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Abstract In animal behavioral biology, an automated
observing/training system may be useful for several rea-
sons: (a) continuous observation of animals for documen-
tation of specific, irregular events, (b) long-term intensive
training of animals in preparation for behavioral experi-
ments, (c) elimination of potential cues and biases induced
by humans during training and testing. Here, we describe
an open-source-based system named CATOS (Computer
Aided Training/Observing System) developed for such sit-
uations. There are several notable features in this system.
CATOS is flexible and low cost because it is based on free
open-source software libraries, common hardware parts,
and open-system electronics based on Arduino. Automated
video condensation is applied, leading to significantly
reduced video data storage compared to the total active
hours of the system. A data-viewing utility program helps
a user browse recorded data quickly and more efficiently.
With these features, CATOS has the potential to be applied
to many different animal species in various environments
such as laboratories, zoos, or even private homes. Also, an
animal’s free access to the device without constraint, and
a gamified learning process, enhance the animal’s welfare
and enriches their environment. As a proof of concept, the
system was built and tested with two different species. Ini-
tially, the system was tested for approximately 10 months
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with a domesticated cat. The cat was successfully and fully
automatically trained to discriminate three different spoken
words. Then, in order to test the system’s adaptability to
other species and hardware components, we used it to train
a laboratory rat for 3 weeks.
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Introduction: automated animal training
and testing

Studies of animal behavioral biology often involve consid-
erable human resources, time, and data storage, for example
of video recordings, during animal observation and training.
For example, continuous video recording may be required
when monitoring nocturnal behaviors of a certain species
and documenting specific events, which may occur rarely
and irregularly. Also, certain experiments require a pro-
longed training period, which can take more than a year.
Experiments often require animals to respond reliably to
certain stimuli, which may not be an easy task. There-
fore, training may require a long time before the subject is
ready to be tested. Additionally, long periods of training by
humans can introduce unintended cues and biases for the
animals undergoing training.

An autonomous system for observing and training ani-
mals could thus save human resources and reduce the
amount of data that needs to be recorded, processed, and
stored. The reduced amount of data can also minimize the
amount of human resources needed, such as for the inspec-
tion and maintenance of large volumes of data. There have
been several attempts to build automated observation or
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surveillance systems for biological purposes (Kritzler et al.,
2008), or security (Bellotto et al., 2009; Vallejo et al.,
2009). There are also many commercial products available
for surveillance systems, with varying degrees of automa-
tion or artificial intelligence. However, the automation and
intelligence of each system is case specific, and most of
them are not applicable to animal observation/training sit-
uations. Even when these systems can be applied, consid-
erable adjustments are usually required, entailing technical
difficulties and higher costs.

In the case of prolonged training, an automated system
can save human resources and eliminate potential cues and
biases introduced by humans. Training with an automated
system is an extension of traditional operant conditioning
chambers, and many modern and elaborated versions have
been developed and used in this context (Markham et al.,
1996; Takemoto et al., 2011; Kangas & Bergman, 2012;
Steurer et al., 2012; Fagot & Bonté, 2010; Huber et al.,
2015).

CATOS (Computer Aided Training/Observing System),
the system we have developed in this study, differs from
most of previous systems in several respects. First, the soft-
ware of CATOS is open source, including its dependencies
on other libraries. Second, CATOS uses computer vision for
automatic video condensation. Third, an animal voluntarily
participates in training and test sessions to obtain a reward.
Thus, animals do not have to be forced to participate at spe-
cific times nor moved to a separated space. All of these
functions are well integrated into a single package, storing
and time-stamping data in a format designed for scientific
purposes.

During a session, CATOS runs for many hours without
requiring the presence of human trainer or experimenter.
It runs for eight or more hours because the system waits
for animals to interact with it voluntarily. Despite the long
operating hours, its continuous video recordings are auto-
matically condensed by the selective recording of inter-
actions between the animals and the device. The training
regime with CATOS can be composed of multiple phases
with increasing difficulty levels starting from a familiariza-
tion phase. In each phase, an animal’s specific interaction
with the device, which is pre-defined by the user, leads to
a food reward, encouraging the animal to interact with the
device. A trial consists of detecting an animal via the com-
puter vision package, presenting a stimulus, acquiring an
animal’s response behavior with an input device, and actu-
ating a positive feedback including a food reward when the
animal’s behavior was correct.

