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Abstract When comparing the component structures of a
multitude of variables across different groups, the conclusion
often is that the component structures are very similar in gen-
eral and differ in a few variables only. Detecting such
Boutlying variables^ is substantively interesting. Conversely,
it can help to determine what is common across the groups.
This article proposes and evaluates two formal detection heu-
ristics to determine which variables are outlying, in a system-
atic and objective way. The heuristics are based on clusterwise
simultaneous component analysis, which was recently pre-
sented as a useful tool for capturing the similarities and differ-
ences in component structures across groups. The heuristics
are evaluated in a simulation study and illustrated using cross-
cultural data on values.

Keywords Multigroup data . Multilevel data . Simultaneous
component analysis . Clustering . Invariance

Introduction

Assessing the covariance structures of a large set of variables
across multiple groups is an important analysis step in behav-
ioral research. To this end, dimension reduction methods are
the methods of choice. In particular, if one has an a priori idea
about how the covariances are caused by a few latent

variables, one usually resorts to the confirmatory factor anal-
ysis framework (Jöreskog, 1971; Kline, 2004; Sörbom, 1974).
Often one has no such hypothesis, however, and then explor-
atory factor analysis (Dolan, Oort, Stoel & Wicherts, 2009;
Hessen, Dolan & Wicherts, 2006) or component analysis
(Jolliffe, 2002) may be used. In this article, we will focus on
component analysis, which is more widely applicable than
factor analysis, because it implies less stringent assumptions
(e.g., no assumption of local independence of the variables,
which often is unreasonable; see Borsboom, Mellenbergh &
van Heerden, 2003).

When comparing component structures across groups, two
types of differences may be revealed. On the one hand, one
may find that subsets of groups have completely different
component structures (see, e.g., the application in De
Roover, Ceulemans, Timmerman, & Onghena 2013b). On
the other hand, it often occurs that the component structures
are very similar in general and differ in a few variables only
(see the second application in De Roover, Ceulemans,
Timmerman, Vansteelandt, Stouten & Onghena, 2012b, for
an example). Such variables will be referred to as Boutlying
variables.^ Detecting such outlying variables is important for
two complementary reasons: First, it can reveal substantively
interesting differences between the groups. Second, it helps to
determine what is common across the groups. For instance,
Krysinska et al. (2014) examined differences in the psycho-
metric structures of the Post-Critical Belief Scale across sam-
ples that were measured many years ago as well as recent
ones, to evaluate possible changes in the meanings of the 33
scale items over time. Comparing the component structures
across the samples, two outlying items were found. On the one
hand, these two outlying items indicated that an important
shift in the interpretation of bible stories had taken place be-
tween the earlier and more recent samples. On the other hand,
the part of the component structure that was stable across time
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was also of interest and was compared to the theoretically
expected structure.

Identifying outlying variables can be cumbersome,
however. It becomes increasingly difficult, the more
groups are involved, because more structures have to
be compared. Furthermore, the specific detection strate-
gy followed may strongly impact the results, because
component structures are highly sensitive to the specific
sets of variables involved, and thus to which outlying
items are sidelined step by step. To make these deci-
sions in a more systematic and objective way, we pro-
pose and evaluate two formal detection heuristics. These
heuristics are based on clusterwise simultaneous compo-
nent analysis (clusterwise SCA; De Roover et al.,
2012b). Clusterwise SCA was introduced to simplify
the daunting task of finding between-group differences
in component structures when the number of groups is
large. Specifically, it assigns the groups to a few clus-
ters and simultaneously conducts an SCA per cluster to
summarize the within-cluster covariance structure.
Consequently, the most important between-group differ-
ences in component structure are captured in the cluster-
specific component loadings. Therefore, these loadings
provide a good starting point to efficiently perform
outlying-variable detection, even when the number of
groups is large.

The remainder of the article is organized in five sections:
First, the data structure and preprocessing are discussed. Then
clusterwise SCA is discussed, followed by a description of the
two detection heuristics, as well as a split-half procedure to
improve the robustness of the detection results. The following
section presents a simulation study to compare the perfor-
mances of these heuristics, and the next illustrates the heuris-
tics using cross-cultural data on values. To conclude, we de-
scribe some points for discussion and directions for future
research.

Data structure and preprocessing

We assume that one disposes of I data blocks Xi (Ni × J) that
each contain the scores of Ni subjects on the same J variables.
For the sake of stable model estimates, each Ni is preferably
larger than J. The I data blocks can be vertically concatenated

into an N × J data matrix X, where N ¼ ∑
I

i¼1
Ni. To avoid

between-block differences in the variable means being con-
founded with between-block differences in the within-block
covariance structures, each variable is centered per data block.
Since differences in the variances of the variables, both within
and across blocks, affect the obtained component structure
(Bro & Smilde, 2003; Harshman & Lundy, 1984;

Timmerman, Hoefsloot, Smilde & Ceulemans, 2015), the data
may optionally be standardized. One may standardize across
blocks (e.g., Timmerman & Kiers, 2003) or within blocks
(e.g., De Roover, Ceulemans & Timmerman, 2012a), depend-
ing on whether one is interested in differences in covariance
structures or correlation structures, respectively.

Method

In this section, we start by describing SCA and its clusterwise
extension. Next, we introduce two heuristics for detecting
outlying variables and a split-half procedure.

Simultaneous component analysis

In this article, we will use SCA-P (SCA with equal pattern
matrices; Kiers & ten Berge, 1994), in which the I data blocks
Xi are modeled as follows:

Xi ¼ FiB
0 þ Ei; ð1Þ

where Fi (Ni × Q) denotes the scores of the subjects in the ith
group on the Q components, B (J × Q) denotes the loading
matrix that is the same for all groups, and Ei (Ni × J) denotes
the matrix of residuals. To partly identify the model, the var-
iances of the component scores, computed across all groups,
are fixed at one. The SCA-P model can be estimated via a
principal component analysis of the N × J data matrix X.
Note that other variants of SCA exist, in which additional
restrictions on the component scores of each group are im-
posed (Timmerman & Kiers, 2003). SCA-P solutions have
rotational freedom, which can be used to facilitate interpreta-
tion. In this article, we will conduct a normalized VARIMAX
rotation (Kaiser, 1958), but note that other criteria can be used
equally well.

Although theoretical knowledge about the variables or in-
terpretability of the solution will often drive how many com-
ponents will be used, also formal model selection heuristics
are available. A very popular heuristic is Cattell’s scree test
(1966) that selects the number of components after which the
increase in model fit gained from additional components
levels off: Qbest. This test may be conducted visually—that
is, by looking for an elbow point in a scree plot (see, e.g.,
the Application section), or numerically—that is, by calculat-
ing scree ratios (see, e.g., Ceulemans & Kiers, 2006;
Wilderjans, Ceulemans & Meers, 2013).

