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Abstract Despite its prevalence as one of the most highly
influential models of spoken word recognition, the TRACE
model has yet to be extended to consider tonal languages such
asMandarin Chinese. A key reason for this is that the model in
its current state does not encode lexical tone. In this report, we
present a modified version of the jTRACEmodel in which we
borrowed on its existing architecture to code for Mandarin
phonemes and tones. Units are coded in a way that is meant
to capture the similarity in timing of access to vowel and tone
information that has been observed in previous studies of
Mandarin spoken word recognition. We validated the model
by first simulating a recent experiment that had used the visual
world paradigm to investigate how native Mandarin speakers
process monosyllabic Mandarin words (Malins & Joanisse,
2010). We then subsequently simulated two psycholinguistic
phenomena: (1) differences in the timing of resolution of tonal
contrast pairs, and (2) the interaction between syllable frequen-
cy and tonal probability. In all cases, the model gave rise to
results comparable to those of published data with human sub-
jects, suggesting that it is a viable working model of spoken
word recognition in Mandarin. It is our hope that this tool will

be of use to practitioners studying the psycholinguistics of
Mandarin Chinese and will help inspire similar models for
other tonal languages, such as Cantonese and Thai.

Keywords Computational modeling . Spokenword
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Since its publication in 1986,McClelland and Elman’s TRACE
model has remained one of the most highly influential compu-
tational models of spoken word recognition. This model—and
refutations of it—has helped shape psycholinguistic research
over the past 30 years by allowing researchers to test specific
hypotheses and to generate new ones (Allopenna, Magnuson,
& Tanenhaus, 1998; Dahan, Magnuson, & Tanenhaus, 2001;
Marslen-Wilson & Warren, 1994; Protopapas, 1999). In recent
years, this powerful tool has become even more accessible to
researchers in the community, thanks to the work of Strauss,
Harris, andMagnuson (2007), who released an implementation
of the TRACE model using a Java platform (jTRACE). This
implementation has since been used in a number of studies
spanning various domains, including speech and language dis-
orders and infant word recognition (e.g., Mayor & Plunkett,
2014; McMurray, Samelson, Lee, & Tomblin, 2010; Mirman,
Yee, Blumstein, & Magnuson, 2011).

Despite this increased accessibility, TRACE simulations
have yet to be conducted in many of the world’s widely spoken
languages, including Mandarin Chinese (Malins & Joanisse,
2012a). A key reason for this is that TRACE does not currently
encode lexical tone, which is a fundamental feature of tonal
languages such as Mandarin. This represents a considerable
roadblock in the development of the emerging field of the psy-
cholinguistics of East Asian languages, many of which are tonal
in nature (Li, Tan, Bates, & Tzeng, 2006; Zhou & Shu, 2011).
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Lexical tone refers to variation in the fundamental frequency
of a speaker’s voice used to differentiate the meanings of spo-
kenwords. For example, inMandarin, the word hua can refer to
Bflower^ when pronounced in a high and level tone, whereas it
can refer to Bpainting^ when pronounced in a falling tone. As
this example illustrates, processing the individual consonants
and vowels—or phonemes—in a word is not enough for a
listener to access the meaning of a spoken word; tonal informa-
tion must be accessed as well. Previous work by several groups
has suggested that tonal information is accessed online during
the unfolding of a spokenword over a similar time course as the
vowels upon which tones are carried (Brown-Schmidt &
Canseco-Gonzalez, 2004; Malins et al., 2014; Malins &
Joanisse, 2010, 2012a; Schirmer, Tang, Penney, Gunter, &
Chen, 2005; Zhao, Guo, Zhou, & Shu, 2011). Therefore, it is
vitally important that a model of spoken word recognition in
Mandarin be developed with this finding in mind. As has been
suggested previously, continuous mapping models such as
TRACE are well-suited to capture the dynamic nature of spo-
ken word processing in tonal languages such as Mandarin and
Cantonese (Malins & Joanisse, 2012b; Tong, McBride, &
Burnham, 2014; Ye & Connine, 1999; Zhao et al., 2011).

In this article, we present a computational model called
TRACE-T, which we designed to simulate the recognition of
monosyllabic spoken words in Mandarin Chinese. To develop
this model, we modified the existing jTRACE architecture to
code for Mandarin phonemes and tones. Spoken words are
represented using a coding scheme that allows for similar timing
of access to tonal and vowel information. Furthermore, we val-
idated this model by simulating published eyetracking data to
show that this model simulates Mandarin spoken word recog-
nition in away that captures the patterns observed in experimen-
tal data from human subjects. It is our hope that the community
can make use of this model to move forward psycholinguistic
research in Mandarin Chinese and other tonal languages.

