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Abstract In this study, we explored the accuracy of sphericity
estimation and analyzed how the sphericity of covariance ma-
trices may be affected when the latter are derived from simu-
lated data. We analyzed the consequences that normal and
nonnormal data generated from an unstructured population
covariance matrix—with low (ε = .57) and high (ε = .75)
sphericity—can have on the sphericity of the matrix that is
fitted to these data. To this end, data were generated for four
types of distributions (normal, slightly skewed, moderately
skewed, and severely skewed or log-normal), four sample
sizes (very small, small, medium, and large), and four values
of the within-subjects factor (K = 4, 6, 8, and 10). Normal data
were generated using the Cholesky decomposition of the cor-
relation matrix, whereas the Vale–Maurelli method was used
to generate nonnormal data. The results indicate the extent to
which sphericity is altered by recalculating the covariance
matrix on the basis of simulated data. We concluded that bias
is greater with spherical covariance matrices, nonnormal dis-
tributions, and small sample sizes, and that it increases in line
with the value ofK. An interaction was also observed between
sample size andK: With very small samples, the observed bias
was greater as the value of K increased.

Keywords Monte Carlo simulation . Cholesky
decomposition . Vale–Maurelli method . Sphericity
estimation . Covariancematrix

In recent years, researchers have used Monte Carlo simulation
methods to study the robustness and power of various analytic
techniques. By means of simulation it is possible to generate
not only normally distributed data but also data that reflect what
is commonly found in real-world settings (Blanca, Arnau,
López-Montiel, Bono, & Bendayan, 2013; Micceri, 1989).
Thus, various Monte Carlo simulation studies have analyzed
the fixed effects associated with time (repeated measures vari-
able) using normally or nonnormally distributed data (Arnau,
Bono, Blanca, & Bendayan, 2012; Arnau, Bono, & Vallejo,
2009; Kowalchuk, Keselman, Algina, &Wolfinger, 2004; Val-
lejo & Ato, 2006, among others). Most of these studies ana-
lyzed mixed models by generating data from an unstructured
(UN) population covariance matrix with sphericity values of
.57 and .75. In simulation studies of this kind one would ideally
know if the sphericity estimated from the simulated data is
equivalent to the sphericity that was fixed initially. However,
no published studies have addressed this aspect.

In order to generate normally distributed data most simula-
tion studies of repeated measures designs make use of the
Cholesky decomposition of the correlation matrix (Lix,
Algina, & Keselman, 2003). Among the various methods de-
veloped to generate nonnormal data (Fleishman, 1978;
Headrick, 2002, 2004; L’Ecuyer, 1990; Marsaglia, 2003;
Ramberg, Tadikamalla, Dudewicz, & Mykytka, 1979;
Tadikamalla, 1980; Vale & Maurelli, 1983, among others),
the method of Vale and Maurelli (1983) is one of the most
widely used by simulation studies in the social sciences. Ac-
cording to Olvera Astivia and Zumbo (2015), this method has
more than 130 citation counts on the ISI Web of Knowledge,
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and over 230 on Google Scholar. The procedures used to
generate data can alter the sphericity of the fixed covariance
matrix, since the process of data simulation involves two
steps: the generation of a population covariance matrix from
sphericity values, and the generation of normal or nonnormal
data using this covariance matrix. It is in this second step that
the Cholesky decomposition or the method of Vale and
Maurelli would be applied.

The aim of the present study was to examine how the type
of distribution, the sample size, the number of repeated mea-
sures, and the sphericity value of the population covariance
matrix affect the sphericity estimation of simulated repeated
measures data. In other words, we sought to determine the
extent to which the fixed sphericity (population sphericity)
differs from the estimated sphericity (sample sphericity). To
this end, data were generated for both the normal distribution
and nonnormal distributions commonly used in simulation
studies. For each distribution we analyzed sphericity estima-
tion bias in relation to different sample sizes, different num-
bers of repeated measures, and different sphericity values of
the kind frequently found in simulation studies.