Clusterwise SCA

Clusterwise SCA-P (De Roover et al., 2013b) assigns each of
the I groups to one of K clusters, while modeling the data
within each cluster with SCA-P. Consequently, groups with
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a similar component structure end up in the same cluster and
differences in component structures can be examined by com-
paring the cluster-specific loading structures. Specifically, the
model equation of clusterwise SCA-P is given by

Xi ¼
XK
k¼1

pik FiB
kð Þ0 þ Ei: ð2Þ

Comparing Eqs. 1 and 2, we see that the loading matrix
now has a superscript B(k)^ that indicates its cluster-specific
nature; pik indicates the estimated cluster membership of
group i and equals one when group i is assigned to cluster k
and zero when it is not. Note that clusterwise SCA-P has
rotational freedom per cluster.

To estimate a clusterwise SCA-Pmodel withK clusters and
Q components for a given data set, the sum of the squared
residuals is minimized bymeans of an alternating least squares
algorithm (see De Roover et al., 2013b). To reduce the prob-
ability of ending up in a local minimum, a multistart procedure
is applied.1 To determine the most appropriate number of
clusters, clusterwise SCA-P analyses are performed with dif-
ferent numbers of clusters and Qbes t components.
Subsequently, a scree test may be performed, by visually
inspecting a scree plot (see, e.g., the Application section) or
by computing scree ratios, to determine the most appropriate
number of clusters Kbest. Yet, note that if the number of out-
lying variables is small, the differences in fit between solu-
tions with different numbers of clusters may be very small,
making the scree test less informative. In such cases, we rec-
ommend to explore solutions with different numbers of clus-
ters in terms of outlying variables or one of them could be
chosen on the basis of interpretability and/or (e.g., split-half)
stability of the clustering and cluster-specific loadingmatrices.
Of course, one should be aware that the more clusters, the
more outlying variables will be detected. Indeed, a variable
only needs to have a different loading structure in two of the
clusters to be detected as outlying.

Other variants of clusterwise SCA exist, but are inappro-
priate for our present purposes. First, there are variants with
equality restrictions across groups on the component vari-
ances and/or the correlations between the component scores
(De Roover et al., 2012b; De Roover, Timmerman, Van
Mechelen & Ceulemans, 2013c). Imposing these restrictions
may lead to loading differences that are irrelevant for
outlyingness. Furthermore, a variant exists that allows the
number of components to differ across the clusters (De
Roover, Ceulemans, Timmerman, Nezlek & Onghena,
2013a). We refrain from considering this variant, because we
assume the component structure to be largely the same across
clusters, and hence can safely impose an equal number of

components per cluster. This number can be chosen on the
basis of the SCA-P analysis.

Outlying variable detection

To automate the detection of outlying variables, a so-called
Boutlyingness criterion^ is needed. In this article we will focus
on the proportional similarity of component loadings across
clusters of groups, as quantified by the congruence coefficient
(Tucker, 1951). This coefficient is computed per component
(i.e., per column of loadings). It takes values between –1 and
1, where the extreme values of –1 and 1 represent perfect
proportional similarity between the two cluster-specific com-
ponents (with and without reflection of the component in one
of the clusters, respectively). According to Lorenzo-Seva and
ten Berge (2006), a congruence value higher than .95 reflects
virtual identity. Therefore, one might conclude that at least one
outlying variable is present if the Tucker congruence value of
at least one component is smaller than .95 for at least one
cluster pair. Hence, in our first method, called Bcutoff congru-
ence,^ we will discard variables until all congruence values
exceed the .95 cutoff.

However, the correctness of the cutoff value can be debat-
ed. Indeed, Paunonen (1997) has shown that congruence
values depend on the data characteristics (e.g., the number
of variables, the variables-to-components rat io) .
Furthermore, it is plausible that the sensitivity of the congru-
ence coefficient is affected by the nonoutlying-to-outlying
variables ratio. Because it will probably be impossible to find
a critical congruence value that works best in all conditions
(i.e., when a certain value is ideal for one set of conditions, it
may be too high—thus leading to false positives—in another
set of conditions, and too low—inducing false negatives—in
yet another set of conditions), the second heuristic uses the .95
value as a lower bound rather than a cutoff, and is therefore
called the Blower-bound congruence^ method.

In both methods, we have to resolve arbitrary differences
between the cluster loading matrices in axis positions (rota-
tional freedom), permutations, and reflections. To this end, we
first estimate an SCA-P model (i.e., yielding a single loading
matrix for all I groups under study) and rotate the SCA-P
loadings toward a simple structure using normalized
VARIMAX. Subsequently, we estimate the clusterwise
SCA-P model and obliquely Procrustes rotate the cluster-
specific loadings toward the normalized VARIMAX SCA-P
ones. Note that we opt for oblique rotations of the cluster-
specific loadings because we are not interested in differences
in cross-loadings that are due to differences in the cluster-
specific component correlations. The necessity of allowing
for cluster-specific correlations between components pre-
cludes the use of state-of-the-art consensus rotations that si-
multaneously rotate all loading matrices to achieve both a
simple structure of and maximal agreement between the

1 The clusterwise SCA-P algorithm is implemented in a MATLAB
R2014b function that can be obtained from the corresponding author.
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loading matrices—for instance, consensus direct oblimin ro-
tation (Lorenzo-Seva, Kiers & ten Berge, 2002), which
outperformed other alternatives in a simulation study and pur-
sues both a simple structure of and maximal agreement be-
tween the loading matrices, but does not allow for differences
in component correlations across the clusters.

In the following paragraphs, we discuss the details of the
two methods as well as a split-half procedure that can be used
to obtain more robust results. As a guiding example, we will
use the hypothetical loadings in Table 2 below. These loadings
pertain to two component structures that are equal for Items 1
through 9 and differ for Items 10 through 13. The associated
normalized VARIMAX-rotated SCA-P loadings and the
obliquely Procrustes-rotated cluster-specific loadings are also
given in Table 1.

Cutoff congruence method

The cutoff heuristic was recently used in De Roover,
Timmerman, De Leersnyder, Mesquita and Ceulemans
(2014a). It proceeds as follows:

1. For each cluster pair, component-specific congruence co-
efficients are computed and the minimum of these coeffi-
cients is retained as φmin

k1k2 , with k1 and k2 denoting the two
clusters in the cluster pair. Following the rationale
discussed above, we stop if the minimum φmin

k1k2 value over

cluster pairs exceeds .95, and thus indicates the virtual
identity of all components; otherwise, we continue.

