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Abstract Alterations in oculomotor performance are among
the first observable physical alterations during presymptomat-
ic stages of Huntington’s disease (HD). Quantifiable measure-
ments of oculomotor performance have been studied as pos-
sible markers of disease status and progression in
presymptomatic and early symptomatic stages of HD, on the
basis of traditional analysis methods. Whether oculomotor
performance can be used to classify individuals according to
HD disease stage has yet to be explored via the application of
machine-learning methods. In the present study, we report the
application of the support vector machine (SVM) algorithm to
oculomotor features pooled from a four-task psychophysical
experiment. We were able to automatically distinguish control
participants from presymptomatic HD (pre-HD) participants
with an accuracy of 73.47 %, a sensitivity of 74.31 %, and a
specificity of 72.64 %; to distinguish control participants from
HD patients with an accuracy of 81.84 %, a sensitivity of
76.19 %, and a specificity of 87.48 %; and to distinguish
pre-HD participants from HD patients with an accuracy of
83.54 %, a sensitivity of 92.62 %, and a specificity of
74.45 %. These results demonstrate that the application of
supervised classification methods to oculomotor features is a
valuable and promising approach to the automatic detection of
disease stage in HD.
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Huntington’s disease (HD), previously known as
“Huntington’s chorea”, is an autosomal-dominant neurode-
generative disorder that affects on average 5.70 per 100,000
people in the Western world (Pringsheim et al., 2012). HD is
caused by a gene mutation, identified as a CAG triplet repeat
expansion in the huntingtin (HTT) gene, located on chromo-
some 4, which encodes the huntingtin (HTT) protein. The
mutant form of the HTT protein, with toxic properties, is
expressed ubiquitously in the brain, and the pathogenesis from
neural dysfunction to neural death has yet to be fully
established (La Spada, Weydt, & Pineda, 2011; Phillips,
Shannon, & Barker, 2008). HD is classically characterized
by striatal degeneration, but thinning of the cortical mantle
and overall brain volume loss are contingent and widespread
throughout disease progression (Paulsen et al., 2014; Tabrizi
et al., 2009).

HD is characterized by motor abnormalities, deterioration
of cognitive function, and psychiatric disturbances. The onset
of clinical HD is determined on the basis of alterations in
motor functioning (Huntington Study Group, 1996); however,
the order of symptoms’ presentation is variable. It is well
known that changes in oculomotor performance, as measured
in laboratory settings, are one of the earliest detectable mani-
festations in HD and have the potential to output objective
measures of disease status and progression (Anderson &
MacAskill, 2013; André-Thomas, Abely, de Ajuriaguerra, &
Eullien, 1945; Deurex, 1945; Grabska et al., 2014; Peltsch,
Hoffman, Armstrong, Pari, & Munoz, 2008). The search for
such objective measures has been a research hallmark, aimed
at the validation and evaluation of novel therapeutic ap-
proaches that could be based on such disease-stage markers
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(Paulsen et al., 2014; Tabrizi et al., 2009). For example, quan-
titative measurements of eye movements such as saccade la-
tency and duration, as well as errors in oculomotor tasks, have
been studied as possible biomarkers of presymptomatic and
early symptomatic stages of HD (Ali, Michell, Barker, &
Carpenter, 2006; Blekher et al . , 2006; Golding,
Danchaivijitr, Hodgson, Tabrizi, & Kennard, 2006; Patel,
Jankovic, Hood, Jeter, & Sereno, 2012). The results from clin-
ical HD patients have consistently shown significantly in-
creased saccadic latencies (Ali et al., 2006; Antoniades, Xu,
Mason, Carpenter, & Barker, 2010; Avanzini, Girotti,
Caraceni, & Spreafico, 1979; Blekher et al., 2006; Golding
et al., 2006; Patel et al., 2012; Rupp et al., 2012), saccadic
durations (Ali et al., 2006; Avanzini et al., 1979), and errors in
saccadic direction (Blekher et al., 2006; Patel et al., 2012;
Rupp et al., 2012). Also, increased saccadic latencies
(Blekher et al., 2006; Golding et al., 2006; Robert et al.,
2009) and errors in saccadic direction have been reported in
presymptomatic stages (Blekher et al., 2006). These results
suggest that measures of saccadic movements are a possible
indicator of disease stage in HD (Blekher et al., 2009).
However, whether oculomotor performance parameters can
be used to classify individuals according to their disease stage
remains to be seen. Recently, this question has been studied in
other neurodegenerative and neuropsychiatric disorders
(Lagun, Manzanares, Zola, Buffalo, & Agichtein, 2011;
Tseng et al., 2013), but it still remains unexplored in HD. A
variety of experimental paradigms and several machine-
learning algorithms have been applied to resolve these classifi-
cation problems: (1) support vector machines (SVMs; Coco &
Keller, 2014; Jin, Cheng, Zhou, & Li, 2012; Lagun et al., 2011;
Rivera et al., 2012; Xiang, Yan, & Chen, 2009), (2) support
vector machines with recursive feature elimination (SVM-RFE;
Tseng et al., 2013), (3) Fisher linear discriminant analysis (Jin
et al., 2012), (4) the multinomial log-linear neuronal networks
model (Jin et al., 2012), (5) least-square angle regression (Coco
& Keller, 2014; Jin et al., 2012), (6) naive Bayes (Lagun et al.,
2011), and (7) logistic regression (Lagun et al., 2011).

