time reconstructed from the maximum like-
lihood estimates (MLEs) of the log-normal distribution,
instead of the average log-transformed response time, as
the denominator in Eq. 7. This would be asymptotically
equivalent to the ratio of expected gain to expected time
cost in Kujala (2010). Further research is warranted to
investigate the performance of such a metric, and to com-
pare its performance against the original MIT and MIT-S
methods.

Second, these results suggest that additional research
should be conducted to take into account realistic constraints
on CAT—for example, content balancing and item type
balancing. It may be necessary to consider these constraints,
because items of various types and from various content areas
may differ qualitatively in their time intensities. For example,

short essay questions usually take much longer to finish than
multiple-choice items. Consequently, theMITorMIT-S meth-
od, by favoring time-saving items, may disproportionally
choose multiple-choice items. As a result, the test composition
could deviate substantially from the desired blueprint.
Because of this, we should explore combining the MIT or
MIT-S method with popular constraint management methods,
such as the weighted deviation modeling method (Stocking &
Swanson, 1993), the maximum priority index method (Cheng
& Chang, 2009), and the shadow test approach (van der
Linden, 2010).

Finally, we recommend examination of the issue of con-
trolling the total response time under the MIT or the MIT-S
method. Van der Linden (2009) and van der Linden and Xiong
(2013) are pioneering studies on controlling the total test time
using item-level and individual-level response time informa-
tion. Although the MIT and MIT-S methods save testing time
on average, there is still a risk that the total testing time limit
for an examinee will be exceeded. It is therefore essential to
keep the total testing time under control for each individual
examinee.

Although a large literature exists concerning optimizing
CAT from the perspective of FLE, the literature concerning
optimizing CAT from a DTE perspective is relatively new.We
have extended this nascent literature by simplifying the oper-
ational assumptions required to follow the MITapproach with
the MIT-S formulation. In addition, we show how the interac-
tion of item bank structure, with variations in IRT models and
item selection algorithms, can lead to higher DTE. The in-
crease in the use of additional (time) data regarding examinee
performance, combined with additional variations in algorith-
mic details, suggests directions for continued improvement in
CATmethods across a broad range of assessment and learning
contexts.

Author note This work was supported by a 2014 CTB/McGraw-Hill
R&D Grant and a grant to the first author from the National Science
Foundation: DRL-1350787. The authors thank Adele Brandstrom for
her generous help with editing the second draft of the manuscript.

Table 6 Performance of the MIT-S and MI methods with exposure control under the 1PL model, test length = 40

MI MIT-S MIT-S-R5 MIT-S-PR

Average test completion time (mins) 75.70 40.56 68.66 51.52

Measurement precision Bias –.002 –.002 .002 .001

MSE .038 .039 .044 .040

ρ θ; θ̂
� �

.982 .981 .978 .980

Exposure control χ2 23.25 133.51 18.41 49.36

No exposure 0.5% 59.8% 5.9% 13.3%

Underexposed (<.02) 15.1% 66.6% 20.3% 50.4%

Overexposed (>.20) 2.9% 13.1% 0 0
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