2. A set of variable-specific congruence-after-exclusion
values is computed, by excluding each variable one by
one. To this end, we compute per cluster pair the mean
congruence value for the remaining variables across com-
ponents, and retain the minimum value across cluster
pairs.2 Thus, we do not use the minimum value across
components (see Step 1) (as De Roover et al., 2014a,
and Krysinska et al., 2014, had done), because pilot sim-
ulation studies have shown that this value is, in some
cases, quite prone to false positives. The variable for
which this congruence after exclusion is the highest is
considered the most outlying, and is therefore permanent-
ly removed. This step is repeated until the minimum con-
gruence across all components and cluster pairs exceeds
the .95 threshold.

3. The cluster-specific and overall SCA-P models are
reestimated, using the retained variables only. The former

model is rotated to the latter, and all steps are repeated
until no more outlying variables are found.

When applying this procedure to the hypothetical example,
we start off with a congruence value of .73 in Step 1, suggest-
ing the presence of at least one outlying variable. When ten-
tatively removing the items one by one, the variable-specific
congruence-after-exclusion values range between .81 and .90.
The highest value is obtained for Item 11, which is therefore
removed first in Step 2. Repeating this step leads to the re-
moval of Items 10, 12, and 13. Finally, Step 3 does not yield
additional outlying items.

Lower-bound congruence method

This method consists of the following steps:

1. For each cluster pair, both the minimum and mean con-
gruence values across components are computed—that is,
φmin
k1k2 (see Step 1 of the cutoff congruence method) and

φmean
k1k2 .

2. Variable-specific congruence-after-exclusion values are
computed, and the most outlying variable is identified
(see Step 2 of the cutoff congruence method). This vari-
able is removed and its number is added to the
outlyingness ranking matrix O, together with the mini-
mum φmin

k1k2 and φmean
k1k2 values from Step 1—thus, from

before the variable’s removal—and the cluster pair corre-
sponding to the minimum φmean

k1k2 value:

O ¼ min φmean
k1k2

� �
k1 k2 most outlying variable min φmin

k1k2

� �
⋮ ⋮ ⋮ ⋮ ⋮

" #
:

3. As in Step 3 of the cutoff congruence method, the cluster-
specific and overall SCA-P models are reestimated, using
the retained variables only, and the former is rotated to the
latter. We keep alternating Steps 1 to 3, removing only one
variable at a time, until onlyQ variables are left, implying
that the (clusterwise) SCA-P models can no longer be
reestimated.

4. To determine the number of outlying variables, the mini-
mum φmean

k1k2 values in the first column of O are plotted

against the number of removed variables (i.e., from 0 to
J – Q). On this plot, the CHull procedure (Ceulemans &
Kiers, 2006; Wilderjans et al., 2013) is performed to de-
termine the number of removed variables Joutl after which
the increase in min(φmean

k1k2 ) levels off. However, to ensure

that the retained variables have virtually identical struc-
tures in all clusters, we only consider scree ratios for se-
lections of variables for which the min(φmin

k1k2 ) value is

larger than the lower bound of .95. Finally, the first Joutl
variables in the fourth column of O are considered to be
the outlying variables.

2 Before calculating the congruence values, the cluster-specific loadings
of the considered subset of variables are rerotated toward the correspond-
ing SCA-P loadings, which are also rerotated to a simple structure. This is
done because outlying variables can adversely affect the rotations of the
cluster-specific loadings toward the SCA-P loadings, as well as the
simple-structure rotation of the SCA-P loadings itself.
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Applying this procedure to the hypothetical example re-
sults in the outlyingness ranking matrix in Table 2. We see
that the congruences quickly increase when removing Items
11 and 10, but Items 12 and 13 also need to be removed to
reach a min(φmin

k1k2 ) larger than .95—note that after removing

Item 12, this value is actually .9458; thus, Item 13 also needs
to be removed. After removing these four items, the congru-
ences become 1.00 (because the data are errorless); therefore,
this is the elbow selected by the CHull procedure (see Fig. 1).

Split-half procedure

To mitigate the effects of sampling fluctuations on the outly-
ing variable detection, we propose using the following split-
half procedure: First, split the data in two halves, by randomly
selecting half of the rows of each data block and assigning
them to the first half; the remainder of the data are collected in
the second half. Next, the data blocks of both halves are

Table 1 Hypothetical component loadings for two clusters, differing
only with respect to the loadings of Items 10 to 13, the normalized
VARIMAX-rotated SCA-P loadings for the associated hypothetical data

set, and the thereto obliquely Procrustes-rotated loadings of the
clusterwise SCA-P model with two clusters and two components for the
hypothetical data

Hypothetical Loadings SCA-P Clusterwise SCA-P

Cluster 1 Cluster 2 Cluster 1 Cluster 2

Item 1 1 0 0 1 0 0 .99 –.07 –.05 1.00 .01 –.01 1.00 –.13 .01

Item 2 1 0 0 1 0 0 .99 –.07 –.05 1.00 .01 –.01 1.00 –.13 .01

Item 3 1 0 0 1 0 0 .99 –.07 –.05 1.00 .01 –.01 1.00 –.13 .01

Item 4 0 1 0 0 1 0 .00 .99 .01 –.02 1.00 .13 .05 .99 –.05

Item 5 0 1 0 0 1 0 .00 .99 .01 –.02 1.00 .13 .05 .99 –.05

Item 6 0 1 0 0 1 0 .00 .99 .01 –.02 1.00 .13 .05 .99 –.05

Item 7 0 0 1 0 0 1 –.02 .04 .99 .08 –.01 1.01 –.02 .17 .99

Item 8 0 0 1 0 0 1 –.02 .04 .99 .08 –.01 1.01 –.02 .17 .99

Item 9 0 0 1 0 0 1 –.02 .04 .99 .08 –.01 1.01 –.02 .17 .99

Item 10 0 1 0 0 0 1 –.04 .60 .54 –.02 1.00 .13 –.02 .17 .99

Item 11 0 0 1 1 0 0 .47 –.06 .52 .08 –.01 1.01 1.00 –.13 .01

Item 12 1 0 0 .77 .63 0 .92 .25 –.08 1.00 .01 –.01 .80 .56 –.03

Item 13 1 0 0 .77 0 .63 .90 –.01 .27 1.00 .01 –.01 .78 .01 .66

Table 2 Outlyingness rankingmatrix that results from the lower-bound
congruence method for the hypothetical example

min(φmean
k1k2 ) k1 k2 Most Outlying

Variable
min(φmin

k1k2 )

