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Abstract In psychological science, the Bnew statistics^ refer
to the new statistical practices that focus on effect size (ES)
evaluation instead of conventional null-hypothesis signifi-
cance testing (Cumming, Psychological Science, 25, 7–29,
2014). In a two-independent-samples scenario, Cohen’s
(1988) standardized mean difference (d) is the most popular
ES, but its accuracy relies on two assumptions: normality and
homogeneity of variances. Five other ESs—the unscaled ro-
bust d (dr

*; Hogarty & Kromrey, 2001), scaled robust d (dr;
Algina, Keselman, & Penfield, Psychological Methods, 10,
317–328, 2005), point-biserial correlation (rpb; McGrath &
Meyer, Psychological Methods, 11, 386–401, 2006),
common-language ES (CL; Cliff, Psychological Bulletin,
114, 494–509, 1993), and nonparametric estimator for CL
(Aw; Ruscio, Psychological Methods, 13, 19–30, 2008)—
may be robust to violations of these assumptions, but no study
has systematically evaluated their performance. Thus, in this
simulation study the performance of these six ESs was exam-
ined across five factors: data distribution, sample, base rate,
variance ratio, and sample size. The results showed that Aw
and drwere generally robust to these violations, and Aw slight-
ly outperformed dr. Implications for the use of Aw and dr in
real-world research are discussed.
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The Bnew statistics,^ an innovative framework developed by a
number of methodological and quantitative researchers (as is
detailed by Cumming, 2014), refers to new recommended prac-
tices that arose in response to perceived flaws in conventional,
widely employed null-hypothesis significance testing (NHST).
In NHST, when a researcher examines whether or not a signif-
icant mean difference exists in a dependent variable (DV; e.g.,
communication skills) between two groups of participants (e.g.,
female and male groups), the researcher often uses
independent-samples t tests to obtain an observed probability
(p) value. When an observed p is less than .05 (i.e., p < .05), the
chance for observing such a large mean difference (e.g., female
and male employees differ in cognitive skills by one standard
deviation) is very unlikely, if their underlying truemeans are the
same in the population. On the basis of this result, the researcher
concludes that the observed mean difference is statistically sig-
nificant at the .05 level because the difference is very likely to
have arisen from different underlying populations.

This strategy, however, has perceived flaws. One can obtain
a significant result with a large sample size even with a very
small effect size (ES), which is a quantity that directly measures
the strength of the association or difference between variables.
Thus, the new statistical practices shift from dependence on
NHST to reporting of an ES and its confidence interval (CI).
Researchers thus can directly report the strength or magnitude
of a relationship and its sampling error, without worrying about
the impact of a large sample size on NHST. In addition,
reporting the CI makes reporting the significance level redun-
dant. In fact, many methodologists and journal editors have
suggested that researchers should report their ES in order to
quantify the strength of a relationship and should provide the
associated CI in order to present the range of possible ESs that
are likely to be obtained (i.e., sampling error) if a similar study
were replicated in the future (e.g., Fritz, Morris, & Richler,
2012; Kline, 2013). The American Psychological Association
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(APA) also strongly recommends reporting of the ES and CI:
Bestimates of appropriate effect sizes and confidence intervals
are the minimum expectations for all APA journals^ (APA,
2010, p. 33). In addition, ES is an important statistic in meta-
analysis, a popular statistical method that involves pooling the
ESs to summarize the overall magnitude across studies con-
ducted by independent researchers (Schmidt & Hunter, 2014).

There are a number of ES measures for the two-
independent-samples case with one grouping variable (e.g.,
gender) and one continuous variable (e.g., communication
skills). One of the most popular ES measures is Cohen’s d
(Cohen, 1988), which measures the separation (mean differ-
ence) between two groups or samples of observations, divided
by the pooled standard deviation (SD). In an equation,

d ¼ Y 1−Y 2

� �
=sp; ð1Þ

where Y 1 and Y 2 are the mean scores in Groups 1 and 2,
respectively, and sp is the pooled SD of Groups 1 and 2—that

is, sp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1−1ð Þs21 þ n2−1ð Þs22

� �
= ni þ n2−2ð Þ

q
, where ni and

si are the sample size and SD of observations in group i = 1, 2,
respectively. If the female and male employees differed in
their communication skills by one standardized unit in a sam-
ple, one could report d = 1.00 to express the magnitude of
difference in communication skills between these two groups.
According to Cohen, the interpretation for a small, moderate,
and large ES is d = 0.20, 0.50, and 0.80. Note that d is unaf-
fected by a large sample size when other factors are held
constant, and hence, d adheres to the new statistical practices
and is widely accepted among researchers.