How the TRACE-T model works

The TRACEmodel is a connectionist model with three layers,
corresponding to different grain sizes of spoken words. At the
highest level of the model are units corresponding to single
words, or lexical representations. Below this is a level con-
taining the phonemic units that make up spoken words. At the
lowest level of the model are the features associated with
different phonemes, such as power and voicing. Information
flows through the model in a bidirectional fashion, with excit-
atory connections between levels of the model. Within layers,
there are lateral inhibitory connections. Together, these excit-
atory and inhibitory connections affect the extent of activation
of different units in the model in response to a given input.
Items sharing phonological similarity, such as words that
share similar phonemes, or phonemes that share similar

features, compete for activation as temporal slices of the input
are presented to the model.

To develop the TRACE-T model, we first needed to code
Mandarin segmental structure. Instead of the seven feature
dimensions in jTRACE—namely, consonantal, vocalic,
diffuseness, acuteness, voicing, power, and burst amplitude—
we chose instead to categorize Mandarin phonemes along
dimensions more appropriate for the Mandarin phonemic in-
ventory. We elected to employ the dimensions used in the
Mandarin Chinese version of PatPho, an online database of
phonological representations of Mandarin syllables (Zhao &
Li, 2009). In the Mandarin version of PatPho, phonemes are
classified along three dimensions, each of which lump togeth-
er two different types of features—one for consonants and one
for vowels. We took each of these dimensions and split them
apart into two dimensions, giving rise to six dimensions in
total: voicing, place of articulation, and manner of
articulation for consonants, and roundedness, tongue
position, and tongue height for vowels. We selected an appro-
priate level (out of eight levels in total) for each of these
dimensions, and then assigned binary values to these levels.
As in the original TRACE model (McClelland & Elman,
1986), there was also a silent phoneme unit that was assigned

Table 1 Coding scheme employed for Mandarin segmental units in
TRACE-T

IPA Pinyina Coding Schemeb IPA Pinyin Coding Scheme

/ɑ/ [a] in [ang] 8–0–1–0–1–0 /kʰ/ [k] 0–3–0–1–0–6

/a/ [a] 8–0–3–0–1–0 /n/ [n] 0–8–0–5–0–8

/ɛ/ [e] in [ie] 8–0–6–0–3–0 /m/ [m] 0–8–0–8–0–8

/e/ [e] in [ei] 8–0–6–0–5–0 /ŋ/ [ng] 0–8–0–1–0–8

/o/ [o] 1–0–1–0–7–0 /l/ [l] 0–8–0–5–0–1

/ɣ/ [e] 8–0–1–0–7–0 /s/ [s] 0–1–0–5–0–4

/ə/ [e] in [en] 8–0–3–0–7–0 /f/ [f] 0–1–0–7–0–4

/u/ [u] 1–0–1–0–8–0 /ɕ/ [x] 0–1–0–2–0–4

/y/ [ü] 1–0–6–0–8–0 /ʐ/ [r] 0–8–0–4–0–4

/i/ [i] 8–0–6–0–8–0 /ȿ/ [sh] 0–1–0–4–0–4

/ɿ/ [i] in [zi] 8–0–8–0–8–0 /x/ [h] 0–1–0–1–0–4

/ʅ/ [i] in [zhi] 8–0–7–0–8–0 /ts/ [z] 0–1–0–5–0–3

/t/ [d] 0–1–0–5–0–6 /tsʰ/ [c] 0–3–0–5–0–3

/tʰ/ [t] 0–3–0–5–0–6 /tɕ/ [j] 0–1–0–2–0–3

/p/ [b] 0–1–0–8–0–6 /tɕʰ/ [q] 0–3–0–2–0–3

/pʰ/ [p] 0–3–0–8–0–6 /tȿ/ [zh] 0–1–0–4–0–3

/k/ [g] 0–1–0–1–0–6 /tȿʰ/ [ch] 0–3–0–4–0–3

IPA— the International Phonetic Alphabet. a Note that the same symbol
in Pinyin can be used to represent two or more distinct vowels in IPA; in
these instances, example Pinyin sequences containing these vowels are
offered for clarification. b The coding scheme for each unit is given as the
level (out of eight) that was assigned a binary value for each of the six
respective dimensions. Values for these dimensions are listed in the fol-
lowing order: vowel roundedness, voicing for consonants, tongue position
for vowels, place of articulation for consonants, tongue height for
vowels, and manner of articulation for consonants. For example, the
vowel /ɑ/ was assigned a value of 1 in the eighth level of the vowel
roundedness feature, a value of 1 in the first level of the tongue position
feature, and a value of 1 in the first level of the tongue height feature
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a value of 1 in the ninth feature level in all dimensions. The
full segmental coding scheme is detailed in Table 1.