Among the algorithms listed, SVM-RFE and SVM have
demonstrated the best overall performance. For example,
Tseng et al. (2013) achieved an accuracy of 89.6 % with
Parkinson’s disease, and Lagun et al. (2011) of 87 % with
mild cognitive impairment. The variety of paradigms used is
also reflected in these studies: The former (Tseng et al., 2013)
developed a novel approach to analyze eye movements re-
corded in natural viewing settings, whereas in the latter
(Lagun et al., 2011) a visual paired recognition task was ap-
plied, proving its sensitivity in identifying functional changes
in medial temporal lobe structures.

SVM is a machine-learning method based on the construc-
tion of a separating hyperplane as a decision boundary, so as to
maximize the margin of separation among the classes (Burges,
1998; Rizk-Jackson et al., 2011). More specifically, given a

training data containing two distinct classes, the SVM algo-
rithm constructs a model such that data from individuals be-
longing to one class are on one side of the hyperplane, while
those of the other class are on the other side of the hyperplane.
The optimal separating hyperplane is found by maximizing
the distance between each class of the data points and the
decision boundary, while the amount of classification error is
minimized. The minimization of training errors depends on
the cost (C) parameter. A large value of the C parameter cor-
responds to assigning a higher penalty to the classification
error; that is, the SVM algorithm constructs a rigid-margin
hyperplane and forces the creation of a more accurate model.
On the other hand, a small value of the C parameter implies
that the SVM algorithm searches for a larger-margin-
separating hyperplane (soft margin) allowing for a greater
number of misclassifications (Rizk-Jackson et al., 2011; Zhu
& Ji, 2005).

In this study, we used linear SVM to classify eye tracking
data for pre-HD, HD, and control groups, and to predict un-
known participants on the basis of features provided to the
classifier. We hypothesized that, on the basis of oculomotor
performance-derived features, we could develop binary clas-
sification models able to accurately assign a label to individ-
uals, analyze the feature–accuracy relationship, and compare
classifier performance for the different oculomotor tasks.

Experiment

Participants

Fifty participants recruited through the Neurology department
(Movement Disorder Unit) of Coimbra University Hospital
and the Huntington’s Portuguese Association gave written
informed consent, according to the Declaration of Helsinki
and approved by the local ethics committee (Faculty of
Medicine, University of Coimbra), to take part in the study.
Participants were assigned to three groups: the CTRL group—
22 healthy individuals with no known neurological disorder
and not at risk for HD; the pre-HD group—14 presymptom-
atic HD participants, composed of individuals who presented
soft signs of motor abnormalities; and the early symptomatic
HD group—14 participants diagnosed with clinical HD who
demonstrated evident signs of motor disorders. The demo-
graphic characteristics of these groups are shown in Table 1.

The clinical diagnoses of the participants were established
according to the motor subscale of the Unified Huntington’s
Disease Rating Scale-99 (Huntington’s Study Group, 1996).
Participants with a rating from 0 to 4 were classified as pre-
HD, whereas individuals with a rating of ≥5 were classified as
HD. Exclusion criteria included a history of substance abuse/
dependence, severe ophthalmic disease, or concurrent neuro-
logical illness.

1668 Behav Res (2016) 48:1667–1677



Tasks

The participants completed four horizontal saccadic tasks:
prosaccade, antisaccade, 1- or 2-back memory prosaccade,
and 1- or 2-back memory antisaccade.

As is shown in Fig. 1, the fixation position (cross, 1° diam-
eter in visual angle) at the center of the screen display was
common to all tasks. Peripheral visual targets (black squares,
subtending 0.6° of visual angle) appeared randomly at ±6° or
±12° of visual angle, horizontally from the central cross. At
each of the target positions were placed small position cues (*
symbols, subtending 0.24° of visual angle, light gray in color),
which remained throughout the experiments. Each task was
preceded by a training period in which the participant was

verbally instructed to ensure that the goal of each task was
completely understood.

The prosaccade (PS) task consisted of 60 trials. Each trial
comprised a fixation phase, defined between 1,750 and 2,
250 ms—or until the participant had had a gaze fixation for
at least 500 ms—followed by the presentation of a peripheral
stimulus for 1,000 ms (Fig. 1a). The participant was instructed
to fixate the green cross during the fixation period and to look
as soon as possible at the peripheral stimulus once it had
appeared, and then to return to the fixation position (central
green cross). The central fixation cross remained visible
throughout the entire experiment.