Vale–Maurelli method

The method of Vale and Maurelli (1983) is a multivariate
extension of the method proposed by Fleishman (1978). The
Fleishman method uses the polynomial transformation of nor-
mal variables:

Y ¼ aþ bX þ cX 2 þ dX 3; ð1Þ
where a, b, c, and d are the polynomial coefficients that con-
trol the first four moments of random variable Y, and X is a
random variable distributed normally with mean zero and var-
iance 1. The constant a is equal to –c.

The values of skewness (γ1) and kurtosis (γ2) are defined
by

γ1 ¼ 2c b2 þ 24bd þ 105d2 þ 2
� � ð2Þ

and

γ2 ¼ 24 bd þ c2 1þ b2 þ 28bd
� �þ d2 12þ 48bd þ 141c2 þ 225d2

� �� �
:

ð3Þ

Vale and Maurelli (1983) extended this method to the gen-
eration of multivariate nonnormal distributions. To this end,
they defined the vectors x and w, and the variable Y as:

xT ¼ 1;X ;X 2;X 3
� �

; ð4Þ
wT ¼ a; b; c; d½ �; ð5Þ
Y ¼ wTx; ð6Þ

where X is specified as in Eq. 1, and wT is the vector of
polynomial weights that control the first four moments of
the new nonnormal distribution Y.

Equation 7 represents the correlation coefficient of two
nonnormal variables Y1 and Y2 generated from two normal
variables X1 and X2

rY1Y2 ¼ E Y 1Y 2ð Þ ¼ E wT
1 x1x

T
2w2

� � ¼ wT
1Rw2; ð7Þ

where R=E(x1x2
T).

The correlation between Y1 and Y2, expressed with the
weights, is

rY1Y2 ¼ ρX1X2 b1b2 þ 3b1d2 þ 3d1b2 þ 9d1d2ð Þ
þ r2X 1X2 2c1c2ð Þ þ r3X1X2 6d1d2ð Þ; ð8Þ

where ρX1X2 is the correlation between the normal variables X1

and X2.
By solving for ρX1X2, it is possible to find the intermediate

correlation matrix and to specify all the elements that will
serve to generate the data. In summary, the solution
proposed by Vale and Maurelli (1983) calculates an interme-
diate correlation matrix. Its data are the same as the population
correlation matrix and, given that one applies the Fleishman
method to each marginal distribution, the correlation matrix is
transformed to the desired one that is used to generate the data
(Olvera Astivia & Zumbo, 2015).

A Monte Carlo study

Data were generated using SAS/IML (version 9.4), since this
software is one of the most suitable for simulating data
(Kashyap, Butt, & Bhattacharjee, 2009) and is also one of
the most popular for implementing the Vale and Maurelli
method (Keselman & Lix, 1997; Lix et al., 2003; Vallejo,
Arnau, & Ato, 2007; Vallejo & Livacic-Rojas, 2005).

The first step involved generating the UN population co-
variance matrices from variances and correlations with sphe-
ricity values of ε = .57 and .75 for the different values of the
repeated measures, K = 4, 6, 8, and 10 (Table 1). The spheric-
ity value of the population covariance matrices was calculated
using the Greenhouse–Geisser epsilon (Greenhouse &
Geisser, 1959).

In the next step, the RANNOR generator in SAS was used
to obtain normally distributed multivariate pseudorandom ob-
servations by means of the Cholesky decomposition (Lix
et al., 2003). The nonnormal data distributions were generated
using the method of Vale and Maurelli (1983). For each
nonnormal distribution, the vector of Eq. 5 was obtained using
Fleishman (1978) coefficients in order to provide the desired
degrees of multivariate skewness and kurtosis. Table 2 shows
the Fleishman coefficients a, b, c, and d used to generate the

1622 Behav Res (2016) 48:1621–1630



nonnormal data. These coefficients correspond to exponential
distributions, with fixed skewness (γ1 = 0.8) and two values of
kurtosis (γ2 = 2.4 and 5.4), and to the log-normal distribution
(γ1 = 1.75 and γ2 = 5.9).