To incorporate Mandarin tones, we took the remaining, un-
used feature dimension in the model and used it to simultaneous-
ly code for two important distinguishing features of Mandarin
tones: pitch height and pitch slope (Chandrasekaran, Gandour, &
Krishnan, 2007; Gandour, 1984; Shuai, Gong, Ho, & Wang,
2016; Wang, 1967). Using previously published speech produc-
tion data from a set of 29 native Mandarin speakers (36 syllables
each, for a total of 1,044 tokens; Zhou, Zhang, Lee, &Xu, 2008),
we took the full range of semitones spanning the four tones
(which were time-normalized) and divided it into five levels of
pitch height. Next, pitch slope was coded in three levels: level,
rising, or falling. Fifteen tone units were then created, corre-
sponding to the 15 unique combinations of pitch height and
slope. We chose to label these using the scheme THS, where H
corresponds to a level of height, from 1 to 5 (5 being the highest),
and S to a slope (L = level, R = rising, F = falling). The normal-
ized time series of each of the four tones was then divided into
five temporal intervals, and the pitch slope and average pitch
height were determined for each. Tone units were then selected
as those with a value of 1 in the bin containing the average value
of pitch height for a given interval and a value of 1 for the
appropriate level of pitch slope for the interval. This tonal coding
scheme is detailed in Table 2.

Syllables were represented with ten units corresponding to
alternating phoneme and tone units using the following scheme:
P1THS-1P2THS-2P3THS-3P4THS-4P5THS-5, where P1 through P5 are
segmental units and THS-1 through THS-5 are five tone units,
corresponding to the five intervals over which the syllable’s tone
is expressed. This alternation between phoneme and tone units
was designed to allow for simultaneous access to phonemic and
tonal information during the unfolding of a spoken word. For
syllables with less than five phonemes, the tone-bearing vowel
was repeated to allow the number of phonemes to equal five. For
example, the syllable xia1 was coded using the string {x Tsilent i
T4L a T4L a T4L a T4L}; the Tsilent unit will be explained shortly.
The P1 unit, at the beginning, was either an onset consonant or
vowel; similarly, the P5 unit corresponded to a vowel or to one of

the nasals /n/ or /ŋ/ ([n] and [ng] in Pinyin). P2 through P4 were
always vowels. Since it has been shown that sonorant onset
consonants can signal tonal information (Chen & Tucker,
2013; Howie, 1974), the nasals /m/ and /n/ and the glides and
liquids /l/, /ʐ/, and /tɕ/ ([m], [n], [l], [r], and [j] in Pinyin) were
allowed to carry tone, in addition to the subsequent vowels. This
was done by setting THS-1 to a tone unit if P1 corresponded to a
vowel or sonorant consonant; otherwise, THS-1 was set to the
Bsilent^ tone unit (Tsilent). As is shown in Table 2, the Tsilent unit
was coded as having a value of 1 in the ninth level of the tone
dimension (i.e., the level not used to code for either pitch height
or pitch slope), and a value of 0 in all other levels.

The full model architecture is illustrated using a sample
monosyllable in Fig. 1. Additionally, we coded a lexicon con-
taining the 500 most frequent Mandarin syllables, as deter-
mined using Modern Chinese Frequency Dictionary (Beijing
Language Institute, 1986). Together, the lexicon and phoneme
inventory were stored along with default parameters in a .jt
file, which is included in the supplementary materials.1

Simulation of published experimental data

To validate the model, we first simulated data from an exper-
iment investigating the time course of spoken word recogni-
tion in native speakers of Mandarin Chinese. This experiment
(Malins & Joanisse, 2010) used the visual world paradigm to
assess the time course over which listeners resolved competi-
tion between monosyllabic Mandarin words sharing different
types of phonological relationships. In each trial, native
Mandarin speakers (N = 17) were presented with four pictures

Table 2 Tonal coding scheme employed in TRACE-T

Tone IPA Pinyin (Above Vowel) Tone Unitsa Pitch Height Codingb Pitch Slope Codingb Silent

1 /˥/ [ē] T4LT4L T4L T4L T4L 2 2 2 2 2 6 6 6 6 6

2 /↿/ [é] T2LT2L T3R T4R T4L 4 4 3 2 2 6 6 7 7 6

3 /⇃˦/ [ě] T2LT1F T1L T1L T2R 4 5 5 5 4 6 8 6 6 7

4 /˥˩/ [è] T5LT5L T4F T3F T2F 1 1 2 3 4 6 6 8 8 8

With obstruent initial consonantc Tsilent THS-2 THS-3 THS-4 THS-5 9

a Tone units THS-1 through THS-5 are shown for each of the four tones, in which the pitch heights (H) range from 1 (lowest) to 5 (highest), and pitch slopes
(S) are coded in three levels: level (L), rising (R), and falling (F). b The values of pitch height and pitch slope were calculated from the average of 1,044
tokens (36 syllables uttered by 29 speakers) from the speech database reported in Zhou, Zhang, Lee, and Xu (2008). Pitch height and pitch slope were
coded by assigning binary values to the feature levels listed (out of eight levels total) for the tonal dimension. c As we illustrate here, obstruent initial
consonants had Tsilent in the THS-1 position

1 Even though frequency information is included in the lexicon, all pa-
rameters have been left at the default level. Researchers interested in
making use of this full lexicon would be advised to adjust the model
parameters in a way that takes into account this frequency information;
as we mention later in the text, Dahan et al. (2001) make a number of
recommendations concerning how best to do this.
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in an array on a computer screen, following which they heard
a spoken word matching one of the pictures. Their task was to
indicate, via button press, the position of the picture in the
array that matched the target word, and their eye movements
were recorded while they completed this task. Importantly, in
some trials the name of one other picture in the array shared
phonological similarity with the target word in one or more
components of the Mandarin syllable. The critical

experimental manipulation thus concerned which components
of the syllable were shared between targets and competitors.