Despite the popularity of d, its accuracy relies on two key
assumptions about the underlying populations—normality
and the homogeneity of variances—that may be violated in
practice. Normalitymeans that measurements of the DV in the
underlying population are normally distributed. The assump-
tion of homogeneity of variances is based on the notion that
the variances of the DV should be the same in the two groups.
Data in the behavioral and social sciences, however, often
deviate from these assumptions. This may lead to inaccurate
interpretation of ES, which, in turn, hinders the progress of the
new statistical practices when they rely on d. Five other ES
measures in the literature may be insensitive or robust to vio-
lations of these assumptions: the unscaled robust d (dr

*;
Hogarty & Kromrey, 2001), scaled robust d (dr; Algina,
Keselman, & Penfield, 2005), point-biserial correlation (rpb;
McGrath & Meyer, 2006), common-language ES (CL; Cliff,
1993), and nonparametric estimator for CL (Aw; Ruscio,
2008). However, no study has systematically and comprehen-
sively examined the performance of these ES measures in one
simulation study. Thus, little guidance is available to help
researchers determine the most accurate ES to report and in-
terpret under different data conditions.

The purpose of this study is to fill in this research gap by
evaluating the performance of the six ES measures on the basis
of a Monte Carlo simulation study, a widely used strategy for
examining the overall performance of a statistical method
across simulated and replicated samples in a computerized sta-
tistical package. The objectives of this study are (1) to system-
atically evaluate the accuracy of the six ES measures and (2) to
provide recommendations for reporting and interpreting the
most appropriate ES under different data conditions.

This article is divided in five sections. The first section
discusses the assumptions for d. The second section presents
the defining and computational details of other ESs that ap-
pear to be insensitive or robust to violations of data assump-
tions. The third section explains the methods and design of the
Monte Carlo study. In the fourth section, the performance of
the ESs is explained and evaluated on the basis of the simu-
lation results. The fifth section discusses the implications of
these ESs to real-world applications.

Data assumptions for d

Normality

Normality means that measures of the DV are independently
and normally distributed in the underlying population. Data in
behavioral science, however, often deviate from this assump-
tion. For instance, data observed in some populations (e.g.,
clinical patients, gifted children) tend to follow a heavy-tailed
(i.e., skewed) distribution. According to Algina et al. (2005), a
mixed-normal distribution is also common in behavioral sci-
ence. That is, a proportion (e.g., 10 %) of observations may
come from a different normal distribution [e.g., N(0, 10); i.e., a
normal distribution with a mean of 0 and an SD of 10] instead
of the conventional N(0, 1), meaning that the shape of the
mixed-normal distribution looks like the standard normal dis-
tribution, but it has a longer tail on both ends of the bell-shaped
curve. The mixed-normal distribution can be found in a sample
(e.g., a big school with lots of students) that has a mixture of
very high and very low scorers (e.g., low and high achievers,
giving both positive and negative outlier scores). The visual
similarity between the normal and mixed-normal distributions
often creates the illusion that the data have met the normal
condition, which researchers are usually not aware of (see
Fig. 1 in the Results; Algina et al., 2005). Unfortunately,
Algina et al. found that d is not robust to a mixed-normal
distribution, causing serious flaws in interpreting the ES.