Finally, the average sphericity of the UN covariance matri-
ces of the simulated data was estimated using the Green-
house–Geisser epsilon (Greenhouse & Geisser, 1959), which
was obtained through proc glm in SAS.We then calculated the
empirical bias between the initially fixed sphericity (popula-
tion sphericity) and the sphericity estimated on the basis of the
simulations (sample sphericity).

Study variables

Four variables were manipulated in this study.

Sample size The sample sizes chosen were the same as or
similar to the cell sizes most widely used in the simulation
studies of repeated measures designs published since 1990
(Arnau, Bendayan, Blanca, & Bono, 2013a, b, 2014; Arnau
et al., 2009; Keselman, Carriere, & Lix, 1993; Keselman, &

Table 1 UN population covariance matrices

ε = .57 ε = .75

K = 4

1 1:60 1:80 2:32
4 4:80 4:65

9 9:30
15

2
664

3
775

1 1:40 2:40 3:37
4 4:20 6:20

9 8:13
15

2
664

3
775

K = 6

1 1:63 1:50 1:70 1:90 2:08
4 3:99 3:39 3:79 4:16

6 5:65 4:65 5:09
8 7:29 5:88

10 8:93
12

2
6666664

3
7777775

1 1:41 1:47 1:70 1:90 2:08
4 3:45 3:39 3:79 4:16

6 4:88 4:65 5:09
8 6:31 5:88

10 7:72
12

2
6666664

3
7777775

K = 8

1 1:58 1:47 1:70 1:90 2:08 2:24 2:40
4 3:88 3:39 3:79 4:16 4:49 4:80

6 5:49 4:65 5:09 5:50 5:88
8 7:08 5:88 6:35 6:79

10 8:68 7:10 7:59
12 10:27 8:31

14 11:85
16

2
66666666664

3
77777777775

1 1:34 1:47 1:70 1:90 2:08 2:24 2:40
4 3:28 3:39 3:79 4:16 4:49 4:80

6 4:64 4:65 5:09 5:50 5:88
8 5:99 5:88 6:35 6:79

10 7:34 7:10 7:59
12 8:68 8:31

14 10:03
16

2
66666666664

3
77777777775

K = 10

1 0:93 0:64 0:41 0:25 0:15 0:08 0:05 0:03 0:01
3 2:08 1:32 0:80 0:47 0:26 0:15 0:08 0:05

5 3:17 1:93 1:14 0:64 0:36 0:20 0:12
7 4:25 2:52 1:41 0:79 0:45 0:26

9 5:33 2:99 1:67 0:96 0:55
11 6:16 3:44 1:98 1:13

12 6:69 3:85 2:20
13 7:48 4:27

15 8:56
17

2
666666666666664

3
777777777777775

1 0:42 0:13 0:04 0:01 0 0 0 0 0
3 0:93 0:26 0:07 0:02 0 0 0 0

5 1:42 0:39 0:10 0:03 0:01 0 0
7 1:90 0:50 0:13 0:03 0:01 0

9 2:39 0:60 0:15 0:04 0:01
11 2:76 0:69 0:18 0:04

12 3:00 0:77 0:20
13 3:35 0:86

15 3:83
17

2
666666666666664

3
777777777777775

UN, unstructured model

Table 2 Values of Fleishman’s (1978) a, b, c, and d coefficients for
each value of skewness and kurtosis for the distributions generated in the
present study