We implemented several advantageous features espe-
cially for prolonged animal training. CATOS tries not to
record any unnecessary data by detecting the animal’s pres-
ence in a region of interest and processing only relevant
information with a set of condition-action rules (Russell &

Norvig, 2009). It also has separate data-viewer software,
which shows one JPEG image summary for each recorded
video (Fig. 6). The automatic data condensation and the data
viewer’s image summary help the user save time and effort
when reviewing the collected data. The implementation of
different phases with increasing levels of difficulty, in which
the animal’s interaction which can potentially lead to a food
reward without any considerable negative feedback, was
aimed to be part of enrichment plan for the animal as an
animal training “gamification” (Deterding et al., 2011).

The above features of CATOS and its inexpensive con-
struction cost due to the free open-source software and
Arduino-based open-system hardware, which CATOS relies
on, makes the system suitable for various purposes and
locations such as a laboratory, a zoo, and even a private
home.

Related work

While there are no systems precisely using the open-
source/open-hardware approach of CATOS, numerous sys-
tem exist using commercial hardware and/or software to
analyze animal behavior. Kritzler et al. (2008) published
an indoor mouse tracking system, mainly using RFID tech-
nology, but also partially using computer vision. Although
this is not a training/testing system, it is a good example of
research tracking animal subjects for long period, offering
useful scientific data.

Kangas and Bergman (2012) used a touchscreen appara-
tus to test squirrel monkeys. This system requires capturing
and/or isolating of an individual animal in a separate cham-
ber for training and testing, which can lead to several
problems: (a) it may be unethical for some species, depend-
ing on the capturing process, (b) the subject’s attention
could be lowered, or arousal increased, especially when the
species is social and the subject lost visual/auditory contact
with its group, (c) human monitoring and possible interfer-
ence throughout the procedure is required when an animal
is captive, therefore, it is time consuming for researchers.

Closer to the goals of CATOS is the system developed by
Fagot and Paleressompoulle (2009), the Automatic Learn-
ing Device for Monkeys (ALDM). ALDM does not require
capturing/isolating animals, and relies on recognition of an
individual animal’s RFID tag. A similar system is that of
Huber et al. (2015), the Automatic Learning Device for
Birds (ALDB). This device also starts a session when an
individual’s RFID tag is recognized. These two works and
Kritzler et al. (2008) all used RFID technology. While it is
affordable and relatively easy to implement, there are a few
noteworthy constraints of RFID technology when applied to
multiple animal species. First, its reading distance varies to
large extent depending on the type of RFID tags and reader.
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For the purpose of tracking animals, passive tags are favored
(light weight and small size) to avoid burdening an animal
with an active type tag with batteries. For reliable detection
of a passive tag, the tag must be placed in quite close prox-
imity to the reader (Roberts, 2006), about a few centimeters
in practice. Second, readers cannot read two tags at the same
time. Both together lead to a procedure, in which an indi-
vidual animal subject must be trained to put their body part
with the tag close to an antennae of the reader and/or goes
though certain narrow passage, which is equipped with an
antennae. This type of procedure may not be feasible for
many animal species.

Another important issue with these previous systems
is that most of them used commercial software to run
the training/testing session, and none of them published
their software as open source. Furthermore, how the hard-
ware and electronic components were implemented and
integrated with their software was not mentioned in most
studies. Therefore, there is little chance of involvement of
an active user community to freely use, modify, and update
the software and hardware.

CATOS is designed to fill this gap, building on these
previous achievements, but giving full specifications of
hardware and system integration along with open-source
hardware. Currently, the number of people with program-
ming skill is increasing rapidly, and many researchers are
already exposed to a certain degree of programming and
scripting with various programming languages and plat-
forms such as Python, Matlab, R, and so on. Also, inexpen-
sive, easily programmable electronic products are available
as well, like the Arduino chip used in this study. Our goal
with the CATOS project is to initiate the public sharing
of open-source software and hardware integration, so that
many other researchers can reproduce previous methodolo-
gies, improve them, or develop entirely new and innovative
tasks in an open and inexpensive manner.

Testing CATOS with animal subjects

For better understanding of the technical description of the
system, we first describe two test cases with animal species,
followed by the detailed description of CATOS itself.