The antisaccade (AS) task (Fig. 1b) had the same number
of trials, delay intervals, and durations for the fixation and task

Table 1 Demographic characteristics of the three groups: Mean (SE)

Gender F:M Age CAG Repeats Disease Duration (years) Years to Onset2 UHDRS (Motor)

Controls
(N = 22)

15:7 36.18
(2.25)

N/A1 N/A N/A N/A

Presymptomatic HD
(N = 14)

8:6 35.79
(2.63)

41.29
(0.52)

N/A 21.01
(2.92)

1.93
(0.46)

Symptomatic HD
(N = 14)

10:4 44.86
(4.15)

43.64
(0.71)

4.57
(0.76)

2.54
(2.60)

26.50
(3.70)

N/A: not applicable. 1 Control participants either did not have a family history of HD or had a gene negative status (≤32 repeats) when family history was
present. 2 Estimated time to HD clinical onset (Langbehn, Brinkman, Falush, Paulsen, & Hayden, 2004).

Fig. 1 Experimental designs of the four horizontal saccadic tasks
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phases as the PS task. In this task, the participant was
instructed to look as soon as possible at the opposite position
from the visual target, and then to return to the fixation posi-
tion (central red cross). The central fixation cross remained
visible throughout the entire experiment.

The 1- or 2-back memory prosaccade (MPS) task, schema-
tized in Fig. 1c, contained 96 trials. Each trial comprised a
fixation phase, ranging between 1,750 and 2,250 ms, followed
by the presentation of two stimuli sequentially—visual targets
were presented for 200 ms each, with an interval in-between
of 500 ms. Afterward, a new fixation phase occurred (1,750–
2,250 ms or until the fixation criteria were met), followed by
an instruction phase of 1,500-ms duration, during which the
participant had to perform the task. Participants were request-
ed to hold fixation on the central green cross during the whole
trial, with the exception of the instruction phase. During the
instruction/task phase, the green cross was replaced by a digit.
If the digit was 1, the participant was asked to look as soon as
possible at the remembered position of the first visual target. If
the digit was 2, the participant was asked to look at the re-
membered position of the second visual target.

The 1- or 2-backmemory antisaccade (MAS) task (Fig. 1d)
had the same number of trials and duration for each phase as in
the MPS task. In the instruction/task phase, if the digit was 1
(or 2), the participant was asked to look as soon as possible at
the opposite position from the remembered position of the first
(or second) visual target. The participant was instructed to
return to the central red cross after the task.

Data acquisition

The eye movement data were recorded in a psychophysical
environment using an iView X Hi-Speed (1.06, SensoMotoric
Instruments, Teltow) noninvasive eye tracking system, with a
sampling rate of 240 Hz. Stimuli were presented on a 17-in.
monitor at a resolution of 1,024 × 768 pixels while partici-
pants were seated 52 cm from the computer screen, with their
heads placed in a stable chinrest. Before each eye tracking
recording session, a nine-point calibration was performed for
the dominant eye of the participant. The tasks were performed
in a fixed order, with an increase in memory and executive
load: prosaccade, antisaccade, 1- or 2-back memory
prosaccade, and 1- or 2-back memory antisaccade. The exper-
iment took between 40 min and 1 h to complete.

Method

Data preprocessing

The eye tracking data recorded during each task were viewed,
analyzed, and exported using the BeGaze software (3.4,
SensoMotoric Instruments, Teltow).

BeGaze experiments were created for each task and partic-
ipant, on the basis of saccade detection, with the following
criteria: a peak velocity threshold of 40°/ms; a minimum fix-
ation duration of 50 ms, with all fixations below the limit
rejected; and velocities of 15°/ms and 85°/ms to identify sac-
cade initiation and termination, respectively. In addition, re-
gions of interest (ROIs; ±2.5° × ±4° of visual angle) were
defined around the possible positions for the peripheral visual
targets and around the fixation position.

The raw data were visually inspected with the Scan Path,
Line Graph, and Heat Map tools of the BeGaze software (See
Fig. S1).

We identified and excluded participants for whom the fol-
lowing problems occurred: The participant closed the eye for
long time periods, moved the head consistently, or simply did
not perform the task. Finally, the data on saccades, fixations,
and blinks were exported for further analysis.

Identification of valid trials The identification of valid trials,
for each task and participant, was performed with MATLAB
(Version R2013a). Criteria were defined for each task trial, as
follows: (1) The data should contain a primary saccade, per-
formed in the correct direction, according to the task instruc-
tions; (2) the primary saccade was initiated within the limits
defined for the central fixation position; (3) the primary sac-
cade had a latency higher than 80 ms—saccades below this
latency were considered anticipatory, and the full trial was
discarded; (4) the total saccadic movement finished within
the ROI surrounding the visual target, as defined by the
task—so long as no direction and latency errors were present;
(5) the trial did not contain blinks prior to eye gaze reaching
the target position, as defined by the task instructions; and (6)
the primary saccade was initiated prior to 700 ms (PS and AS
tasks) or 1,000 ms (MPS or MAS tasks)—latencies above the
indicated thresholds were considered long-latency errors, and
the whole trial was disregarded.