More specifically, in the Malins and Joanisse (2010) exper-
iment, the targets and competitors overlapped in segmental
information but differed in tone (segmental competitors; e.g.,
qiu2–qiu1), overlapped in onset and tone but differed in rime
(cohort competitors; e.g., qiu2–qian2), overlapped in rime and
tone but differed in onset (rhyme competitors; e.g., qiu2–niu2),

Fig. 1 A schematic illustration of the TRACE-Tmodel architecture. In this
example, the model is presented with pseudo-spectral input
corresponding to the monosyllable xia1, which gives rise to the
activation of units in the phoneme and word layers (shown in red
boxes). Monosyllables overlapping in phonemes and/or tone with the
input (e.g., xin1, shown in the blue box) can also become partially
active during the course of input presentation, giving rise to lexical

competition effects. This is the type of lexical competition simulated in
the following section. For the feature layer, ROU = vowel roundedness,
VOI = voicing for consonants, POS = tongue position for vowels, POA =
place of articulation for consonants, HGT = tongue height for vowels, and
MAN = manner of articulation for consonants, TON = pitch height and
pitch slope for lexical tone. The coding scheme for the phoneme and tone
layers is detailed in Tables 1 and 2
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or overlapped in tone only and differed in all segments (tonal
competitors; e.g., chuang2–niu2).2 In these competitor condi-
tions, one of the pictures in the array corresponded to the target,
and a second to the competitor, whereas the names of the other
two pictures were phonologically unrelated to the targets and
competitors in all segments and in tone. Additionally, there was
a baseline control condition in which targets were presented
with three phonologically unrelated distractor items (see
Table 3 for the full list of experimental items).

To simulate this experiment, we used methods similar to
those employed in previous studies using TRACE to simulate

visual world paradigm experiments (e.g., Allopenna et al.,
1998; Dahan et al., 2001; McMurray et al., 2010). To do this,
we coded each of the seven sets of items from the original
experiment as Btuples^ corresponding to the four pictures in
the array. To conduct the simulations, a Blexicon^ was con-
structed that contained only the 27 items used in the experi-
ment. Thus, competition only occurred amongst items within
this restricted set.

Simulations of eyetracking trials were conducted by using
the Luce choice rule to convert activations to response prob-
abilities (the constant k was set to 7, following Allopenna
et al., 1998). Simulations were iterated for 80 cycles, and the
response probability of looking at each of the four items in the
tuple was calculated for each cycle. We left all parameters at
the default level except for one: stochasticity. This was set to a
relatively low value of .00279 to introduce some noise in the

2 Note that these condition labels have since been changed to those listed
inMalins et al. (2014), tomake themmore consistent with other studies in
the field. However, in this report we have retained the original naming
system for the sake of readers who wish to compare the present set of
results with those reported in the original study.

Table 3 Sets of items in each condition of the visual world paradigm experiment

Condition Set Target Competitor Distractor Distractor

Segmental 1 chuang2 (bed) chuang1 (window) mian4 (noodles) xin4 (envelope)
2 hua1 (flower) hua4 (painting) qian2 (money) tui3 (leg)
3 mi4 (honey) mi3 (rice) chuan2 (boat) qiu1 (autumn)
4 qiu2 (ball) qiu1 (autumn) mi3 (rice) mian4 (noodles)
5 shu3 (mouse) shu1 (book) di4 (land) chuan2 (boat)
6 tu3 (dirt) tu4 (rabbit) xia1 (shrimp) jin1 (gold)
7 xin1 (heart) xin4 (envelope) gu3 (drum) tui3 (leg)

Cohort 1 chuang2 (bed) chuan2 (boat) shu1 (book) mi3 (rice)
2 hua1 (flower) hui1 (gray) niu2 (cow) qian2 (money)
3 mi4 (honey) mian4 (noodles) chuang1 (window) qiu1 (autumn)
4 qiu2 (ball) qian2 (money) shui3 (water) hui1 (gray)
5 shu3 (mouse) shui3 (water) huang2 (yellow) chuang1 (window)
6 tu3 (dirt) tui3 (leg) gua1 (melon) xin4 (envelope)
7 xin1 (heart) xia1 (shrimp) tui3 (leg) tu4 (rabbit)

Rhyme 1 chuang2 (bed) huang2 (yellow) xin4 (envelope) shu1 (book)
2 hua1 (flower) gua1 (melon) tu4 (rabbit) di4 (land)
3 mi4 (honey) di4 (land) qiu1 (autumn) chuang1 (window)
4 qiu2 (ball) niu2 (cow) gua1 (melon) hui1 (gray)
5 shu3 (mouse) gu3 (drum) di4 (land) chuan2 (boat)
6 tu3 (dirt) gu3 (drum) hua4 (painting) mian4 (noodles)
7 xin1 (heart) jin1 (gold) gu3 (drum) niu2 (cow)