Testing CATOS with two animal species was conducted
using two different prototype devices (see Fig. 1). The first
prototype had three pushbuttons as a main input device. This
version was tested with a pet cat for about 10 months. The
main input device for the second prototype was a touch-
screen. This version was tested with a laboratory rat for
about 3 weeks. These two prototypes were approximately
the same in functional architecture but differed in sensor
devices and appearance due to structural adaptations in
order to protect the hardware.

Testing with a cat

We initially tested CATOS with a 2.5-year-old female pet
cat originally obtained from an animal shelter at the age
of 2 years. The cat had not been exposed to any form of
training since its adoption until the beginning of the train-
ing for this study in October 2012. Training was conducted
every day for over 10 months in the cat’s home. The main
experimental room was 5 m long and 2 m wide.

Each daily session lasted between 8 and 12 h, depending
on the animal’s current training state. A sound from a pool
of possible trial sounds was randomly played with a random
inter-trial interval. The possible trial sounds were differ-
ent in each training phase, and are described further below.
If there was no reaction after playback, then it was not

First build 
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Fig. 1 Two prototype devices used to test CATOS with animal
subjects
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recorded as a trial in the result CSV file. Possible reactions
were motion detection or button presses within the duration
of the trial, which could be between 20 and 60 s, depend-
ing on the training state. If there was a reaction within the
duration of the trial, then the trial officially started, which
entailed logging and writing a trial entry in the result CSV
file. At the end of each daily session, additional food was
given to the animal, depending on the amount of food dis-
pensed, which was indicated in the result CSV file. Also, the
animal was weighed periodically through the testing period,
to ensure it maintained a stable weight.

The cat first had several preliminary training phases to
be familiarized with a feeder, and obtaining food from a
feeder by pressing a button. Then training started, intended
to associate a specific sound with pressing a specific but-
ton when multiple buttons were available. The trial duration
was 60 s. Three buttons were implemented, and three sound
stimuli were used, each corresponding to a specific button.
The sound stimuli were recordings of the experimenter say-
ing three Korean words, ‘Dong-g-ran’, ‘Sam-gak-hyeong’,
and ‘Ne-mo-nan’, meaning round, triangular, and rectangu-
lar, respectively. The recordings had a similar duration and
mean intensity, with durations of 1.35, 1.3, and 1.4 s, respec-
tively, and mean intensities were all 64.5 dB. However, these
sounds were quite different in terms of the prosody. This
task was difficult for the cat to learn due to the fact that she
could obtain enough food by randomly pressing one of the
three buttons if she participated in a sufficient number of
trials in a day. In order to facilitate the association between
sounds and buttons, three loudspeakers were installed and
were assigned to specific sound stimuli. In this method, each
loudspeaker was located directly behind each button, play-
ing only the sound stimulus corresponding to that button.
After more than 3 months of training with three loudspeak-
ers, a fourth loudspeaker was introduced that played any of
the three sound stimuli. Figure 1 shows the placements of
the loudspeakers. Over the course of a month, we gradu-
ally increased the frequency with which sounds were played
over the fourth speaker relative to the other three speakers,
in an attempt to train the cat to use the acoustic differences
between the sounds, rather than the location of the sounds,
to choose the button.

Although preliminary training phases were easily com-
pleted in several weeks, the training of the discrimination
task lasted about 7 months. Within a month, the cat used all
three buttons to obtain food, but did not learn to associate
three sounds with three buttons. After three loudspeak-
ers were added behind buttons to provide a spatial cue as
described in the previous ‘Training procedure’ section, the
correct response rate rose to more than 80 %, but when
the positions of loudspeakers were changed to about 60 cm
above the buttons, the correct response rate dropped to less
than 60 %. With these results, we suspected the cat used

only the location of the sound source as a cue, rather than the
different prosody of each sound. After a fourth loudspeaker
was introduced as described in the previous ‘Training pro-
cedure’ section, the three speakers were deactivated, and
all trials played all three sounds from the fourth speaker.
The cat’s performance on the sound discrimination task in
these trials including the fourth speaker is depicted in Fig. 2,
which shows a gradual increase in performance over about 2
months. The cat showed a correct response rate of more than
70 % in the final month. This protracted 10-month training
period exemplifies a core virtue of the CATOS system—it
required minimal time from the human experimenter, while
providing the cat adequate time to learn the task based only
on positive reward and voluntary participation in its own
home.