The trials that did not meet the above requirements (invalid
trials, comprising anticipatory errors, direction errors, long-
latency errors, and final ROI errors) were excluded from the
analysis. Participants who had more than 85 % of their trials
invalid—that is, less than nine valid trials (out of a total of 60)
for the AS and PS tasks, and less than 14 valid trials (out of a
total of 96) for the MAS and MPS tasks—were excluded (see
Table 2).

Feature extraction

Once valid trials were defined, for each task and participant a
set of nine features were extracted:

& Percentage of anticipatory saccade errors (AE): percent-
age of anticipatory saccades in relation to the total number
of trials.
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& Percentage of direction errors (DE): percentage of re-
flexive saccades performed in the opposite direction
from the correct hit in relation to the total number of
trials.

& Percentage of errors, ROI (ER): percentage of trials in
which the primary saccade was executed in the correct
direction but in which the target position did not corre-
spond to the target ROI, in relation to the total number
of trials.

& Percentage of errors, long latency (EL): percentage of
errors identified in which the primary saccade had a laten-
cy higher than 700 ms (PS/AS task) or 1,000 ms (MAS/
MPS task) post-visual-target presentation.

& Average number of saccades (NS): average number of
saccades, for valid trials, needed to reach the target.

& Saccade start latency (SL): median of latency values cor-
responding to the time from stimulus appearance to the
onset of the primary saccade (milliseconds).

& Dispersion of saccade start latencies (DSL): dispersion of
the latency values corresponding to the interquartile
range—that is, the difference between the 3rd and 1st
quartiles. The calculation of the dispersion included only
valid trials (milliseconds).

& Dispersion of saccade duration (DSD): dispersion of the
duration values of primary saccades in valid trials (milli-
seconds). The dispersion corresponded to the interquartile
range—that is, the difference between the 3rd and 1st
quartiles.

& Dispersion of saccadic end latencies (DSL_end): disper-
sion of the values corresponding to the time at which the
correct saccadic movement attained the target ROI
(milliseconds).

Moreover, we took into account the fixation periods in-
between tasks and extracted two additional features:

& Percentage of fixation errors (FE): percentage of detected
fixations outside of the ROI defined for the fixation period
(fixation at cross displayed in the center of the screen), in
relation to the total number of fixations. The first fixation
detected outside the central ROI was discarded for all
participants, to minimize the inclusion of fixations on the
target position from the former task period.

& Fixation duration (FD): average duration for fixations
within the ROI defined for fixation periods in-between
task trials.

Automatic classification

Training and test classification algorithm In the present
study, we used the LIBSVM (“Library for Support Vector
Machines”) toolkit (Chang & Lin, 2011) on the MATLAB
platform to train the classifier and then predict the labels of
unknown participants.

The process of distinguishing between the CTRL and pre-
HD participants, CTRL and HD participants, and pre-HD and
HD participants, for each task, included the following steps:

(i) Running SVM classification several times between two
groups. Each group had a different number of partici-
pants; therefore, to prevent biased classification (i.e., dif-
ferent numbers of participants between classified groups
or unmatched ages), we determined all possible combi-
nations of n elements (the number of participants in the
smaller group) for the group with the higher number of
participants, in each of the binary classifications. From
the possible combinations of n elements, only subgroups
matched for age were considered (Mann–Whitney test).

Within the set of possible combinations, we selected
10 % for the classification between two groups; this was
preceded by testing classification results once consider-
ing 100 %, 30 %, and 10 % of the combinations, and
ensuring that classification results did not vary between
the full set and the random selection of subgroup combi-
nations. The performances of the classifiers obtained
when we used 10 % or 100 % of the possible subgroups
were similar (no statistically significant differences).

(ii) Selection of training and testing samples. The training
and testing samples were defined using the cross-
validation (CV) method “leave one out”. A participant
from each class was randomly selected for the test sam-
ple, while the remaining participants were selected for the
training sample. This process was repeated 100 times.