Tonal 1 chuang2 (bed) niu2 (cow) hui1 (gray) xia1 (shrimp)
2 hua1 (flower) jin1 (gold) shui3 (water) gu3 (drum)
3 mi4 (honey) hua4 (painting) shu1 (book) qian2 (money)
4 qiu2 (ball) huang2 (yellow) xia1 (shrimp) shui3 (water)
5 shu3 (mouse) mi3 (rice) huang2 (yellow) jin1 (gold)
6 tu3 (dirt) mi3 (rice) jin1 (gold) hua4 (painting)
7 xin1 (heart) gua1 (melon) tui3 (leg) tu4 (rabbit)

Condition Set Target Distractor Distractor Distractor
Baseline 1 chuang2 (bed) shu1 (book) mi4 (honey) xia1 (shrimp)

2 hua1 (flower) shui3 (water) qiu2 (ball) mian4 (noodles)
3 mi4 (honey) xia1 (shrimp) chuang2 (bed) shu1 (book)
4 qiu2 (ball) mian4 (noodles) shui3 (water) hua1 (flower)
5 shu3 (mouse) jin1 (gold) chuan2 (boat) qian2 (money)
6 tu3 (dirt) gua1 (melon) xin4 (envelope) hua4 (painting)
7 xin1 (heart) tu4 (rabbit) niu2 (cow) di4 (land)

Each set was used as a four-item tuple in the simulations
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system in order to mimic the trialwise variability observed in
human subjects.

In line with the Malins and Joanisse (2010) study, we only
analyzed trials for which the target and competitor relationships
were identical to those listed in Table 3. This constituted only half
of the data, since in the other half of trials the roles of the targets
and competitors were inverted, so that it was equally likely that
subjects would hear targets or competitors on any given trial. As
a result, we analyzed 35 trials per condition, as in the original
study. Across the five blocks of the experiment, each of the seven
sets of items in each condition was repeated once per block.
Therefore each block was composed of the same set of trials,
and blocks only differed with respect to trial order.

To compare the simulation data with the experimental data,
we reanalyzed the original data by taking the grand average
across subjects and items within each block of the experiment,
giving rise to five data points per condition at each time point
(i.e., five repetitions of the same set of trials in five different
orders). To generate the same number of data points for the
simulations, we ran the seven sets of tuples per condition

though the model five times, taking the average value across
the tuples at each time point for each simulation. For the hu-
man data, we analyzed between 200 and 1,100 ms post-
stimulus onset, as in the original experiment. Because the
eyetracker recorded looks to target items at 60 Hz, this analy-
sis window corresponded to the 13th through the 66th time
point recorded. For the simulations, we also chose to analyze
the time course over which looks to target began to rise and
subsequently reached asymptote; this neatly corresponded to
cycles 13 through 66 in the model.

We performed growth curve analyses on both the experi-
mental and simulation data, as this technique is highly appro-
priate for longitudinal data such as looks to items over time
(Mirman, 2014). To conduct these analyses, we used the lme4
package in R to develop a model using fourth-order orthogo-
nal polynomials to capture the time course of looks to target
over time. This model contained fixed effects of condition on
all time terms, as well as trial repetition and repetition-by-
condition random effects on all time terms. The baseline con-
trol condition was used as a reference, and parameters for each
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Fig. 2 Mean proportions of looks to target in the different competitor
conditions for both the experimental (top panel) and simulation (bottom
panel) data. In both plots, the data points represent grand averages

across sets of items and trial repetitions, whereas the lines represent
growth curve models, as detailed in the text
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of the other four conditions were estimated relative to this
condition. The statistical significance of the parameter esti-
mates was assessed using the normal distribution.

As can be seen in Fig. 2, the segmental and cohort condi-
tions differed from the baseline condition in both the experi-
mental and simulation data, whereas the rhyme and tonal con-
ditions did not. This is supported by the growth curve analy-
ses; in the experimental data, the segmental and cohort condi-
tions differed from the baseline condition in the cubic term of
the model (segmental: Estimate = .091, SE = .049, p = .06;
cohort: Estimate = .138, SE = .049, p < .01), whereas the
rhyme and tonal conditions did not differ from the baseline
condition in any term (all ps > .15). In the simulation data, the
segmental and cohort conditions differed from the baseline
condition in the intercept (segmental: Estimate = –.073, SE
= .004, p < .001; cohort: Estimate = –.081, SE = .004, p <
.001), linear (segmental: Estimate = –.114, SE = .014, p <
.001; cohort: Estimate = –.089, SE = .014, p < .001), quadratic
(segmental: Estimate = .421, SE = .022, p < .001; cohort:
Estimate = .502, SE = .022, p < .001), cubic (segmental:
Estimate = .158, SE = .017, p < .001; cohort: Estimate =
.153, SE = .017, p < .001), and quartic (segmental: Estimate
= –.177, SE = .010, p < .001; cohort: Estimate = –.252, SE =
.010, p < .001) terms of the model, whereas the rhyme and
tonal condition did not differ from the baseline condition in
any term (all ps > .1).