Homogeneity of variances

Homogeneity of variances requires that the variances of the
observations not be different for the two groups. Algina et al.
(2005) found that the observed d becomes inaccurate when the
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variance ratio becomes 1:4 between the two groups. Moreover,
heterogeneity should imply different conceptions of ES, be-
cause each group produces a distributionwith different variance
and shape. Cohen’s d, a measure of location of separation be-
tween two groups of observations, cannot precisely reflect the
differences in the scores between the two differently shaped
distributions. In behavioral research, however, violations of
the homogeneity of variances are not uncommon. Wilcox
(1987) found that ratios of the largest to the smallest sample
variances (i.e., variance ratios; VRs) that exceed 16 are not

uncommon. In clinical research, significant differences in var-
iances are usually found between treatment and control groups
(Weisz, Weiss, Han, Granger, & Morton, 1995). In a published
issue of the Journal of Consulting and Clinical Psychology
(Brown, Evans, Miller, Burgess, & Mueller, 1997), Grissom
and Kim (2001) found that VRs could range from 3.24 to
284.79 when they compared the variance of behavior-
avoidance scores between a systematic desensitization group
and a control group. In another study, Ruscio and Roche
(2012) recorded the within-groups variances of the DVs
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Note: d is Cohen’s d, dr is the scaled robust d, *

rd is the non-scaled robust d, rpb is point-biserial

correlation, CL is the common language effect size, and Aw is the non-parametric estimator for 

CL.  corresponds to the normal ( 1 = 0; 2 = 0), two peaked ( 1 = 0; 2 = 6 and 1 = 0; 2 = 
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Fig. 1 Percentage biases of the effect size measures across 810
simulation conditions. In the figure, d is Cohen’s d, dr is the scaled
robust d, dr

* is the nonscaled robust d, rpb is point-biserial correlation,
CL is the common-language effect size, and Aw is the nonparametric

estimator for CL. Θ corresponds to the normal distribution (ϒ1 = 0; ϒ2

= 0), two peaked distributions (ϒ1 = 0; ϒ2 = 6 and ϒ1 = 0; ϒ2 = 154.84),
two skewed distributions (ϒ1 = 2; ϒ2 = 6 and ϒ1 = 4.90; ϒ2 = 4,673.80),
and a mixed-normal distribution (ϒ1 = 0; ϒ2 = 24.95)
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reported in 455 studies published in top-tier journals in psychol-
ogy (e.g., Journal of Applied Psychology, Journal of
Educational Psychology). The authors found that the majority
of the sample variances differed substantially between groups
of participants, thereby implying that the homogeneity-of-
variance assumption is frequently violated in practice.

Other ES measures

Robust ds (dr
* and dr)

Hogarty and Kromrey (2001) and Algina et al. (2005) pro-
posed and developed dr

* and dr, respectively, within the theory
of robust statistics. Robust statistical methods often involve
removing a proportion (e.g., w = 20 %; for an explanation of
the value 20 %, see Wilcox, 2005) of high and low scores in a
sample. This, in turn, eliminates the problem of outliers in
each group that usually leads to extreme variances and skewed
distributions. The first ES, dr

*, is the unscaled robust estimator
for d (Hogarty & Kromrey, 2001)—that is,

d*r ¼ Y t1−Y t2

� �
=stp; ð2Þ

where Y t1 and Y t2 are the 20 % trimmed means for
Groups 1 and 2, respectively, and stp is the square
root of the pooled 20 % Winsorized variance—that

is , stp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1−1ð Þs2t1 þ n2−1ð Þs2t2

� �
= n1 þ n2−2ð Þ

q
, where

ni and sti
2 are the sample size and 20 %Winsorized variance1

of the observations in group i = 1, 2, respectively. The second
ES, dr, is the scaled robust estimator for d (Algina et al.,
2005)—that is,

dr ¼ :642⋅d*r : ð3Þ

Algina et al. stated that it is not necessary to multiply dr
* by

.642 to produce dr, although such a scale-multiplication could
compensate for the impact of removing a proportion of the
observations and transform dr

* to dr, such that dr is measured
on the same standardized mean difference metric as d, which is
common in many robust statistical methods. Algina et al. found
that the coverage probabilities yielded by the bootstrap CIs
surrounding dr were accurate. On the other hand, Hogarty
and Kromrey (2001) investigated the accuracy of dr

* and found
that the results were generally reasonable.