.83 1 2 11 .73

.90 1 2 10 .85

.96 1 2 12 .94

.98 1 2 13 .95

1.00 1 2 4 1.00

1.00 1 2 5 1.00

1.00 1 2 6 1.00

1.00 1 2 8 1.00

1.00 1 2 7 1.00

1.00 1 2 1 1.00

1.00 1 2 2 1.00

Fig. 1 CHull plot of the lower-bound congruence method for the values
data. Specifically, the min(φmean

k1k2 ), labeled BCongruence,^ is plotted
against the number of variables already removed (the order wherein the
variables are removed can be found in Table 2). The black horizontal line
indicates where the min(φmin

k1k2 ) value (not depicted in the figure, but in
Table 2) crosses the lower bound of .95. The arrow indicates the elbow
after which the decrease in congruence levels off according to the CHull
method
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clustered according to the partition that resulted from the
clusterwise SCA-P analysis on the entire data set, and SCA-
P is performed per cluster as well as on the complete half.
Subsequently, outlying-variable detection is performed using
all of the half-specific loadings. Note that the clustering is not
reestimated for each half of the data, for two reasons. First, the
clustering is kept constant to avoid an entanglement of the
stability of outlying-variable detection with the stability of
the clustering. Second, for the procedure to make sense, the
outlying-variable detection should be performed on clusters
that are the same for both halves. The variables that are de-
tected in both halves are considered to be outlying for the
random split in question.

Of course, the random splits themselves are also very
susceptive to sampling fluctuations. Therefore, we propose
performing 20 different random splits and recording the 20
resulting sets of outlying variables. Afterward, the modus of
the sets of outlying variables—that is, the set of outlying var-
iables that is retained most often—is considered to be the final
set of outlying variables. For the hypothetical example, the
same set of outlying variables is obtained for each random
split, because the data are error-free.

Simulation study

Problem

In this section, we present a simulation study in which the
overall performances of the two heuristics are compared, as
well as how the performance is influenced by five factors: (1)
the number of nonoutlying variables, (2) the number of out-
lying variables, (3) the degree of outlyingness, (4) the number
of clusters, and (5) the amount of error in the data. Factors 1 to
3 were chosen to assess whether the cutoff congruence meth-
od is sensitive to the critical congruence value used. With
respect to Factors 4 and 5, we hypothesized that a higher
number of clusters and larger amounts of error might compli-
cate outlying variable detection. Finally, we explored the qual-
ity of the outlying-variable detection when too many clusters
are used, because determining the appropriate number of clus-
ters may be hard in empirical practice. When using too few
clusters, performance will almost always be bad, due to the
loss of information (i.e., the merging of clusters leads to
mixing of the component structures; see De Roover et al.,
2012b); therefore, we do not investigate this empirically.
Note that, in contrast to previous clusterwise SCA simula-
tions, we chose not to vary the numbers of data blocks, the
numbers of rows per data block, and the cluster sizes, because
we expect them to impact outlying-variable detection mostly
indirectly, through the goodness of recovery of the clustering
and the loading structures. For more detailed results on the
goodness of recovery of clusterwise SCA-P models as a

function of these data characteristics, the reader is referred to
De Roover et al. (2013b).

Design

The number of data blocks I was fixed at ten, and the number
of observations Ni per data block at 75. Each simulated data
set consisted of two or three equally sized clusters. The num-
ber of underlying components per cluster Q was set to three.
Five factors were systematically varied in a complete factorial
design:

1. the number of nonoutlying variables Jno, at two
levels: 9, 12;

2. the number of outlying variables Jo, at three levels:
2, 4, 63;

3. the degree of outlyingness, at five levels: very high, high,
medium, low, and very low;

4. the number of clusters K, at two levels: 2, 3;
5. the error level e, which is the expected proportion of error

variance in the data blocks Xi, at two levels: .20, .40;

For each cell of the factorial design, 100 data matrices X
were generated. We decided to use 100 replicates because this
number corresponds to a maximal standard error for propor-
tions—most results will be expressed as proportions—of .05.
Each data matrix consisted of tenXi data blocks. For each data
block, a component score matrix Fi was randomly sampled
from a multivariate normal distribution,4 of which the mean
vector consists of zeros and of which the variance–covariance
matrix was obtained by uniformly sampling the component
correlations and variances between –.5 and .5 and between
0.25 and 1.75, respectively. To construct the partition matrix
P, the groups were randomly assigned to the clusters, making
sure the clusters had the same size. To generate the cluster-
specific loading matricesB(k), we determined randomly which
of the J (equal to Jno + Jo) variables were outlying. To each of
the three components, one third of the nonoutlying variables
were assigned, by setting the corresponding loading to 1 and
the others to 0. To simulate the different degrees of
outlyingness (Factor 3), the outlying variables were randomly

3 Note that crossing Factors 1 and 2 manipulates the total number of
variables (i.e., between 11 and 18) as well as the proportion of outlying
variables (i.e., between .14 and .40).
4 Note that the component scores and residuals were sampled from a
normal distribution. In component analysis, no specific distributional
assumptions are made. On the basis of results obtained by Dudzinski,
Norris, Chmura and Edwards (1975) and by Jolliffe (2002) with respect
to principal component analysis, we would expect the results of the sim-
ulation to be comparable in the cases of other distributions, unless outliers
are present (Jolliffe, 2002). For the latter case, a robust variant of
clusterwise SCA-P would be needed, which could be developed along
the lines of the work by Ceulemans, Hubert and Rousseeuw (2013) and
Hubert, Rousseeuw and Vanden Branden (2005).
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assigned to one component in Cluster 1, whereas in the other
cluster(s) they received a loading boutl1 on the same compo-
nent, but also a loading boutl2 on another component. The latter
component differed between Clusters 2 and 3 in the case of
three clusters (Factor 4). The sizes of these two loadings
depended on the level of Factor 3: For a very high degree of

outlyingness, boutl1 equals
ffiffiffiffiffiffiffi
:25

p
and boutl2 equals

ffiffiffiffiffiffiffi
:75

p
,

whereas for high, medium, low, and very low degrees of

outlyingness, they equal
ffiffiffiffiffiffiffi
:50

p
and

ffiffiffiffiffiffiffi
:50

p
,

ffiffiffiffiffiffiffi
:75

p
and

ffiffiffiffiffiffiffi
:25

p
,ffiffiffiffiffiffiffi

:85
p

and
ffiffiffiffiffiffiffi
:15

p
, and

ffiffiffiffiffiffiffi
:95

p
and

ffiffiffiffiffiffiffi
:05

p
, respectively. The error

matrices Ei were randomly sampled from the standard normal
distribution. The cluster loading matrices B(k) and the error

matrices Ei were rescaled by multiplying them by
ffiffiffiffiffiffiffiffiffiffiffi
1−eð Þp

and
ffiffiffi
e

p
, respectively, such that the data contained the

correct amount of error. Finally, each Xi matrix was
computed as FiB

(k) ′ + Ei.
The 12,000 simulated X matrices were preprocessed such

that each variable had a mean of zero per block and a unit
variance over all blocks. Next, they were analyzed once with
SCA-P and twice with clusterwise SCA-P, using K and K + 1
clusters; we always adopted the correct number of compo-
nents Q. The clusterwise SCA-P algorithm was run 25 times,
each time using a different random start, and the best solution
out of the 25 runs was retained. Then, both heuristics as well
as the split-half procedure were applied to the resulting
clusterwise SCA-P loadings, using a critical congruence value
of .95. On average, analyzing one data set with the correct
number of clusters K took about 5 s (using MATLAB
R2014b on an Intel Core i7-3770K processor of a personal
computer, with a clock frequency of 3.4–3.9 GHz and a RAM
speed of 1,600 MHz) without the split-half procedure, and
3 min when this procedure was also conducted.