(iii) Classification of the participants. The classification pro-
cess included two stages: the training stage and the predic-
tion stage. In the first, a set of training data (features) and
the respective participants’ labels were provided to create
the classification model. In the second, the classification

Table 2 Number of included and excluded participants after
identification of valid trials, per task

Excludeda Excludedb Included

PS task 0 CTRL
0 pre-HD
0 HD

0 CTRL
0 pre-HD
0 HD

22 CTRL
14 pre-HD
14 HD

AS task 0 CTRL
0 pre-HD
1 HD

0 CTRL
0 pre-HD
6 HD

22 CTRL
14 pre-HD
7 HD

MPS task 0 CTRL
0 pre-HD
3 HD

1 CTRL
0 pre-HD
2 HD

21 CTRL
14 pre-HD
9 HD

MAS task 0 CTRL
0 pre-HD
5 HD

1 CTRL
1 pre-HD
1 HD

21 CTRL
13 pre-HD
8 HD

a Participant did not perform the task. b Participants with less than 15 %
valid trials
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model and a new set of the features (testing data) were
included, and the most likely class of the testing data
(e.g., CTRL, pre-HD, or HD participant) was obtained.

To calculate accuracy estimates, the classification pro-
cess described above was repeated for each of the subsets
of the training and testing data obtained from each sub-
group in CV.

Evaluation of the performance of the classifier The evalu-
ation measures of the classifier’s performance are frequently
defined from a matrix composed of the samples correctly and
incorrectly classified for each class (Costa, Lourena,
Carvalho, & Freitas, 2007)—that is, an m × m matrix, where
m is the number of classes and an Mij entry indicates the
number of classes belonging to the class i that have been
classified as belonging to the class j. This matrix is named
the confusion matrix or contingency table. Therefore, in order
to evaluate the classification algorithm’s performance, we
computed a confusion matrix for hold-out test data during CV.

The confusion matrix is composed of true positives (TP),
false positives (FP), false negatives (FN), and true negatives
(TN) for each binary classification.

The final results of the classification algorithm perfor-
mance are reported, for each task, determining the mean
values of a priori defined evaluation metrics (Costa et al.,
2007; Lagun et al., 2011; Sokolova & Lapalme, 2009).

& Accuracy: proportion of the participants correctly classified
in relation to the total number of participants in the test set.

Accuracy ¼ TPþ TN

TPþ TNþ FPþ FN

& Sensitivity: rate of participants belonging to the positive
class who were correctly predicted as positive.

Sensitivity ¼ TP

TP þ FN

& Specificity: proportion of participants classified as nega-
tive who were really negative.

Specificity ¼ TN

TN þ FP

Results

Figure 2a–d display the mean accuracy values obtained in the
classification, for each task, when using the SVM algorithm
with only one of the oculomotor performance features. The
mean values of accuracy, sensitivity, and specificity for each
feature are reported in Tables S.1, S.2, S.3, and S.4 of the
supplementary material. The performance of the classifiers

for the best combinations of features and the whole set of
features are reported in Tables 3, 4, 5, and 6 for the PS, AS,
MPS, and MAS tasks, respectively. The performance of clas-
sifiers when using features from different tasks is reported in
Tables S.5 and S.6 (supplementary material), and a summary
of standard oculomotor results (mean and dispersion mea-
sures) for each of the tasks and groups can also be found in
the supplementary material (Tables S.7, S.8, S.9, and S.10).

Classification results for the PS task

The best performance was obtained for the CTRL vs. HD and
pre-HD vs. HD classifiers when using the FE feature (accuracies
≥ 75 %), whereas for the CTRL vs. pre-HD classification, the
DSD feature achieved an accuracy of 59.14 %. When consider-
ing only features related to the task period, the best performance
of the CTRL vs. HD classifier was obtained for EL (accuracy of
72.88 %), and the best performance of the pre-HD vs. HD clas-
sifier was achieved with the AE feature (accuracy of 72.00 %).

Adding features to the SVM algorithm did not result in
improved classifier performance (Table 3). The combination
of features AE, EL, and FE proved to be the best for the CTRL
vs. HD classifier (accuracy of 76.88 %), whereas for pre-HD
vs. HD, the best combination of features was AE, DE, and EL
(accuracy of 72.50 %).

Classification results for the AS task

The best performance was achieved for the CTRL vs. pre-HD
and CTRL vs. HD classifiers with the FE feature (accuracies ≥
67%), whereas for the pre-HD vs. HD classifier it was obtain-
ed when the SVM algorithm used the DSL feature, with an
accuracy of 74.53 %. When considering only the trials in
which the participant was performing the task, the best perfor-
mance of the CTRL vs. pre-HD and CTRL vs. HD classifiers
was obtained for the DE feature (accuracies of 64.57 % and
70.73 %, respectively). Adding features to the classification
only improved the performance of the CTRL vs. pre-HD clas-
sifier (Table 4), with the best combination of features being
DE, DSL, and FE (accuracy of 69.27 %).

Classification results for the MPS task

The best performance for the CTRL vs. HD and pre-HD vs.
HD classifiers was achieved using the DSL_end feature (ac-
curacies > 77 %). On the other hand, the CTRL vs. pre-HD
classifier did not reach chance level.