Testing with a rat

A slightly modified version of the system was subsequently
tested in a laboratory environment with an approximately
2-year-old male rat for several weeks. Here, our goal was
simply to demonstrate that CATOS could be successfully
adapted to another species and environment. The structure
of sessions and trials was as same as in the first CATOS
version tested with the cat: the goal was to train the rat to
interact with the system. The training procedure was also
similar to the preliminary training phases of the first test
with the cat. The main difference was that a touchscreen
was used for the rat instead of the physical push button array
we implemented for the cat. While the cat could always
press a button, the touchscreen only displayed a target image
immediately after a sound stimulus was played for 30-s
duration.

In this test, our main goal was to assess the system’s
suitability to another species. This was successful: the rat
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interacted with the touchscreen and feeding mechanism
appropriately, and learned to touch the target image after
hearing a sound.

Requirements

Required technical skills

Some skill in programming and interfacing to a micro-
controller is required to initially set CATOS up for a new
animal species to test. Beginner or intermediate level of
Python scripting is required depending on the complexity
of experimental trials, however, Python is a very intuitive
language and easy to learn (Lindstrom, 2005; Fangohr,
2004). Also, handling the microcontroller necessitates only
a minor work load since the microcontroller used in CATOS
is Arduino (see http://www.arduino.cc/), which is an open-
source microcontroller with many simple instructions and
online tutorials from a large user group. Necessary sensors
and actuators can be connected to the microcontroller by
simply following such tutorials. Thus, while some technical
skills and effort are needed for the initial implementation of
a system for a particular species and experimental paradigm,
these requirements are scaffolded by a large and enthusias-
tic “maker” community, with on-line question-and-answer
forums, magazines, and conferences. Furthermore, once the
physical system is built and implemented, any Masters or
PhD student with a modicum of programming skill can
modify the code to implement particular experiments (we
are also developing a GUI-based experiment builder for our
system requiring no programming at all, not described here).

Software & hardware

The CATOS system can potentially run on any commer-
cially available computer. The main programming lan-
guage used is Python (Version 2.7.3, retrieved in Novem-
ber 2012, from http://www.python.org/), and CATOS uses
many external packages such as OpenCV (Bradski, 2000),
NumPy/SciPy (Jones et al., 2001), and Matplotlib (Hunter,
2007), which are also open-source libraries, see Table 1.

The current sensory input processing of CATOS is based
on computer vision algorithms, implemented using the
open-source OpenCV library (version 2.3.1a, retrieved on
February 12, 2012, from http://www.opencv.org/), and sev-
eral sensors via a microcontroller. Also, a touchscreen with
Surface Acoustic Wave touch technology was integrated.
The visual observational features of CATOS are currently
based on motion detection. This was accomplished using
commercially available webcams and OpenCV, which is a
library for real-time computer vision that including over 500
functions (Bradski and Kaehler, 2008). By using tools in

Table 1 Summary of CATOS system dependencies: all open-source

Software (Tested) Version Source

python 2.7 python.org

OpenCV 2.3 & 2.4 opencv.org

ffmpg 1.1 ffmpeg.org

pyaudio 0.2 people.csail.mit.edu/

hubert/pyaudio

numpy 1.6 scipy.org

scipy 0.11 scipy.org

wxPython 2.9 wxpython.org

pyserial 2.6 pyserial.sourceforge.net

arduino 1.0 arduino.cc

matplotlib 1.2 matplotlib.org

the OpenCV library, CATOS users can easily expand the
computer vision algorithms, depending on the purpose of a
project. The wide variety of tools implemented in OpenCV
means that a vast variety of video analysis routines are
available to our system. These include algorithms to detect
and recognize faces, identify objects, classify actions in
videos, track camera movements, identify movement and
track moving objects, or follow eye movements. The cur-
rent implementation uses only a small fraction of these
capabilities.

The interface between the computer and the various
sensors/actuators was implemented using the open-system
microcontroller Arduino. Arduino is an inexpensive open-
source electronics-prototyping platform with a large and
growing user community, which has a wide variety of exten-
sion systems termed ‘shields’ usable for different purposes,
such as sensing temperature and controlling various types of
motors.

In summary, we believe that by integrating the open
toolkits into a single framework for animal behavioral
experiments, we leverage both the low price and the
great power and flexibility embodied in the new open-
source/maker movement. While this requires a certain
degree of technical expertise to implement a system, and
is thus not appropriate for everyone, this free and flexible
system yields considerable advantages over commercial or
closed-source systems, not only due to the low price but
because the large user community means these open sys-
tems will be well maintained, regularly updated, and will
grow over time.