Results

In this section, we first evaluate whether the clusterwise SCA-
P analyses correctly recovered the underlying clustering and
component structures in the case of K estimated clusters, be-
cause good outlying-variable detection is impossible other-
wise. Next, the goodness of the outlying-variable detection
is evaluated for both heuristics presented above. Then we
report the results of the split-half procedure, focusing on the
best-performing heuristic. Finally, the goodness of the
outlying-variable detection when using one cluster too much
is reported for the best heuristic.

Goodness of recovery of the clusterwise SCA-P clusters
and loadings

To examine the recovery of the clustering, we computed the
adjusted Rand index (ARI; Hubert & Arabie, 1985) between
the true partition and the estimated one. The ARI equals 1 if

both are identical, and equals 0 when agreement is at chance
level. The ARI was equal to 1 for 10,274 (86 %) out of the 12,
000 data sets, with an overall mean of .91 (SD = .23). Thus,
the clustering was recovered perfectly in most cases.
Clustering mistakes were mainly made in the most difficult
conditions. Specifically, 1,636 out of the 1,726 faulty cluster-
ings occurred in the conditions with low or very low degree of
outlyingness.

To evaluate how well the cluster-specific loading matrices
were recovered, we calculated a goodness-of-cluster-loading-
recovery statistic (GOCL) by computing congruence coeffi-
cients φ (Tucker, 1951) between the true and estimated com-
ponent loadings and averaging these coefficients across com-
ponents and clusters as follows:

GOCL ¼

XK
k¼1

XQ
q¼1

φ B kð ÞT
q ;B kð ÞM

q

� �
KQ

; ð3Þ

with Bq
(k)T and Bq

(k)M indicating the qth component of the true
and estimated cluster-loading matrices, respectively. Each es-
timated loading matrixBq

(k)M was obliquely Procrustes-rotated
toward its true counterpartBq

(k)T. To identify for each estimated
loading matrix its associated true counterpart, the GOCL
values were computed across all possible permutations, and
the one that maximized the GOCL value was retained. The
GOCL values ranged from 0 (no recovery at all) to 1 (perfect
recovery). On average, the GOCL statistic amounted to .9951
(SD = .0058), indicating excellent recovery of the B(k)

matrices.

Goodness of outlying-variable detection

Table 3 shows, for both methods, the proportions of data sets
with perfect outlying variable detection (i.e., data sets for
which no false negatives or false positives occurred), the pro-
portions of data sets without false negatives, and the numbers
of false positives. Focusing on the overall performance, the
lower-bound congruence method clearly outperformed the
cutoff congruence method, with a proportion correct of .79
in comparison to only .37.

To get an indication of why the cutoff congruence method
fell short, we examine the influence of the five manipulated
factors. Not unexpectedly, we see that the performance was
mostly influenced by the degree of outlyingness of the outly-
ing variables. In Outlying variable detection section, we al-
ready hypothesized that the critical congruence value may not
be ideal for all conditions. Indeed, it is clearly not sensitive
enough to detect subtle loading differences. Therefore, we
also evaluated the performance of the cutoff congruencemeth-
od when a critical congruence value of .96 was applied.
Table 4 shows that performance increased somewhat for the
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high and medium degree-of-outlyingness conditions when
using this slightly higher critical congruence value, but it
remained substandard for the medium, low, and very low de-
grees of outlyingness. Applying an even higher value to im-
prove the results for the lowest degrees of outlyingness would

be too strict—leading to an excessive number of false posi-
tives—for some data sets, and especially for real data. It thus
seems impossible to find a critical congruence value that
would be ideal for all cases.

The selected critical congruence value is hardly an issue for
the lower-bound congruence method, since it only uses the
value as a lower bound in the CHull procedure. This method
results in markedly higher performance. Specifically, compar-
ing the results for the different degrees of outlyingness shows
that the lower-bound congruence method broke down only for
the very low degree of outlyingness, whereas the cutoff con-
gruence method completely failed from the medium degree of
outlyingness onward. The detection mistakes made were
mainly false positives; specifically, for the 48,000 outlying
variables that were present in the entire simulation, 7,233 false
positives occurred, and 3,454 false negatives. False positives
or negatives may occur either because of a faulty outlyingness
ranking resulting from Steps 2 and 3 of the procedure, or
because of a faulty number-of-outlying-variables selection in
Step 4. The former type of mistake was encountered for 1,471
(12 %) of all simulated data sets (resulting in 4,101 out of the
7,233 false positives, as well as 2,922 out of the 3,454 false
negatives); 1,382 of these 1,471 ranking mistakes occurred in
the case of a very low degree of outlyingness and/or 40 %
error. The latter type of mistake was found for 1,082 data sets
(9 %), in which mostly (i.e., in 818 cases) too many outlying
variables were detected, explaining the remaining 3,132 false
positives. Note that this overselection is a documented char-
acteristic of the CHull procedure (Wilderjans et al., 2013),

Table 3 Proportions of correct data sets (i.e., data sets without false negatives or false positives), proportions of data sets without false negatives, and
numbers of false positives for each method and for each level of the manipulated factors of the simulation study

Correct Data Sets No False Negatives Number of False Positives

Cutoff
Congruence

Lower-Bound
Congruence

Cutoff
Congruence

Lower-Bound
Congruence

Cutoff
Congruence

Lower-Bound
Congruence

Nine nonoutlying .40 .77 .40 .86 733 3,473

Twelve nonoutlying .34 .81 .34 .90 454 3,760

Two outlying .38 .80 .39 .90 421 2,257

Four outlying .36 .80 .37 .88 280 2,189

Six outlying .35 .76 .36 .85 486 2,787

Very high degr. outlyingness .99 1.00 1.00 1.00 20 25

High degr. outlyingness .78 .98 .78 .99 93 172

Medium degr. outlyingness .05 .90 .06 .96 230 793

Low degr. outlyingness .00 .76 .01 .90 287 1,649

Very low degr. outlyingness .00 .29 .01 .54 557 4,594

Two clusters .32 .76 .32 .90 182 5,339

Three clusters .41 .81 .42 .86 1,005 1,894

20 % error .36 .89 .36 .95 178 2,080

40 % error .38 .69 .39 .81 1,009 5,153

Overall .37 .79 .37 .88 1,187 7,233

Table 4 Proportions of correct data sets, proportions of data sets
without false negatives, and numbers of false positives by the cutoff
congruence method when a higher critical congruence value of .96 is
applied