γ1 γ2 a b c d

0.8 2.4 –.104049451 .848445836 .104049451 .044849610

0.8 5.4 –.082964688 .702207971 .082964688 .088904623

1.75 5.9 –.222093456 .774926306 .222093456 .054958336

γ1: value of the skewness coefficient; γ2: value of the kurtosis coefficient
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Keselman, 1990; and Kowalchuk et al., 2004, among many
others). On the basis of these studies, we chose to examine both
very small (N = 5, 6, 7, and 10) and small (N = 12, 14, 15, 18,
and 21) samples. In addition, and with the goal of determining
the value of N at which the sphericity estimation bias ap-
proaches zero, we also included the medium (N = 30, 45, 60,
and 75) and large (N = 90, 100, 200, 300, and 500) sample sizes
that have been used in other simulation studies of repeated mea-
sures designs. The studies by Arnau et al. (2013a, b), Keselman,
Algina, Kowalchuk, and Wolfinger (1998), Keselman et al.
(1993), and Lix et al. (2003) examined medium group sizes.
The study by Olvera Astivia and Zumbo (2015) examined large
sample sizes with the aim of determining the properties of data
generation algorithms for multivariate nonnormal data. In the
study by Oberfeld and Franke (2013), both extremely small and
larger sample sizes were examined, with the aim of evaluating
the robustness of repeated measures analyses.

Degree of contamination of the distribution The distribu-
tions selected were the normal distribution and a series of
nonnormal distributions defined by the most common values
of skewness and kurtosis, whether in simulation or empirical
studies. In several simulation studies of repeated measures

designs, the distributions were classified as either normal or
slightly, moderately, or strongly biased distributions
(Berkovits, Hancock, & Nevitt, 2000; Vallejo et al., 2007).
Among the strongly biased distributions, a number of simula-
tion studies have analyzed the log-normal distribution (Algina
& Keselman, 1998; Keselman, Kowalchuk, & Boik, 2000;
and Kowalchuk et al., 2004, among others).

The distributions used in the present study had positive
values of skewness and kurtosis, given that such values are
used in simulation studies and are also the most common
found in distributions of psychological variables (Blanca
et al., 2013). Regarding the degree of contamination, the ex-
treme values chosen were γ1 = 1.75 and γ2 = 5.9, which
correspond to the log-normal distribution, one of the most
widely studied. The other two distributions analyzed had a
fixed skewness, γ1 = 0.8, and two values of kurtosis, γ2 =
2.4 and γ2 = 5.4. These values are well within the ranges of
skewness and kurtosis that are observed in real-world settings
(Blanca et al., 2013; Lei & Lomax, 2005), and they are also
the values used in the study by Arnau et al. (2012).

Sphericity values The sphericity indices used were ε = .57
and .75. The latter value was taken to be a good approximation

Fig. 1 Empirical bias with ε = .57 across the different Ns, distributions, and Ks (SK = skewness and KU = kurtosis)
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to sphericity, whereas the former represented nonsphericity.
Both values have been used in the majority of simulation
studies of repeated measures designs (Algina & Keselman,
1998; Arnau et al., 2013a, b, 2014; Arnau et al., 2012; Arnau
et al., 2009; Berkovits et al., 2000; and Keselman &
Keselman, 1990, among many others).

Levels of the within-subjects factor In the present study, we
decided to use K = 4, 6, 8, and 10. It should be noted that the
level of K = 4 is the most commonly found in simulation
studies (Berkovits et al., 2000; Keselman et al., 2000;
Kowalchuk et al., 2004; Lix et al., 2003; Tian & Wilcox,
2007; Vallejo et al., 2007). Eight repeated measures were used
in the studies by Keselman et al. (2000), Kowalchuk and
Keselman (2001), and Vallejo and Ato (2006). The interme-
diate value ofK = 6was also examined in the studies byArnau
et al. (2009), Arnau et al. (2012), Padilla and Algina (2007),
and Wilcox (2006). Finally, we also analyzed an extreme
number of repeated measures (K = 10), as was done in the
simulation study by Ahmad, Werner, and Brunner (2008).

Each combination of sample size, distribution shape, sphe-
ricity, and number of repeated measures was replicated 1,000
times (18 × 4 × 2 × 4 × 1,000 = 576,000 simulations).

Data analysis

In order to simplify the statistical analysis, the sample size
variable was recategorized into very small, small, medium,
and large.