Functional description of CATOS

The overall system consists of a combination of software
and hardware components; for a schematic overview, see
Fig. 3. The main software package is a multi-threaded

http://www.arduino.cc/
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http://www.opencv.org/
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Python script, called ‘AA’ (Agent for Animal), which runs
all of the necessary processes in CATOS and communi-
cates with the microcontroller program. The microcontroller
program operates sensors and actuators based on communi-
cation with ‘AA’. The hardware components are composed
of multiple devices, some of which are directly connected
to the computer via USB cables, others via electric con-
nections to the general-purpose input/output pins of the
microcontroller. The microcontroller itself is connected to
the computer via a USB cable. The visual and auditory
hardware devices are controlled by modules of the ‘AA’
program using external libraries. Other devices, connected
to the general-purpose input/output pins of the microcon-
troller, are controlled by the microcontroller program. The
‘AA’ program communicates with the microcontroller pro-
gram via a serial protocol connection for sending commands
to actuators and receiving values from sensors, using the
PySerial library.

Software in the overall structure

Once ‘AA’, the main software module of this system (Fig. 3)
starts, it continuously runs several processes in parallel,
using the ‘multiprocessing’ package of Python, until the
user terminates the program. The number of processes can
be changed and can be turned on or off depending on the
requirements of the experiment. These processes include

Computer >
Program (AA) >
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Fig. 3 Schematic diagram of the overall system. Solid lines denote
the messages exchanged between the modules. Dotted lines denote
the control connections between the software and the hardware
components

a video-in process for each camera, a video-out process,
an audio-in process, an audio-out process, a schema pro-
cess (see descriptions below), and a message-board process.
Even though some of these processes are quite simple, they
were implemented as separate processes to prevent them
from interfering with each other and/or becoming a pro-
cessing bottleneck. The system has to process the visual,
auditory, and other sensory and motor information simul-
taneously and in real time to recognize changes in the
environment and respond to them appropriately, which can
be computationally demanding. We also considered ‘thread-
ing’ rather than ‘multiprocessing’, but CPU-bound tasks
such as heavy calculations on images and/or sounds were
more of an issue than I/O bound tasks.

The output data (video input images, recordedWAV files,
movement records, CSV files for trial results, and the log
file), are temporarily stored in an ‘output’ folder. After the
end of each daily session, all of these output files go through
an “archiving” process that can include, but is not restricted
to, generating videos, generating images with movement
markings, and moving different types of files into
the categorized subfolders of a timestamped archive folder.

The following subsections describe the logical flow of
important processes implemented in the current system.
These processes can be broadly modified depending on the
specific training and/or experiment requirements.

Main loop

The main loop procedure launches all necessary processes
and then simply waits for user input to terminate the pro-
gram.

Schema process

The schema process determines the overall behavior of
the system, including the training or testing procedures.
Specifically, a training or testing procedure in this pro-
cess can differ considerably depending on the study species
and experimental design. The current schema process is an
instance used in the first test system with a cat, in which
the cat had to press the correct button after a sound stimulus
was played through the loudspeakers (see section ‘Testing
CATOS with a cat’).

Video-in process

The video-in process is used not only for recording the
current scene, but also for recognizing movements, extract-
ing moving objects (background subtraction) and recording
the calculated movement data. The sequence of images is
obtained continuously from two webcams, positioned about
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3 m above the device, on the wall of the experimental
room. Once a motion is detected, the program starts to
store images in JPEG format to a temporary folder until no
more motion is detected for 3 s. It also stores the records
of movements such as the center point of movements and
center points of foreground blobs. The stored series of
JPEG images in the temporary folder are compressed into
one MP4 video file using FFmpeg (http://www.ffmpeg.org)
when the daily session is finished.

The most crucial step used for recognizing an ani-
mal is motion detection. This algorithm searches for
any change in a recently obtained series of images and
returns the center point of overall change. Four func-
tions from OpenCV library were used to obtain this
information: cv.RunningAvg, cv.AbsDiff, cv.Canny, and
cv.FindContours. (Bradski & Kaehler, 2008) An example of
motion detection is illustrated in Fig. 4.