Correct
Data Sets

No False
Negatives

False
Positives

Nine nonoutlying .45 .46 985

Twelve nonoutlying .41 .42 634

Two outlying .45 .46 566

Four outlying .44 .44 409

Six outlying .41 .42 644

Very high degr. outlyingness 1.00 1.00 20

High degr. outlyingness .96 .96 93

Medium degr. outlyingness .18 .19 299

Low degr. outlyingness .02 .03 438

Very low degr. outlyingness .00 .01 769

Two clusters .39 .39 238

Three clusters .47 .49 1,381

20 % error .41 .41 247

40 % error .45 .47 1,372

Overall .43 .44 1,619
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which can be mitigated by using the split-half procedure (see
Goodness of outlying-variable detection bymeans of the split-
half procedure section).

For the 10,526 data sets with a correct outlyingness rank-
ing, we inspected the min(φmin

k1k2 ) values before and after the

removal of the final outlying variable. The value before re-
moval of the final outlying variable ranged from .91 to .99,
with an overall mean of .9766 (SD = .02). Note that this value
was larger than .95 in 9,632 of the 10,526 cases. The value
after removal of the final outlying variable ranged from .9449
to .9996, with an overall mean of .9956 (SD = .003). This
value was smaller than .95 for only one out of the 10,526 data
sets. These results confirm that the guideline proposed by
Lorenzo-Seva and ten Berge (2006) is unsuitable as a cutoff
but works very well as a lower bound.

Goodness of outlying-variable detection by means
of the split-half procedure

The to-be-preferred method according to the results above—
that is, the lower-bound congruence method—did result in
quite a number of false positives (i.e., 7,233; see Table 3).
Since these may be caused by sampling fluctuations, it is
certainly interesting to look into the performance of the
lower-bound congruence method when the split-half proce-
dure is also used. The results of the split-half lower-bound
congruence method are given in Table 5. Comparing
Tables 3 and 5, the most striking differences are (1) that the
proportions of correct data sets are equal or higher for the
medium to very high levels of outlyingness, but lower for
the low and very low degrees of outlyingness (see the first
column of Table 5)—which is due to a decrease in the false
positives for all levels and a drop in the proportions of data
sets without false negatives for the lowest degrees of
outlyingness (see the second column of Table 5)—and (2) that
the decrease of the number of false positives is spectacular
(i.e., only 558 instead of 7,233 false positives; see the third
column of Table 5). Thus, if one wants to be more conserva-
tive in the outlying-variable detection (i.e., avoiding false pos-
itives at the cost of more false negatives) or wants to obtain
more robust results with respect to sampling fluctuations, the
split-half procedure is definitely recommended.

To inspect the stability of the detection results over
the 20 random splits, we checked for each data set in
how many splits the resulting set of outlying variables
was the correct one (without false negatives or false
positives). The frequency of the correct set of outlying
va r i ab l e s depended mos t ly on the deg ree o f
outlyingness: On average, the correct set was found
for 19, 19, 16, 12, and 2 out of the 20 random splits
for the very high, high, medium, low, and very low
degrees of outlyingness, respectively.

Goodness of outlying-variable detection in the case of K + 1
clusters

Again we focused on the lower-bound congruence method,
because this is clearly the best according to the results in
Goodness of outlying-variable detection section. When this
method was applied using one additional cluster, it still per-
formed perfectly for 42 % of all simulated data sets, whereas
for 60 % at least the outlyingness ranking was correct. Not
surprisingly, these percentages were much higher when the
error level was lower—59 % correct detection and 75 % cor-
rect outlyingness rankings when only 20 % error was present
in the data—or when the degree of outlyingness was high—
65 % correct detection and 87 % correct outlyingness rank-
ings—or very high—78 % correct detection and 94 % correct
outlyingness rankings. Overall, 13,875 false positives and 10,
106 false negatives occurred. The error in the data seems to be
an important causal factor behind the false positives, since 9,
278 of them occurred in the conditions with 40 % error vari-
ance. With respect to the false negatives, the degree of
outlyingness is again the most important factor, with 8,129
out of the 10,106 false negatives occurring for the low and
very low degrees of outlyingness.

When applying the split-half procedure with one cluster
too many, the proportion of entirely correct detections
dropped further, to .37, with proportions of .67, .63, .38,
.15, and .00 for the respective degrees of outlyingness.
More specifically, the number of false positives decreased

Table 5 Proportions of correct data sets (i.e., data sets without false
negatives or false positives), proportions of data sets without false
negatives, and numbers of false positives for the lower-bound congruence
method when the split-half procedure is used, and for each level of the
manipulated factors of the simulation study

Correct
Data
Sets

No False
Negatives

Number of
False
Positives

Nine nonoutlying .75 .75 404

Twelve nonoutlying .78 .78 154

Two outlying .78 .78 147

Four outlying .78 .78 112

Six outlying .74 .74 299

Very high degr. outlyingness 1.00 1.00 3

High degr. outlyingness .99 .99 21

Medium degr. outlyingness .94 .94 101

Low degr. outlyingness .72 .72 140

Very low degr. outlyingness .18 .18 293

Two clusters .77 .78 318

Three clusters .76 .76 240

20 % error .85 .85 201

40 % error .68 .68 357

Overall .76 .77 558

224 Behav Res (2017) 49:216–229



from 13,875 to 3,978, while the number of false negatives
increased from 10,106 to 26,653.

Conclusion

On the basis of these simulation results, we advise researchers
to use the lower-bound congruence method, rather than the
cutoff congruence method, since the lower-bound method
displayed a clearly superior performance. Because the lower-
bound congruence method led to a fairly large number of false
positives, we also advise using the split-half procedure when-
ever it is desirable to keep this number as low as possible.

Choosing the appropriate number of clusters may be hard,
since increases in fit with additional clusters may be very
small when only few outlying variables are present. The re-
sults in Goodness of outlying-variable detection in the case of
K + 1 clusters section. indicate that this choice is indeed cru-
cial for the performance of the outlying-variable detection.
This conclusion should be put in perspective however, since
(1) the false negatives largely pertain to loading differences
that are so subtle that we would not be interested in them in the
case of empirical data (because they would probably be error-
driven), and (2) the outlyingness ranking remains correct, and
thus informative, for the majority of the cases.