The univariate analyses of variance (ANOVAs) were per-
formed using proc glm from SAS. Specifically, we conduct-
ed two separate 4 × 4 × 4 (N × Distribution × K) ANOVAs
for each level of ε, and eight separate 4 × 4 (N × Distribu-
tion) ANOVAs for each level of ε and K. Post-hoc compar-
isons for each N and distribution were performed by means
of the Bonferroni test. Polynomial contrasts using proc glm
and forward multiple regression analyses using proc reg
from SASwere performed for each level ofK and sphericity,
with the aim of examining the impacts of both distribution
type and sample size on the empirical bias in sphericity.
Finally, a 4 × 4 × 4 × 2 (N × Distribution × K × ε) ANOVA
was conducted.

The values of empirical bias in the sphericity estimation
were taken as the dependent variable, with sample size, distri-
bution, sphericity, and the number of repeated measures being
included as factors. Partial eta-squared ηp

2 was calculated as a
measure of effect size.

Fig. 2 Empirical bias with ε = .75 across the different Ns, distributions, and Ks (SK = skewness and KU = kurtosis)
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Results

In this section, we report the bias observed when estimating
sphericity for the different sample sizes, numbers of repeated
measures, and types of distribution when the sphericity of the
population covariance matrix was .57 (Fig. 1) and .75 (Fig. 2).
Bias was considered to be null when the deviation was close to
zero, between –.080 and .080. This interval, which was cho-
sen arbitrarily by the authors, is shown shaded in both figures.

In Fig. 1, which shows the empirical bias when ε = .57, it
can be seen that with a small number of repeated measures (K

= 4) the sphericity estimation is not biased, regardless of the
distribution and sample size. However, as the number of re-
peated measures increases, the sphericity estimation shows a
negative bias with very small and small sample sizes. This
bias then approaches the interval between –.080 and .080 as
sample size becomes medium or large. Thus, the N × K inter-
action is statistically significant [F(9, 224) = 58.857, p < .001,
ηp
2 = .703, observed power = 1]. There are also significant
differences between sample sizes [F(3, 224) = 849.246, p <
.001, ηp

2 = .910, observed power = 1] and between distribu-
tions [F(3, 224) = 21.086, p < .001, ηp