On the basis of these results, we claim that the simulation
and experimental data complement one another, as both
showed evidence of competitive effects in the segmental and
cohort conditions, and a lack of competitive effects in the
rhyme and tonal conditions. As was argued in the original
Malins and Joanisse (2010) article, the only difference be-
tween the segmental and cohort conditions was that segmental
competitors differed from targets in tonal information, where-
as cohort competitors differed from targets in vowels. For this
reason, we argue that the model was able to capture within-
syllable competitive effects arising due to either phonemic or
tonal differences, echoing results from previous studies
(Malins et al., 2014; Malins & Joanisse, 2012a; Zhao
et al., 2011). The ability of the model to capture this pattern
of effects illustrates its viability as a working model of spoken
word recognition in Mandarin.

Nevertheless, we acknowledge that the overall shapes of
the curves between the simulation and experimental data are
not equivalent, which explains why different terms in the
growth curve models showed differences across conditions.
We believe the source of this discrepancy can be attributed
to a key difference between the behavioral experiment and the
simulations. Importantly, in the simulations we used a restrict-
ed lexicon in which there was at most one segmental compet-
itor (i.e., an item with the same segmental structure but a
different tone) for each item. However, for the behavioral
experiment itself, competition presumably happened between

Table 4 Sets of items in each condition of the tone competition
simulation

Tonal Contrast Set Target Competitor Distractor Distractor

1–2 1 bao1 bao2 fen3 luo4

2 fen1 fen2 bao3 mi4

3 luo1 luo2 mi4 fen3

4 mi1 mi2 luo4 bao3

2–1 5 bao2 bao1 fen4 luo3

6 fen2 fen1 luo3 bao4

7 luo2 luo1 mi3 fen4

8 mi2 mi1 luo4 bao3

1–3 1 bao1 bao3 luo2 mi4

2 fen1 fen3 luo2 bao4

3 luo1 luo3 fen4 bao2

4 mi1 mi3 fen4 luo2

3–1 5 bao3 bao1 fen2 luo4

6 fen3 fen1 mi2 luo4

7 luo3 luo1 mi4 fen2

8 mi3 mi1 luo4 bao2

1–4 1 bao1 bao4 mi2 fen3

2 fen1 fen4 mi2 luo3

3 luo1 luo4 bao3 mi2

4 mi1 mi4 bao3 fen2

4–1 5 bao4 bao1 fen3 luo2

6 fen4 fen1 bao2 mi3

7 luo4 luo1 mi2 fen3

8 mi4 mi1 luo3 bao2

2–3 1 bao2 bao3 luo4 mi1

2 fen2 fen3 mi1 luo4

3 luo2 luo3 fen1 bao4

4 mi2 mi3 fen4 luo1

3–2 5 bao3 bao2 luo1 mi4

6 fen3 fen2 bao1 mi4

7 luo3 luo2 fen4 bao1

8 mi3 mi2 fen4 luo1

2–4 1 bao2 bao4 mi3 fen1

2 fen2 fen4 bao1 mi3

3 luo2 luo4 bao1 mi3

4 mi2 mi4 bao3 fen1

4–2 5 bao4 bao2 luo3 mi1

6 fen4 fen2 luo1 bao3

7 luo4 luo2 fen1 bao3

8 mi4 mi2 fen3 luo1

3–4 1 bao3 bao4 mi1 fen2

2 fen3 fen4 luo1 bao2

3 luo3 luo4 bao2 mi1

4 mi3 mi4 bao2 fen1

4–3 5 bao4 bao3 mi2 fen1

6 fen4 fen3 mi1 luo2

7 luo4 luo3 bao1 mi2

8 mi4 mi3 bao2 fen1

Each set was used as a four-item tuple in the simulations. Reciprocal tonal
contrast pairs (e.g., 1–2 and 2–1) were averaged together to create the
grand average curves shown in Fig. 3
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all items in the subjects’ mental lexicon, rather than just the
local set of items used in the experiment. As a result, the
behavioral study was subject to additional psycholinguistic
effects that could have influenced listeners’ expectations for
hearing certain syllables.

First, the stimulus set used in Malins and Joanisse (2010)
did not contain examples of all possible tonal contrasts. For
example, the tone 2 versus tone 3 contrast (subsequently de-
noted as tone 2–3) was lacking in the Malins and Joanisse
(2010) study, which could have affected listeners’ expecta-
tions for hearing certain tones when presented with either tone
2 or tone 3 targets. Second, the Malins and Joanisse (2010)
stimulus set contained certain tonotactic gaps. More specifi-
cally, some of the syllables in the set did not contain entries in
the mental lexicon with certain tones (e.g., there is no entry in
the lexicon for the syllable qiu with the fourth tone, since this
syllable–tone combination does not exist in Mandarin;
Duanmu, 2007). Similar to the lack of counterbalancing of
tonal contrast pairs, these tonotactic gaps in the stimulus set
could have biased listeners’ tonal expectations in a manner
that was not captured by the simulations.