Application

In this section, we apply outlying-variable detection to cross-
cultural data on values from the International College Survey
(ICS) 2001 (Diener et al., 2001; Kuppens, Ceulemans,
Timmerman, Diener & Kim-Prieto, 2006). The ICS study in-
cluded 10,018 participants from 48 different countries. Each
of them rated, among other things, how much they valued 11
aspects, listed in Table 7 below, using a 9-point Likert scale (1
= do not value it at all, 9 = value it extremely). Of these
participants, 330 with missing data were excluded. Between-
country differences in means were removed by centering the
aspects per country, and between-aspect differences in vari-
ability were eliminated by standardizing each aspect across
countries. Consequently, only between-country differences
in covariance structures were retained.

Regarding model selection, we first assessed the most appro-
priate number of components by performing SCA-P analyses
with one to six components and comparing the resulting solu-
tions in terms of complexity–fit balance. On the basis of the scree
plot in Fig. 2a and the clear elbow therein, we retained two
components. To determine the optimal number of clusters, we
performed clusterwise SCA-P analyseswith two components per
cluster and one to five clusters. Since Fig. 2b does not display a
clear elbow,we inspected the interpretability of the solutionswith
two and three clusters and retained the one with two clusters.

Next, we scrutinized the selected clusterwise SCA-P mod-
el. The partition of the clusterwise SCA-P model with two
clusters and two components per cluster is given in Table 6.
As is discussed by De Roover et al. (2014a)—who present a

(a) 

(b) 

Fig. 2 Percentages of variance accounted for (VAF%) (a) by SCA-P
solutions with the number of components varying from one to six, and
(b) by clusterwise SCA-ECP solutions, with the number of clusters vary-
ing from one to five, for the values data

Table 6 Clustering of the clusterwise SCA-P model with two clusters and two components per cluster for the values data

Cluster 1 Cluster 2

Bangladesh, Cameroon, Chile, Croatia, Egypt, Georgia, Ghana,
India, Indonesia, Iran, Kuwait, Malaysia, Nigeria, Philippines,
Poland, South Africa, Thailand, Turkey, Uganda, Zimbabwe

Australia, Austria, Belgium, Brazil, Bulgaria, Canada, China, Colombia,
Cyprus, Germany, Greece, Hong Kong, Hungary, Italy, Japan, Mexico,
Nepal, Netherlands, Portugal, Russia, Singapore, Slovakia, Slovenia,
South Korea, Spain, Switzerland, United States, Venezuela
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largely similar clustering—Cluster 1 contains preindustrial
countries that are more traditional and more focused on the
basic values necessary for survival, whereas the other coun-
tries are gathered in Cluster 2.

To find out which differences led to this clustering, we turn
to the cluster-specific loading matrices in Table 7. Those
cluster-specific loadings were obliquely Procrustes-rotated to-
ward the normalized VARIMAX-rotated SCA-P loadings
(also presented in Table 7). According to the strong SCA-P
loadings, the first component captures the covariance among
Bmaterial wealth,^ Bphysical attractiveness,^ Bphysical com-
forts,^ Bexcitement/arousal,^ Bcompetition,^ Bheaven/after-
life,^ and Bself-sacrifice^; we therefore label it Bshowing suc-
cess and benevolence.^ The second SCA-P component cap-
tures Bhappiness,^ Bintelligence/knowledge,^ Bsuccess,^ and
Bfun^; it is thus labeled Bfun, happiness, and achievement.^
The cluster-specific loading structures largely resemble the
SCA-P structure, and thus could be interpreted similarly.
Some interesting between-cluster differences were found,
however. For example, Bheaven/afterlife^ and Bself-sacrifice^
have a positive cross-loading on the second component for
Cluster 1, whereas in Cluster 2 they have a negative and a
very low cross-loading component, respectively. Thus, when
inhabitants from the countries in Cluster 1 value Bfun, happi-
ness, and achievement,^ they also value Bheaven/afterlife^
and Bself-sacrifice^ to some extent, whereas for Cluster 2 this
is not the case. Also in Cluster 1, the loadings of Bheaven/
afterlife^ and Bself-sacrifice^ on the first component are low-
er—therefore, the first component is merely labeled Bshowing
success^ in this cluster.

Finally, we performed the outlying-variable detection. On
the basis of the simulation results, we applied the lower-bound

congruence method. The resulting outlyingness ranking ma-
trix is given in Table 8, and the CHull plot in Fig. 3. Due to the
saturation at the higher end of the convex hull plot, the auto-
mated CHull procedure suggests the presence of eight (out of
11) outlying variables. Upon visual inspection of Fig. 3 (and
relying on the second-highest scree ratio given by CHull), we
suspect that four outlying variables (i.e., Bheaven/afterlife,^
Bself-sacrifice,^ Bsuccess,^ and Bfun^; see Table 8) are present
in the data, and that the other four are false positives.

To obtain more robust results and correct for the oversen-
sitivity of CHull—thus, hopefully eliminating the supposed
false positives—we performed the split-half procedure de-
scribed in Split-half procedure section for the lower-bound
congruence method. The 20 random splits resulted in seven
different sets of outlying variables (see Table 9), with, as

Table 7 Cluster-specific component loadings of the clusterwise SCA-P model with two clusters and two components per cluster for the values data,
obliquely Procrustes-rotated toward the SCA-P loadings, which are also included in the table

Cluster 1 Cluster 2 SCA-P

Showing Success Fun, Happiness,
and Achievement

Showing Success
and Benevolence

Fun, Happiness,
and Achievement

Showing Success
and Benevolence

Fun, Happiness,
and Achievement

Material wealth .74 .03 .71 .13 .72 .07

Physical attractiveness .80 .05 .76 .12 .77 .09

Physical comforts .75 .09 .74 .10 .75 .08

Excitement/arousal .80 .04 .60 .09 .66 .09

Competition .71 .01 .73 .11 .72 .05

Intelligence/ knowledge –.10 .85 –.03 .68 –.08 .75

Happiness .28 .73 .30 .42 .30 .53

Success .31 .59 .35 .74 .30 .66

Fun .14 .48 –.21 .77 –.15 .72

Heaven/afterlife .28 .21 .74 –.16 .60 –.05

Self-sacrifice .35 .24 .63 .00 .54 .08

The loadings with an absolute value larger than .40 are printed in boldface, and the outlying variables according to the lower-bound congruence method
are printed in italics.