2 = .220, observed power

Table 3 F tests and Bonferroni post-hoc tests for ε = .57

F p ηp
2 Observed Power Post-Hoc Contrasts p

K = 4

N 114.785 <.001 .860 1 M=L
VS>S>M

1
<.001

Distribution 3.926 .013 .174 .803 ND=SSD
ND=MSD
SSD=MSD
SSD=LD
MSD=LD
ND<LD

1
.237
.993
.136
1
.021

N × Distribution 0.871 .556 .123 .385

K = 6

N 224.408 <.001 .923 1 M>L
VS>S>M

.003
<.001

Distribution 7.405 <.001 .284 .979 ND=SSD
SSD=MSD
SSD=LD
MSD=LD
ND<MSD
ND<LD

.486

.645

.077
1
.007
<.001

N × Distribution 0.537 .842 .079 .236

K = 8

N 259.989 <.001 .933 1 VS>S>M>L <.001

Distribution 7.871 <.001 .297 .985 ND=SSD
SSD=MSD
SSD=LD
MSD=LD
ND<MSD
ND<LD

.438

.656

.053
1
.006
<.001

N × Distribution 0.457 .897 .068 .202

K = 10

N 283.694 <.001 .938 1 VS>S>M>L <.001

Distribution 4.284 .009 .187 .840 ND=SSD
ND=MSD
SSD=MSD
SSD=LD
MSD=LD
ND<LD

.811

.053
1
.475
1
.010

N × Distribution 0.207 .992 .032 .109

VS = very small sample size (N = 5, 6, 7, and 10), S = small sample size (N = 12, 14, 15, 18, and 21),M =medium sample size (N = 30, 45, 60, and 75), L
= large sample size (N = 90, 100, 200, 300, and 500), ND = normal distribution, SSD = slightly skewed distribution, MSD = moderately skewed
distribution, LD = log-normal distribution
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= 1]. The normal distribution is the least biased, followed by
the slightly skewed (γ1 = 0.8 and γ2 = 2.4), the moderately
skewed (γ1 = 0.8 and γ2 = 5.4), and the severely skewed or
log-normal (γ1 = 1.75 and γ2 = 5.9) distributions. Table 3
shows the results of the ANOVAs and the multiple compari-
sons for each of the plots shown in Fig. 1. The Bonferroni
post-hoc tests indicate significant differences between all of
the sample sizes considered (p < .001), except for the compar-
ison of medium and large samples when K = 4. Regarding the
distributions, significant differences are observed between the
normal distribution and the log-normal distribution for any
value of K, and also between the normal distribution and the

moderately skewed distribution for K = 6 and K = 8. Finally,
none of the N × Distribution interactions is statistically
significant.

Figure 2, which depicts the empirical bias when ε = .75,
shows a notable increase in bias in comparison with Fig. 1.
With K = 4, the bias is negative for very small samples, irre-
spective of their distribution. For small samples, bias is ob-
served with nonnormal distributions. As the value of K in-
creases, so does the extent to which sphericity is
underestimated, this being the case even for medium-sized
samples. This is reflected in the analysis of the N × K interac-
tion [F(9, 224) = 33.711, p < .001, ηp

2 = .575, observed power

Table 4 F tests and Bonferroni post-hoc tests for ε = .75

F p ηp
2 Observed Power Post-Hoc Contrasts p

K = 4

N 202.310 <.001 .916 1 M>L
VS>S>M

.011
<.001

Distribution 8.627 <.001 .316 .991 ND=SSD
SSD=MSD
MSD=LD
SSD<LD
ND<MSD
ND<LD

.352

.757
1
.036
.006
<.001

N × Distribution 0.677 .726 .098 .297

K = 6

N 257.837 <.001 .932 1 VS>S>M>L <.001

Distribution 8.178 <.001 .305 .988 ND=SSD
SSD=MSD
MSD=LD
SSD<LD
ND<MSD
ND<LD

.392

.623
1
.046
.005
<.001

N × Distribution 0.435 .910 .065 .193

K = 8

N 289.887 <.001 .940 1 VS>S>M>L <.001

Distribution 8.153 <.001 .304 .988 ND=SSD
SSD=MSD
MSD=LD
SSD<LD
ND<MSD
ND<LD

.410

.594
1
.047
.005
<.001

N × Distribution 0.373 .943 .057 .169

K = 10

N 315.138 <.001 .944 1 VS>S>M>L <.001

Distribution 3.012 .038 .139 .679 ND=SSD
ND=MSD
SSD=MSD
SSD=LD
MSD=LD
ND<LD

1
.157
1
.756
1
.046

N × Distribution 0.151 .998 .024 .091

VS = very small sample size (N = 5, 6, 7, and 10), S = small sample size (N = 12, 14, 15, 18, and 21),M =medium sample size (N = 30, 45, 60, and 75), L
= large sample size (N = 90, 100, 200, 300, and 500), ND = normal distribution, SSD = slightly skewed distribution, MSD = moderately skewed
distribution, LD = log-normal distribution
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= 1]. As in Fig. 1, the effects of sample size and the type of
distribution are statistically significant: F(3, 224) = 1,036.241,
p < .001, ηp

2 = .933, observed power = 1; and F(3, 224) =
23.879, p < .001, ηp

2 = .242, observed power = 1. The multiple
comparisons (Table 4) yield results similar to those of the
previous analysis (Table 3). For K = 4, however, differences
are now also observed between the slightly skewed and the
log-normal distribution, and between the normal and the mod-
erately skewed distribution, whereas forK = 6 andK = 8, there
are differences between the slightly skewed and the log-
normal distribution.