Adding features to the SVM algorithm did not result in
performance improvements for the classifiers (Table 5). The
best performance for pre-HD vs. HD was obtained using the
combination of features AE, DE, and ER, whereas the com-
bination of features DE, ER, and DSL proved to be the best for
the CTRL vs. HD (accuracy of 72.82 %). For CTRL vs. pre-
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HD the classification did not reach chance level, independent
of the combinations of features.

Classification results for the MAS task

The best performance of the CTRL vs. HD classifier was
achieved using the DE feature (accuracy of 81.84 %), whereas
for the pre-HD vs. HD classifier, the best performance was
obtained with the AE feature (accuracy of 83.54 %). For the
CTRL vs. pre-HD classifier, the best performance was obtained
with the SL feature (accuracy of 73.47 %). Adding features to

the SVMalgorithm did not result in performance improvements
for the classifiers (Table 6). The combination of the features
AE, DE, and FE proved to be the best for the CTRL vs. pre-
HD and CTRL vs. HD (accuracies ≥61%). For pre-HD vs. HD,
the best performance was obtained for the combination of fea-
tures AE, DE, and EL (accuracy of 74.35 %).

Classification results for the combinations of features
from different tasks

For the combination of features from the PS and AS tasks
(Table S.5 of the supplementary material), the classifier

Fig. 2 Mean accuracy (and SD) values for the CTRL vs. pre-HD, CTRL
vs. HD, and pre-HD vs. HD classifiers, for each of the oculomotor tasks
and oculomotor features, respectively. *The SD associated with the
accuracy values could not be calculated for the pre-HD vs. HD

classifier in the prosaccade task, since after application of the exclusion
criteria (Table 2), only one possible combination of pre-HD and HD
groups was possible

Table 3 Classifier’s performance with different combinations of features for the prosaccade (PS) task: Mean (SD)

Classifier CTRL vs. pre-HD CTRL vs. HD pre-HD vs. HD

Features Acc. Sens. Spec. Acc. Sens. Spec. Acc. Sens. Spec.

AE + EL + FE 0.53 0.05 1.00 0.77 0.82 0.71 0.66 0.71 0.61

(0.01) (0.02) (0.00) (0.07) (0.07) (0.10) (*) (*) (*)

AE + DE + EL 0.45 0.75 0.15 0.74 0.87 0.61 0.73 0.87 0.58

(0.06) (0.12) (0.11) (0.05) (0.06) (0.08) (*) (*) (*)

All features 0.52 0.04 1.00 0.71 0.72 0.70 0.50 0.46 0.54

(0.01) (0.02) (0.00) (0.07) (0.08) (0.09) (*) (*) (*)

The standard deviations (SDs) associated with the mean accuracy (Acc.), sensitivity (Sens.), and specificity (Spec.) of each classifier were calculated for
the 10 % of possible combinations randomly selected for the PS task.
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performance only improved for the pre-HD vs. HD classifica-
tion and when the FE feature was selected in both tasks (ac-
curacy of 79 %). When considering only features extracted
from periods in which participants were requested to perform
a task, the classifiers’ performance did not increase in com-
parison to the best result obtained from each task separately.
Similarly, no improvement in the classifiers’ performance was
achieved when combining features from the MPS and MAS
tasks (supplementary material, Table S.6), in comparison with
the best results obtained from each task separately. In this case,
the best performance was achieved for the CTRL vs. HD
classifier when using the features DSL_end and DE in the
MPS and MAS tasks, respectively (accuracy of 79 %).

Discussion

Our results highlight the potential use of oculomotor perfor-
mance features to classify individuals within Huntington’s
disease stages. We demonstrated that the classifiers’ perfor-
mance is directly influenced by the selected features within
each oculomotor task. Hence, the features to feed into the
SVM algorithm that allow the highest accuracy estimates de-
pend on the oculomotor task and HD stage.

For all classifiers, the best performance was achieved when
one feature was selected within the MAS task (accuracy, spec-
ificity, and sensitivity > 70 %). Namely, SL proved to be the
best feature to distinguish controls from pre-HD participants,
whereas to distinguish control or pre-HD participants from
HD patients, DE and AE, respectively, proved to be the best
features. We emphasize that even within the PS task, the clas-
sifier was able to distinguish control and pre-HD participants
from HD patients with accuracies above 70 %—by using ei-
ther the AE feature or the FE feature. These results demon-
strate the potential to integrate this methodological approach
in clinical environment, where with a relatively simple task
one might aim at obtaining a clear indication (predictive value
and specificity) of disease stage and progression.

The choice of the SVM algorithm, with a linear kernel, has
revealed the potential to classify and predict unknown indi-
viduals’ labels according to HD stage. As a matter of fact,
former studies by Coco and Keller (2014), Jin, Cheng,
Zhou, and Li (2012), and Lagun, Manzanares, Zola, Buffalo,
and Agichtein (2011) had explored the use of several
machine-learning algorithms, reaching the conclusion that
SVMs provided the overall best accuracy, specificity, and sen-
sitivity. However, we have to consider that other algorithms
may have performed better. Additionally, our results seem to

Table 4 Classifier’s performance with different combinations of features for the antisaccade (AS) task: Mean (SD)

Classifier CTRL vs. pre-HD CTRL vs. HD pre-HD vs. HD

Features Acc. Sens. Spec. Acc. Sens. Spec. Acc. Sens. Spec.