Table 8 Outlyingness ranking matrix, as calculated by the lower-
bound congruence method for the values data

min(φmean
k1k2 ) k1 k2 Most Outlying Variable min(φmin

k1k2 )

.91 1 2 Heaven/afterlife .88

.94 1 2 Fun .92

.97 1 2 Success .95

.97 1 2 Self-sacrifice .96

.99 1 2 Excitement/arousal .99

1,00 1 2 Physical comforts .99

1,00 1 2 Happiness 1.00

1,00 1 2 Competition 1.00

1,00 1 2 Material wealth 1.00

1.00 1 2 Intelligence/knowledge 1.00

The selected items are shown in italics.
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suspected, the above-mentioned set of four variables being
found most frequently (i.e., nine times). Moreover, Bheaven/
afterlife,^ Bsuccess,^ and Bfun^ also occur in each of the other
sets of outlying variables, and are thus always detected as
outlying. BSelf-sacrifice^ is detected in no less than four out
of the six other sets (thus, in a total of 18 of the 20 random
splits).

Discussion

Researchers are often interested in differences in covariance
structures across different groups. Clusterwise SCA-P ex-
plores such differences in an efficient manner. In many cases,
the differences will pertain to a few variables only, which we
have called Boutlying variables.^ Detecting such outlying var-
iables is important for two reasons: First, it can reveal

structural differences that can help sharpen substantive theo-
ries on, for instance, cross-cultural differences. Second, in
psychometrics, one often aims to find a set of variables that
has a common structure across groups, since this is a prereq-
uisite for comparing the scores of the subjects on the latent
variables that summarize this common structure. This article
has presented and evaluated two heuristics to detect such out-
lying variables, which can be applied with or without a split-
half procedure. On the basis of a simulation study, we recom-
mend to use the lower-bound congruence method, with the
split-half procedure whenever the risk of false positives
should be minimized.

One might argue that the outlying variable detection should
be based on the individual group-specific loading matrices,
rather than on the cluster-specific loading matrices resulting
from a clusterwise SCA-P analysis, in order to conserve all of
the information in the data. This alternative heuristic could be
implemented straightforwardly. It does imply two problems,
however. First, the huge number of pairwise comparisons will
lead to more false positives. Second, including all of the idio-
syncratic (and possibly error-driven) variations in the group-
specific loading structures will also result in more false posi-
tives or in finding differences that are of less interest (e.g.,
differences that only occur in one of the many pairwise com-
parisons). Using clusterwise SCA-P has the advantage of fo-
cusing on the most important structural differences only.

The bootstrap method proposed by Chan and colleagues
(1999) is a relevant method to consider with respect to the
outlying-variables problem. Specifically, they proposed a re-
sampling method to test whether a set of factor loadings is
significantly different between a target and a replication
group. The method can be applied per factor (i.e., column-
wise in a loading matrix) to test whether or not it is different,
but it can also be applied per variable (i.e., row-wise in a
loading matrix) to detect which variables have different load-
ings in the two groups, and thus can be considered outlying.
However, applying the Chan bootstrap method is not straight-
forward in our case, because the method is not directly suit-
able for comparing the loadings of more than two groups (or

Fig. 3 CHull plot of the lower-bound congruence method for the values
data. Specifically, the min(φmean

k1k2 ), labeled BCongruence,^ is plotted
against the number of variables already removed (the order wherein the
variables are removed can be found in Table 8). The black horizontal line
indicates where the min(φmin

k1k2 ) value (not depicted in the figure, but in
Table 8) crosses the lower bound of .95. The arrow indicates the elbow
after which the decrease in congruence levels off

Table 9 Results of the split-half procedure using 20 splits for the lower-bound congruence method for the values data

Frequency Outlying Variables

9 Heaven/afterlife, self-sacrifice, success, & fun

5 Physical comforts, heaven/afterlife, self-sacrifice, success, & fun

2 Excitement/arousal, physical comforts, heaven/afterlife, self-sacrifice, success, & fun

1 Heaven/afterlife, success, & fun

1 Happiness, heaven/afterlife, success, & fun

1 Happiness, physical comforts, heaven/afterlife, self-sacrifice, success, & fun

1 Happiness, excitement/arousal, physical comforts, heaven/afterlife, self-sacrifice, success, & fun

The selected set of outlying variables is shown in boldface.
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clusters of groups) simultaneously, and recurring to pairwise
comparisons would lead to the problems listed in the previous
paragraph. Moreover, the Chan procedure does not sequen-
tially remove items and test again. As we argue in the present
article, often some sort of iterative procedure is needed to
identify the nonoutlying variables, because the initial loadings
(i.e., of the full data set) can be severely distorted by the
outlying ones. Finally, the Chan bootstrap approach is not
yet adapted to comply with the assumptions of component
analysis models (i.e., with respect to the rank of the residuals).

The present article has focused mainly on exploratory anal-
yses, in which one has no a priori idea about the common
covariance structure, but the presented heuristics may be help-
ful within the confirmatory context, and in the measurement
invariance testing framework as well. Specifically, when
configural and/or weak measurement invariance (Meredith,
1993) cannot be confirmed, one can apply the heuristics pre-
sented in this article to check for the presence of outlying
variables (De Roover et al., 2014a). To this end, the a-priori-
assumed latent variable structure can be used as a target struc-
ture when applying the detection methods, instead of the
SCA-P loadings.

The CFA framework also offers some methods to trace
which variables are causing measurement invariance tests to
fail, such as the sequential model modification procedure
(MacCallum, 1986; MacCallum, Roznowski & Necowitz,
1992) and item-level invariance testing (Cheung &
Rensvold, 1999). These methods have some disadvantages,
however, in that they require researchers to run a multitude
of time-consuming analyses, and they imply assumptions
that are often questionable (see De Roover et al., 2014a).
Furthermore, applying them to many groups is not straight-
forward, since many of the typically used fit measures are
unsuitable or need adjustment (Rutkowski & Svetina, 2014).

Finally, an advantage of the outlying-variable detection
heuristics is that they are not limited to the clusterwise SCA-
P case, but can also be used to compare any set of component
or factor loading matrices for the same variables. As exam-
ples, one may think of the loading matrices that result from
fitting mixtures of factor analyzers (McLachlan & Peel, 2000;
Yung, 1997), a subspace k-means analysis (Timmerman,
Ceulemans, De Roover & Van Leeuwen, 2013), or a
switching principal component analysis (De Roover,
Timmerman, Van Diest, Onghena & Ceulemans, 2014b).

Author note K.D.R. is a postdoctoral fellow of the Fund for Scientific
Research Flanders (Belgium). The research leading to the results reported
in this article was sponsored in part by the Belgian Federal Science Policy
within the framework of the Interuniversity Attraction Poles program
(IAP/P7/06), as well as by the Research Council of KU Leuven (Grant
No. GOA/15/003).
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