The polynomial coefficients for each level of K and ε are
shown in Table 5. The linear and quadratic components are
significant (p < .001) in all of the models of analysis. The
weight of the linear component is greater than that of the
quadratic component, and both increase in line with the values
of K and ε. The linear contrast estimates increase in a positive
direction, whereas the increase in the quadratic contrast esti-
mates follows a negative direction.

Equation 9 analyzes the regression model that includes N
and the distribution for the different values of K and ε:

Empiricalbias ¼ b0 þ b1N þ b2Distributionþ e; ð9Þ
where b0 is the constant, bi are the unstandardized estimated
coefficients in the regression analysis for each of the explan-
atory variables defined previously, and e is the error term.
The unstandardized estimated coefficients represent the
predicted change in empirical bias for a one-unit change in
the explanatory variable when all other explanatory vari-
ables are held constant. The b1 and b2 coefficients estimated
using Eq. 9 are shown in Table 6. The results reveal a pos-
itive relationship between empirical bias and N, and a neg-
ative relationship between empirical bias and distribution.
Note that sphericity is underestimated, such that the bias
approaches zero as sample size increases, whereas the bias
increases as the data deviate from the normal distribution.
These effects are heightened as the value of K increases and
when ε = .75.

If we compare the different plots shown in Figs. 1 and 2, it
can be seen that the profile of the sphericity estimation bias for
spherical matrices (ε = .75) and K = 4 is similar to that for
nonspherical matrices (ε = .57) withK = 6, and that the profile
of spherical matrices with K = 6 is similar to that of nonspher-
ical matrices with K = 10. In other words, the profile of esti-
mation bias for spherical matrices approaches that of non-
spherical matrices as the number of repeated measures in-
creases. The K × ε interaction is significant [F(3, 448) =
7.066, p < .001, ηp

2 = .045, observed power = .981]. As the
value ofK increases, so does the difference in bias between ε =
.57 and ε = .75. The N × ε interaction is also significant [F(3,
448) = 121.861, p < .001, ηp

2 = .449, observed power = 1].
With very small and small sample sizes, bias is greater when ε
= .75. Finally, the Distribution × ε interaction is not significant
[F(3, 448) = 2.494, p = .059, ηp

2 = .016, observed power =
.617], whereas the effect of the sphericity variable is statisti-
cally significant [F(1, 448) = 924.704, p < .001, ηp

2 = .674,
observed power = 1].

In conclusion, the results confirm that the underestimation
of sphericity is greater with very small and small sample sizes,

Table 5 Polynomial coefficients of the empirical bias for each level of K and ε

K ε Linear Quadratic Cubic

Contrast Estimate p Contrast Estimate p Contrast Estimate p

4 .57 0.036 <.001 –0.015 <.001 0.002 .413

6 .57 0.116 <.001 –0.026 <.001 –0.002 .656

8 .57 0.159 <.001 –0.030 <.001 –0.004 .506

10 .57 0.186 <.001 –0.033 <.001 –0.007 .304

4 .75 0.110 <.001 –0.028 <.001 0 .944

6 .75 0.199 <.001 –0.037 <.001 –0.005 .501

8 .75 0.250 <.001 –0.037 <.001 –0.009 .280

10 .75 0.284 <.001 –0.038 <.001 –0.013 .159

Table 6 Forward multiple regression of the empirical bias using Eq. 9

K ε Regression Coefficients

Constant N Distribution

b0 p b1 p b2 p

4 .57 –0.045 <.001 0.015 <.001 –0.003 .014

6 .57 –0.176 <.001 0.051 <.001 –0.009 <.001

8 .57 –0.251 <.001 0.070 <.001 –0.012 <.001

10 .57 –0.307 <.001 0.082 <.001 –0.010 .002

4 .75 –0.163 <.001 0.048 <.001 –0.010 <.001

6 .75 –0.315 <.001 0.087 <.001 –0.016 <.001

8 .75 –0.413 <.001 0.110 <.001 –0.019 <.001

10 .75 –0.491 <.001 0.125 <.001 –0.012 .006

bi = unstandardized estimated coefficients
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as the number of repeated measures increases, and as the dis-
tribution deviates from normality. These effects are observed
to a greater extent when the covariance matrix is spherical.
Note that a negative bias is produced even with normal
distributions.