Resize (1/4)

Grayscale

Preprocessing

Extract

difference

from the 

recent

images

Canny

edge detector
Minimum

bounding rectangle

Fig. 4 Example of motion detection processing

Video-out process

The video-out process displays images on the touchscreen
and processes touches to the screen during a trial. It uses
the wxPython Graphical User Interface toolkit (retrieved
from http://www.wxpython.org in March, 2013). This pro-
cess allowed an animal subject, a rat, to respond during a
trial by touching the screen in our second test scenario.

Audio-in process

The audio-in process can be used to record any sound
around the microphone. Similar to the video-in process,
when the root-mean-square amplitude goes above a user-
defined threshold, sound recording begins, and the sound is
recorded into a WAV file until the amplitude drops under the
specified threshold for 3 s. In this instance, a high-pass filter
was applied before the measurement of RMS, to prevent the
inappropriate recording of a door closing or other incidental
noises in the vicinity of the experimental space.

Audio-out process

The audio-out process plays auditory stimuli (WAV files)
through the loudspeaker(s).

Feeder

The feeder (Fig. 5) used in this study is a custom-designed
device, which consists of an Arduino microcontroller;
(http://www.arduino.cc/), a motor shield for the microcon-
troller, a servomotor, and a frame encasing the whole feeder.
The feeder works by rotating the servomotor by a certain
number of degrees so that dry food pellets can be dispensed
to the animal after a correct response.

Physical interface using a microcontroller

Communication between the Arduino chip and the main
computer is accomplished with the Arduino module of
the ‘AA’ program using ‘pySerial’. A diagram of wiring
components can be found at https://github.com/jinook0707/
CATOS alpha.

The main functions of this subsystem for the cat are: (a)
three mechanical buttons providing the response interface,
(b) an IR distance sensor that measures the amount of food
left, (c) a servomotor which dispenses the food by briefly
opening the bottom of the food container.

The main functions of this subsystem for the rat are: (a)
a temperature sensor measuring the temperature inside the
protective wooden enclosure, (b) two fans which are turned
on when the temperature sensor indicates the temperature

http://www.ffmpeg.org
http://www.wxpython.org
http://www.arduino.cc/
https://github.com/jinook0707/CATOS_alpha
https://github.com/jinook0707/CATOS_alpha
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is too high, (c) a photocell sensor measuring the ambient
light level, (d) a light bulb which can be turned on when the
photocell sensor indicates the ambient light level is below
a user-defined threshold, (e) a servomotor which dispenses
food by turning the Archimedes’ screw back and forth, (f)
a piezoelectric sensor which is polled during servomotor
actuation, in order to confirm that the food reward was
successfully dispensed.

The utility program: AA Data viewer

In addition to the system described so far, we also imple-
mented a Python program for analyzing the recorded data
using the wxPython GUI toolkit (‘AA DataViewer’). This
program allows rapid inspection of overall performance, and
a single-image condensed overview of the video footage of
any chosen trials (see Fig. 6). AA DataViewer loads the log
file, the result file (CSV format) containing the results of the
trials, the movement record CSV files, the MP4 video files,
and any recorded WAV files from a timestamped folder con-
taining all data collected for one daily session. The JPEG
image in Fig. 6 shows the blobs representing the movements
of the cat. The circles represent the positions of the blobs
and the color of a circle at the beginning of the recorded
video is black, then progressively becomes lighter as the
video proceeds. Lines connecting multiple circles mean that
those blobs occurred at the same time. AA DataViewer
can also display a graph showing subject performance over
selected sessions. The ‘archive’ folder contains sub-folders,
each of which in turn contains all the data for a session.
When the ‘select sessions’ button is clicked, a pop-up win-
dow appears for selecting multiple folders. The result data
from these selected sub-folders is plotted using the Python

Servomotor

Archimedes' screw

Ramp for 

  dispensing the food

Piezoelectric sensor

Microcontroller

30 cm

15 cm

Fig. 5 Custom feeder used in this study

graphing library Matplotlib. By visualizing the data for a
chosen period, it helps the trainer or experimenter to quickly
assess training progress.

Implementation effort

Initial creation of a CATOS system requires someone with
basic knowledge of Python programming, plus experience
in building hardware. The main software used for running
the first testing with a cat is available at https://github.
com/jinook0707/CATOS alpha, as open-source code under
GNU General Public License, version 3. This provides a
framework for expansion, in which all difficult program-
ming challenges (e.g., multi-processing, message passing,
serial communications, and data archiving) have already
been solved. The web site also provides plans for hard-
ware, electrical circuit diagrams, flow charts of software,
and other useful information.