To extend the viability of TRACE-T, we wished to test
whether the model is capable of simulating these two effects.

To do this, we simulated two additional visual world paradigm
experiments inspired by previously published studies
(e.g., Wiener & Ito, 2014). In the first simulation, we looked
at the resolution of tonal competition for different tonal con-
trast pairs. To perform this simulation, we took four syllables
that contained entries in the lexicon for all four tones. These
four syllables contained different types of initial consonants
(one nasal, one glide, one stop, and one fricative), as well as
different vowel clusters. We devised a stimulus set in which
each syllable appeared as a target in each tone, along with its
respective segmental competitor in each of the other three
tones (Table 4). Distractor items were selected from amongst
the other items in the set so that they contained neither pho-
nemic nor tonal overlap with the targets. We then simulated a
visual world paradigm experiment using the same set of pa-
rameters as we detailed earlier (with the exception of the
stochasticity parameter, which was set to 0) and a restricted
lexicon consisting of only the items listed in Table 4.

The grand averages for the simulation are shown in Fig. 3.
As is apparent in the figure, this simulation gave rise to a delay
for tone 2–3 pairs as compared to the other contrasts in terms
of the trajectory of looks to target. This replicates published
findings in the literature, where it has been shown that
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Fig. 3 Mean proportions of looks to target for the tone competition
simulation, as calculated by averaging together the results for each of
the sets listed in Table 4. Note that the curves were generated by

averaging together reciprocal tonal contrast pairs (e.g., B1–2^ is the
average of the sets with tone 1 as a target and tone 2 as a competitor
and of the sets with tone 2 as a target and tone 1 as a competitor)
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compared to other tonal contrast pairs, tones 2 and 3 compete
with one another more strongly (Chandrasekaran, Krishnan,
&Gandour, 2007), because they are discriminated on the basis
of later acoustic cues during the unfolding of the syllable
(Jongman, Wang, Moore, & Sereno, 2006; Shen, Deutsch,
& Rayner, 2013; Whalen & Xu, 1992).

In the second simulation, we investigated the interaction
between syllable frequency and tonal probability. Tonal
probability refers to the likelihood that a syllable will be artic-
ulated in a certain tone in a tonal language. More specifically,
it can be defined as the proportion of a syllable’s total frequen-
cy (summed across all possible tones) divided by the frequen-
cy of the syllable articulated in a specific tone. For example, in
Mandarin the tonal probability of tone 1 for the syllable bao is
defined as the frequency of bao1 divided by the summed
frequency of bao1, bao2, bao3, and bao4. Recently, Wiener
and Ito (2014) performed a visual world paradigm experiment
in which high and low frequency target syllables were pre-
sented with segmental competitors. Importantly, the authors
manipulated the tonal probability of the targets and competi-
tors, such that the targets were high in probability and the
competitors were low in probability, or vice versa. They found
that tonal probability had an effect on the trajectory of looks to
target only for low-frequency syllables.

To simulate this experimental effect, we devised a set of
stimuli similar to those used in Wiener and Ito (2014) with
some minor modifications. Using the Modern Chinese
Frequency Dictionary (Beijing Language Institute, 1986),
we selected syllables with either high or low logarithmic fre-
quency (high = above 3.88, low = below 3.09; note that the
mean logarithmic frequency of all items in the dictionary was
3.34), and then chose either high or low probability tones for
each syllable (high = between 60 % and 90 %, low = between
5% and 15%). The full set of items is listed in Table 5. As can
be noted from the table, the four conditions (syllable frequen-
cy high, tonal probability high, or FH–PH; syllable frequency
high, tonal probability low, or FH–PL; and so on) were bal-
anced in terms of tonal contrast pairs; furthermore, distractor
items were selected from within the same set of stimuli in
order to have a closed set. The simulations were performed
as detailed above, with a few notable changes. To simulate
frequency effects, we used the recommendations of Dahan,
Magnuson, and Tanenhaus (2001) and changed the following
parameters: Resting activation values of the lexical units were
set to .06, phoneme to word level weights were set to .13, and
the postactivation parameter was set to 15. To incorporate
tonal probability into the model, we rescaled the frequencies
using the following formula: Fnew = f – C/p, where Fnew is an
item’s rescaled frequency, f is the syllable frequency (summed
across all four tones), C is a constant (which we set to 100),
and p is the probability of a specific tone. Finally, stochasticity
was again set to 0, and a restricted lexicon was used that
contained only the items listed in Table 5.