Discussion

In this study, the Cholesky decomposition of the correlation
matrix was used to generate normally distributed data, where-
as nonnormal data were generated using the method of Vale
and Maurelli. It is possible that these methods altered the
covariance between the variables and, therefore, the value of
sphericity. In addition, the covariances among the variables
differed across the different distribution shapes, sample sizes,
numbers of repeated measures, and sphericity.

We determined the range of estimated sphericity values of
the covariance matrices that were generated. With nonnormal
data, the sample sphericity would tend to decrease as the pop-
ulation sphericity increases, and therefore, the generated sphe-
ricity could be affected, especially for values of ε = .75. Thus,
with spherical matrices the bias is greater with nonnormal
distributions, smaller sample sizes, and as the value of K in-
creases. This effect is also observed with normal distributions,
albeit to a lesser extent. It can be stated, therefore, that with
simulated data there will always be a mismatch between the
population sphericity and the sample sphericity.

The results of this study suggest that as the sphericity of the
population covariance matrix approaches 1, the sphericity cal-
culated on the basis of simulated data tends to decrease. Fur-
thermore, there is a certain equivalence between the profiles of
sphericity estimation bias, since the sphericity estimation of
spherical population matrices is similar to that of nonspherical
matrices when the number of repeated measures in the latter
increases. In other words, less bias is produced with nonspher-
ical matrices, but it increases in line with the value of K, such
that these matrices then behave as if they were spherical.
These results are in line with what one would expect, because
when estimating the error matrix for the calculation of the
Greenhouse–Geisser epsilon, bias increases in line with the
size of this matrix, and this bias is even greater when the
population covariance matrix has a sphericity value close to 1.

The results also indicate that the population covariance
matrix is transformed after generating nonnormal data by
means of the Vale–Maurelli method. The same occurs, albeit
to a lesser extent, when using the Cholesky decomposition to
generate normal data. With both methods, sphericity is
underestimated, especially whenN is very small or small. This
is due to the direct relationship between sample size and the
variance estimation.

In summary, the estimation of sample sphericity is influ-
enced not only by the type of distribution and the population

sphericity, but also—and notably—by the number of repeated
measures and the sample size. An inverse relationship be-
tween N and K is clearly observed (Oberfeld & Franke,
2013). When N is very small, an increase in K leads to greater
bias than is the case when these two conditions are not ful-
filled. None of these aspects has been considered before, and
we have followed the data generation procedures typically
used in simulation studies. Consequently, researchers should
exercise caution when interpreting the results of their simula-
tions, especially when working with small sample sizes. At all
events, we believe that these results highlight an interesting
point that could be addressed in future studies. In the context
of such studies, the profiles of empirical bias presented here
(Figs. 1 and 2) could be used by researchers to identify the
extent to which the sphericity estimation is biased. The ob-
tained results can be extended to real data, with applications
for applied research in which it is necessary to know to what
extent population sphericity and sample sphericity match and
to ensure the power of the statistical model (e.g., Gracia,
García, & Lila, 2008, 2014).

A final point to consider is that the results obtained here are
limited to the conditions studied. Furthermore, the study has
focused on the generation of unstructured population covari-
ance matrices. In future studies, it would therefore be interest-
ing to determine profiles of sphericity estimation bias for other
population matrices, such as the first-order autoregressive co-
variance matrix, which provides a good fit to repeated mea-
sures data (Arnau et al., 2012; Keselman et al., 1998). Another
avenue of interest would be to generate data when sample
sizes are not equal for each value of K—that is, when there
are missing data.

Author note This research was supported by Grant Number PSI2012-
32662 from the Spanish Ministry of Economy and Competitiveness.
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