Each software package listed in Table 1 was installed
separately, however, most of them provided package instal-
lation files, therefore, the installation did not consume a sig-
nificant amount of time. There are also Python systems, like
Enthought’s Canopy (free to academics), that can install and
manage all these libraries with its graphical user interface.
Before animal training, an initial CATOS physical setup
for a new species was conducted. This initial setup took
several weeks, mainly due to building a hardware frame
for protecting animals and the device. The software setup
required Python scripting in the schema, audio-out, and
video-out modules. The number of code lines that changed

Detailed data of movements

of the selected video

JPEG image showing

the series of movements that

happened in the selected video

Log Video recording with timestamps Results of trials

Fig. 6 Screenshot of AA DataViewer; Browsing session data

https://github.com/jinook0707/CATOS_alpha
https://github.com/jinook0707/CATOS_alpha
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for switching from one test to another was 200–300. This
could take 1 or 2 days to 1 week for a beginner-level Python
programmer depending on the complexity of the desired
trial procedure.

Once the initial system has been created and set up, the
effort required to run an experiment becomes minimal. For
example in our cat training experiment, the experimenter
assessed acquired videos and result CSV data daily. This
maintenance was conducted for about 15–30 min each day,
coupled with regular animal-keeping tasks such as changing
water and cleaning.

Observable advantages of the current CATOS
version

By using CATOS, we significantly reduced data storage and
human resources for running animal experiments. Two web-
cams observed the experimental area for 8–12 h per day
for about 10 months, and the entire output data during this
period, including movement records, MP4 video files, and
JPEG image files, only took 50.6 gigabytes of storage. To
obtain a rough idea of the degree of reduction in data stor-
age that was achieved using the system, we assessed the
number of recorded frames in the video recording using
data from 15 randomly chosen days, involving a total obser-
vation period of 112.8 h. The number of frames recorded
during this period was only 206,024, with an average FPS
(frames per second) of 7.5. Therefore the video recordings
of approximately 27,470 s (=7.6 h) were stored, which is
about 6.7 % of the entire observation period. These specific
numbers are not definitive since they can fluctuate greatly
depending on the increase or decrease of the subject’s move-
ments as well as the system settings, but the point is that
most of the useless video recordings were filtered out by
this system using efficient sensor information processing.
Also, human presence was not necessary during a train-
ing or testing session, as already described. The creation

and modification of the system modules, data transfer, and
other maintenance work obviously required some human
interaction, but no human time and effort was required to
execute the training and testing sessions. Although the ses-
sions themselves did not require a human to be present, the
animal’s performance with the system had to be periodi-
cally assessed and analyzed. How much food the animals
obtained, or how many correct and incorrect trials occurred,
could be quickly assessed from the result file of a session,
which displayed the number of correct and incorrect trials
with timestamps. Table 2 gives an example of such a result
file. A more detailed assessment was also possible, involv-
ing watching the recorded videos, which takes more time,
but as we showed, the total amount of data was greatly
reduced. The data viewer utility program displayed all the
timestamps and its condensed JPEG image, which presented
a brief summary of the movement detected in the recorded
video clip shown in Fig. 6. Thus, simply browsing the JPEG
images was often enough to assess a session. Only when it
was necessary, was a more detailed assessment performed
by playing the video recordings of trials.

Discussion

CATOS is currently in its beta stage. Although the system
is stable, more tests with further species and environments
are necessary. The potential of CATOS to be used in train-
ing and testing animal cognition was demonstrated with
two animal species and we believe CATOS also shows
considerable promise for saving human resources.

CATOS has several advantages. (a) CATOS itself and its
dependencies are all open-source projects, therefore, there
are no pre-defined limits to how the system could be used
and adjusted for future research purposes. Its free open-
source software and common inexpensive hardware parts
make CATOS a flexible and low cost system, increasing its
applicability to a variety of species, tasks, and locations.

Table 2 Example of the result file in CSV format

Trial# Trial start time Correct response Response Response time Correctness

000 2013 03 17 10 54 13 965895 button2-press button3-press 2013 03 17 10 54 15 388055 INCORRECT

001 2013 03 17 11 12 10 886611 button3-press button3-press 2013 03 17 11 12 15 867220 CORRECT

002 2013 03 17 11 29 12 784309 button2-press button2-press 2013 03 17 11 29 16 663150 CORRECT

. . . . . .