Table 5 Sets of items in each condition of the syllable frequency by
tonal probability simulation

Condition Set Target Competitor Distractor Distractor

FH–PH 1 chu1 chu2 ren4 ke3

2 jing1 jing3 qu4 ren2

3 sheng1 sheng4 chu2 hai3

4 tong2 tong1 hao3 qu4

5 hai2 hai3 chu1 ren4

6 ren2 ren4 xiao1 zuo3

7 xiao3 xiao1 tong2 ke4

8 hao3 hao2 sheng1 qu4

9 ke3 ke4 jing1 hai2

10 qu4 qu1 hai3 ren2

11 da4 da2 jing3 chu1

12 zuo4 zuo3 da2 jing1

FH–PL 1 chu2 chu1 ren4 ke3

2 jing3 jing1 qu4 ren2

3 sheng4 sheng1 chu2 hai3

4 tong1 tong2 hao3 qu4

5 hai3 hai2 chu1 ren4

6 ren4 ren2 xiao1 zuo3

7 xiao1 xiao3 tong2 ke4

8 hao2 hao3 sheng1 qu4

9 ke4 ke3 jing1 hai2

10 qu1 qu4 hai3 ren2

11 da2 da4 jing3 chu1

12 zuo3 zuo4 da2 jing1

FL–PH 1 zhou1 zhou2 shai3 qia4

2 shuang1 shuang3 zhou2 bin4

3 bin1 bin4 shai3 cao2

4 za2 za1 bin4 peng3

5 peng2 peng3 qia4 tie1

6 chen2 chen4 niao3 za1

7 tie3 tie1 shai4 cao2

8 cao3 cao2 chen4 bin1

9 niao3 niao4 peng2 zhou1

10 qia4 qia1 chen2 peng3

11 kang4 kang2 zhou1 tie3

12 shai4 shai3 tie1 zhou2

FL–PL 1 zhou2 zhou1 shai3 qia4

2 shuang3 shuang1 zhou2 bin4

3 bin4 bin1 shai3 cao2

4 za1 za2 bin4 peng3

5 peng3 peng2 qia4 tie1

6 chen4 chen2 niao3 za1

7 tie1 tie3 shai4 cao2

8 cao2 cao3 chen4 bin1

9 niao4 niao3 peng2 zhou1

10 qia1 qia4 chen2 peng3

11 kang2 kang4 zhou1 tie3

12 shai3 shai4 tie1 zhou2

Each set was used as a four-item tuple in the simulations. FH = high
syllable frequency, FL = low syllable frequency, PH = high tonal proba-
bility, PL = low tonal probability

238 Behav Res (2017) 49:230–241



The grand averages from the simulations are shown in
Fig. 4. As can be discerned from the figure, we observed an
interaction between syllable frequency and tonal probability:
The trajectory of looks to target in the FH–PH condition is
indistinguishable from the trajectory for the FH–PL condition,
yet the FL–PH condition shows a slight advantage as com-
pared to the FL–PL condition. This interaction is in the same
direction as that reported byWiener and Ito (2014), suggesting
that TRACE-T is sensitive to this pattern of effects.

Together, these additional simulations provide further evi-
dence that TRACE-T is capable of simulating documented
psycholinguistic effects in Mandarin spoken word recognition.
Namely, TRACE-Twas able to simulate increased competitive
effects for tone 2–3 pairs as well as the interaction between
syllable frequency and tonal probability. These findings bolster
our confidence that the model simulates Mandarin spoken word
recognition in a reasonable fashion, and that differences between
the Malins and Joanisse (2010) experimental data and the
simulation results can be attributed to additional psycholinguis-
tic effects beyond those captured in the simulation, rather than to
deficiencies in the model architecture itself. Furthermore,
TRACE-T has given us valuable insights by showing what the
Malins and Joanisse (2010) eyetracking results might have

looked like in the absence of these task-specific effects. This
serves as a powerful illustration of the ability of computational
models such as TRACE-T to illuminate patterns in experimental
data and to serve as sources of information that can be consid-
ered complementary to experimental results.

Conclusions

As is detailed in this report, we have developed a methodolo-
gy that allows researchers to simulate spoken word recogni-
tion in Mandarin Chinese. We took the existing jTRACE plat-
form, which is available and easy to use (Strauss et al., 2007),
and modified it such that it codes Mandarin phonemes and
tones in a way that is reasonable on the basis of previous
findings (e.g., Brown-Schmidt & Canseco-Gonzalez, 2004;
Malins et al., 2014; Malins & Joanisse, 2010, 2012a;
Schirmer et al., 2005; Zhao et al., 2011). We then validated
the model by replicating published eyetracking data from hu-
man subjects. Now that we have proposed an initial working
model—which we call TRACE-T, in reflection of its ability to
encode lexical tone—future research should help refine this
model, which can then in turn be used to generate new
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hypotheses and motivate future studies regarding Mandarin
Chinese speech perception. Furthermore, we hope this model
will help inspire computational models for other tonal lan-
guages, such as Cantonese and Thai. Together, these kinds
of endeavors can help push forward psycholinguistic research
by allowing speech perception theories to accommodate data
from an increasingly greater proportion of the world’s
languages.
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