DE + DSL + FE 0.69 0.73 0.65 0.68 0.69 0.67 0.66 0.67 0.66

(0.07) (0.10) (0.07) (0.13) (0.13) (0.15) (0.14) (0.14) (0.16)

AE + ER + DSL_end 0.38 0.43 0.33 0.73 0.74 0.72 0.73 0.74 0.73

(0.08) (0.09) (0.12) (0.10) (0.15) (0.10) (0.09) (0.13) (0.08)

All features 0.58 0.60 0.56 0.64 0.66 0.61 0.61 0.58 0.63

(0.08) (0.10) (0.08) (0.13) (0.15) (0.16) (0.16) (0.16) (0.20)

The standard deviations (SDs) associated with the mean accuracy (Acc.), sensitivity (Sens.), and specificity (Spec.) of each classifier were calculated for
the 10 % of possible combinations randomly selected for the AS task.

Table 5 Classifier’s performance with different combinations of features for the 1- or 2-back memory prosaccade (MPS) task: Mean (SD)

Classifier CTRL vs. pre-HD CTRL vs. HD pre-HD vs. HD

Features Acc. Sens. Spec. Acc. Sens. Spec. Acc. Sens. Spec.

AE + DE + ER 0.41 0.39 0.44 0.70 0.78 0.62 0.74 0.77 0.71

(0.09) (0.28) (0.20) (0.09) (0.09) (0.12) (0.08) (0.09) (0.09)

DE + ER + DSL 0.38 0.43 0.33 0.73 0.74 0.72 0.73 0.74 0.73

(0.11) (0.17) (0.12) (0.07) (0.09) (0.08) (0.06) (0.09) (0.08)

All features 0.39 0.36 0.42 0.62 0.59 0.65 0.61 0.59 0.63

(0.11) (0.13) (0.12) (0.10) (0.14) (0.10) (0.07) (0.10) (0.08)

The standard deviations (SDs) associated with the mean accuracy (Acc.), sensitivity (Sens.), and specificity (Spec.) of each classifier were calculated for
the 10 % of possible combinations randomly selected for the MPS task.
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indicate that combining features from different oculomotor
tasks does not necessarily imply a better prediction of sin-
gle individuals’ classes. As such, classifiers’ performance
did not improve in comparison to the best results achieved
using features from within one single task. One might refute
this by considering that a multikernel approach would have
been best suited to combine features from different oculo-
motor tasks—one kernel for each task. However, despite
reducing users’ influence on kernel choice, given the num-
ber of participants in this study and the features we ex-
plored, we think the overall performance would not surpass
what we have reported.

When taking into account the known neuropathology in
Huntington’s disease and reported oculomotor deficits in
manifest HD, our results seem to be in agreement with
these factors. Both the DE and AE features reflect abnor-
malities of oculomotor performance in manifest HD, which
parallels certain neurodegenerative processes—for exam-
ple, marked deficits in voluntary saccade initiation and
saccadic suppression, impersistent gaze, and increased in-
cidence of anticipatory saccades (Ali et al., 2006;
Antoniades et al., 2010; Blekher et al., 2006; Golding
et al., 2006). HD’s hallmark is well known to be striatal
neural loss and atrophy (Aylward, 2007; Aylward et al.,
2011), with altered functioning of the cortico–basal gan-
glia–thalamocortical circuitry (Joel, 2001); neurodegener-
ation spreads throughout the brain with disease progression
(Ross et al., 2014). Findings suggest that through an initial
loss of medium-sized spiny neurons, a major impact occurs
in the function of the basal ganglia indirect pathway
(Calabresi, Picconi, Tozzi, Ghiglieri, & Di Filippo, 2014;
Galvan, André, Wang, Cepeda, & Levine, 2012; Hikosaka,
Takikawa, & Kawagoe, 2000), although other mechanisms
that would have an early impact on the direct pathway’s
function are also being unraveled (Calabresi et al., 2014;
Galvan et al., 2012). Thus, reduced inhibition of the supe-
rior colliculus is indicated as impairing saccade suppres-
sion, leading to some of the usual HD oculomotor patterns.

DE relates to impaired suppression of saccades, which bet-
ter differentiates the manifest HD group—the classifiers’
performance reflects the disease neuropathology.
Furthermore, both features present accuracies above 70 %
in other tasks than the MAS task.