. . . . . .

. . . . . .

017 2013 03 17 17 22 17 300355 button3-press button2-press 2013 03 17 17 22 22 520951 INCORRECT

018 2013 03 17 19 37 46 166803 button1-press TIMEOUT 2013 03 17 19 38 15 833813 TIMEOUT



22 Behav Res (2017) 49:13–23

(b) The amount of data storage and human resources
required to train animals and analyze the stored data is sub-
stantially reduced when CATOS is employed, compared to
conventional systems for animal training and testing. (c)
CATOS can be freely accessed by animals at any time with-
out any physical constraints on animals. Also, the concept of
gamification was introduced in the animal training process
with a different level of difficulties in each training phase.
These features enriched the animals’ environments.

The most obvious limitation of using an open-source sys-
tem such as CATOS is that the user has to possess a certain
degree of knowledge across different fields such as com-
puter science, engineering, and electronics. However, this
difficulty has decreased thanks to the recent software and
hardware development platforms. CATOS uses Python and
its external libraries, and open-source hardware, Arduino.
Both are popular in scientific communities and offer intu-
itive syntax and interface (Lindstrom, 2005; Fangohr, 2004;
Pearce, 2012), therefore, one can improve the system with
a relatively shallow learning curve. Another potential limi-
tation could be the computational performance in terms of
speed. However, the speed of the current version of CATOS
was adequate for most purposes in animal behavioral stud-
ies. The frames per second of the video module was about
25, when the system was monitoring a scene with a web-
cam. Although it is often said that script languages gain
productivity in exchange for performance, the difference in
run time is often tolerable, depending on task and coding
style (Prechelt, 2000). Also, there are ways to use com-
piled C code in Python only for specific computational
tasks to exploit the performance of C. (e.g., in the OpenCV
computer vision routines)

After an initial 2-month period of implementation, our
system was highly reliable, with only a single failure occur-
ring during the 8-month training/testing period (caused by
a communication error between the computer and micro-
controller, which has been corrected). However, different
experimental designs, test species, or research environments
might lead to different reliability profiles.

Much of the functionality of the current version of
CATOS could alternatively be achieved by using combi-
nations of several commercial products, or building on
previously published work in the field, which also incorpo-
rates commercial products. The aim of our CATOS project
was not to provide a complete all-purpose product working
out of the box, but rather to provide an open and flexible
system for testing animal behaviors, which is completely
independent of any proprietary products and adjustable with
low cost. Thus, CATOS fills a previously empty niche in
computer-aided research in animal testing.

Further work

In the future, the CATOS framework will be developed fur-
ther considering the following aspects: (a) Restricting an
animal’s access to a ROI (region of interest) zone: Only one
animal would be allowed into an ROI zone, with no force-
ful separation from its own residence or social group. Such
a feature will help to achieve individual identification, dif-
ferent tasks, and rewards depending on the individual, and
so forth. Implementation of access restriction would have to
be introduced gradually, so that the individual already in the
ROI could leave the zone at any time, but others outside of
the ROI are prohibited from entering the zone. (b) Individ-
ual identification: If the goal is to have the system respond
differently to each individual, it will be necessary for the
system to recognize individuals automatically. RFID (radio
frequency identification) technology or a computer vision
algorithm exploiting a specific color or shape are both cur-
rently under consideration. Although RFID technologies are
appropriate for some tasks, and offer very reliable identifi-
cation when they work (see, e.g., Fagot and Bonté 2010),
the short range of data transfer means that the ID chip on
(or in) the animal subject needs to come very close to the
chip reader. This is not always practical, nor would injecting
chips into some animal subjects be desirable (e.g., wild ani-
mals). Either technology, or both, might be used in the future
depending on the type of animals. (c) Slave units through
a wireless network: The observation feature of the current
system can cover a small area such as the room used in
this study, but if multiple slave units with microcontrollers
or single-board computers, which can send information to a
master computer, are implemented, the scope of the system
could be expanded to cover a larger and more complex area.
Such a multi-unit wireless system could prove particularly
useful for animal observation tasks.

Author note This work was funded by the European Research
Council Advanced Grant SOMACCA, Nr. 230604 to WTF.
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