On the other hand, SL is the feature that best differentiated
pre-HD individuals from controls, where other features result-
ed in much poorer performance. It is known that the saccade
latency can be affected by numerous factors—for example,
the design of a paradigm and its elicited brain activity (e.g.,
Peltsch et al., 2008); parietal eye field projections to the supe-
rior colliculus, with lesions to the former resulting in increased
latencies; lesions or dysfunction of frontal cortical areas, such
as frontal eye field, also increase saccade latencies (Anderson
&MacAskill, 2013; Leigh &Kennard, 2004); degeneration or
dysfunction of the substantia nigra pars reticulata, the superior
colliculus, or the brainstem itself can also result in increased
latencies (Hikosaka & Wurtz, 1985a, b); cerebellar cortex in-
terplays and also performs parallel processing of visuomotor
information, and damage can result in increased latencies
(Filippopulos, Eggert, & Straube, 2013). All of these can be
contributing factors in more advanced stages of neurodegen-
eration. However, the pattern detected indicates faster laten-
cies in HD gene carriers for the MAS task (Table S.9). Hence,
given the inherent load in spatial working memory and exec-
utive functioning, with inhibition of saccades, we suggest that
the inhibitory pathway may play a major role. The neural
correlates, function, and compensatory mechanisms can be
further unraveled with full cognitive characterization (Júlio,
Caetano, Januário, & Castelo-Branco, manuscript in prepara-
tion) and through neuroimaging studies.

The relatively small number of individuals per group was
one major limitation of this study, although the proof of con-
cept per se remains. Moreover, the pre-HD group was mostly
composed of participants estimated to be far from disease
onset; thus, we expect that smaller effect sizes were present,
which might have further hindered the CTRL vs. pre-HD
classifiers’ performance. The use of other oculomotor

Table 6 Classifier’s performance with different combinations of features for the 1- or 2-back memory antisaccade (MAS) task: Mean (SD)

Classifier CTRL vs. pre-HD CTRL vs. HD pre-HD vs. HD

Features Acc. Sens. Spec. Acc. Sens. Spec. Acc. Sens. Spec.

AE + DE + EL 0.52 0.57 0.47 0.75 0.78 0.72 0.74 0.75 0.74

(0.09) (0.13) (0.12) (0.10) (0.12) (0.11) (0.05) (0.09) (0.05)

AE + DE + FE 0.61 0.63 0.59 0.81 0.83 0.78 0.73 0.75 0.71

(0.08) (0.09) (0.12) (0.08) (0.10) (0.09) (0.06) (0.10) (0.07)

All features 0.55 0.54 0.56 0.71 0.74 0.67 0.58 0.64 0.53

(0.10) (0.11) (0.12) (0.09) (0.14) (0.08) (0.10) (0.12) (0.11)

The standard deviations (SDs) associated with the mean accuracy (Acc.), sensitivity (Sens.), and specificity (Spec.) of each classifier were calculated for
the 10 % of possible combinations randomly selected for the MAS task.
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features—such as gain, velocity, saccade duration, or express
saccades from gap or delayed paradigms, and in our case,
distinguishing between 6° and 12° trials—could have implied
better classifier performance. Nonetheless, the replicability of
measures within short time spans is important. The study by
Blekher et al. (2009) has shown that saccade latency and the
percentage of errors have moderate to high replicability in
control and premanifest HD groups (see also Klein &
Fischer, 2005), whereas gain and velocity only present mod-
erate reliability. Moreover, the replicability of the latter did not
reach significance in a simple visually guided (prosaccade)
task. In addition, distinguishing between 6° and 12° trials
would not have added information to our classification be-
tween groups, but might possibly have refined the DSD fea-
ture, where intragroup differences reached significance in
three situations (see the supplementary material, Table S.11).
Finally, gap and delayed paradigms might increase the classi-
fiers’ performance for the percentage of express saccades fea-
ture (latencies between 80 to 130 ms), when considering
premanifest HD individuals close to disease onset and mani-
fest HD patients. These paradigms are known to increase the
number of express saccades, suggested as being linked to
release mechanisms when a fixation target disappears—which
is affected in HD—with direct functional involvement of the
rostral pole of the superior colliculus (Dickov & Morrison,
2006). Our experimental paradigm was originally aimed at
underpinning the interference of working memory and exec-
utive load with the inhibition of saccades, in parallel with a
full cognitive characterization of the participants (Júlio,
Caetano, Januário, & Castelo-Branco, manuscript in
preparation).

The use of machine-learning methods in HD oculomotor
data will improve substantially with a higher number of par-
ticipants, with the capacity to distinguish and classify between
different premanifest stages being one of the most relevant
potential applications. Additionally, heterogeneities in the de-
velopment of symptoms at the earliest manifest stages of the
disease may benefit from automatic detection of oculomotor
patterns.

All in all, this study has pioneered the application of
machine-learningmethods to eye movement data in HD, dem-
onstrating that SVMs are a valuable option to automatically
detect disease stage at the individual level.
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