Point-biserial correlation (rpb)

Another conventional ES for the two-independent-samples
case is rpb, which is mathematically equivalent to Pearson’s
correlation when applied to one grouping variable and one
numeric variable. In an equation,

rpb ¼ ffiffiffiffiffi
pq

p
⋅ Y 1−Y 2

� �
=sY ; ð4Þ

where p and q are the proportions of observations in Groups 1

and 2, respectively, Y 1 and Y 2 are the means of Groups 1 and 2,
respectively, and sY is the SD of all observations in Y. Because rpb
is a derivative of r, the usual assumptions, normality and
continuality, are required. In addition, rpb is sensitive to the ratio
of the sample sizes between two groups (i.e., base rate), as is
evidenced by the term

ffiffiffiffiffi
pq

p� �
in Eq. 4. It is, however, unknown

whether or not homogeneity of variances is necessary for rpb,
because sY measures the variability of all Y scores regardless of
their groupmemberships. McGrath andMeyer (2006) compared
the differences between r and d and offered recommendations
for researchers to choose which ES to report. rpb is particularly
useful in cases in which the goal is to evaluate criterion-related
validity, whereas d is more suited to scenarios in which the goal
is to evaluate the effect of an experiment or intervention. Note
that rpb is mathematically related to d—that is,

rpb ¼ d=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ 1=pqð Þ

q
: ð5Þ

Parametric common-language ES (CL)

Cliff (1993) was one of the pioneer studies that proposed the
use of the common-language ES measure (CL), which aimed
to communicate an ES measure in a manner understandable
by laypersons. CL makes use of the parameter Pr(Y1 > Y2),
which measures the probability that a randomly selected score
in Group 1 is higher than a randomly selected score in Group
2. For example, when a researcher compares the difference in
subjective well-being (SWB) between a treatment group and
control group, the CL estimates the probability that someone
who receives the treatment would have greater SWB than
someone in the control group. When the data meet the as-
sumptions of normality within groups,CL can be estimated by

CL ¼ Φ Y 1−Y 2

� �
=sp

h i
; ð6Þ

where Φ is the normal cumulative distribution function, Y i is
the mean of observations in group i = 1, 2, respectively, and sp
is the pooled SD as defined in Eq. 1. When the normality
assumption is met and the samples sizes are equal, the criteria

1 TheWinsorized variance is the variance of observations, in which a w%
(e.g., 20 %) of the top and bottom scores are dropped and replaced by the
highest and lowest scores, respectively, in the remaining sample.
Consider a sample that contains {1, 1, 2, 3, 3, 4, 4, 5, 6, 7}; its
Winsorized variance becomes the variance of the Winsorized sample—
that is, {2, 2, 2, 3, 3, 4, 4, 5, 5, 5}.
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for a small, a moderate, and a large ES for CL are 0.56, 0.64,
and 0.71, respectively, which corresponds to 0.20, 0.50, and
0.80 in d (see note 2).

Nonparametric estimator for CL (Aw)

The probability of superiority ESmeasure (Aw), a nonparamet-
ric complement to the parametric CL, has received increasing
attention in behavioral science (e.g., Delaney & Vargha, 2002;
Grissom, 1994; Grissom & Kim, 2001, 2005; Hsu, 2004;
McGrath & Meyer, 2006; Ruscio, 2008; Vargha & Delaney,
2000). Theoretically, Aw does not require the assumptions of
normality and homogeneity of variances, but its robustness to
these violations needs further empirical testing. In an equa-
tion, Aw expresses ES on the basis of the probability that a
random observation of population p scores higher than a ran-
dom observation of population q—that is,

Aw ¼ # p > qð Þ þ :5# p ¼ qð Þ½ �=npnq; ð7Þ

where # is the count function, p and q are vectors of scores for
the two samples, and ni is the sample size in group i = p, q.
Consider p = {5, 7, 6, 5} and q = {3, 4, 5, 3}, the count
function—#(p = 5 > q = 3, 4, 5, 3)—yields a total count of
3.5. Repeat this process for the remaining elements in p, A =
(3.5 + 4 + 4 + 3.5)/16 = .9375, meaning that there is a 93.75 %
chance that the observation would be higher for a randomly
selected member of group p than for a randomly selection
member of group q. Ruscio (2008) found that the nonparamet-
ric Aw was generally accurate and suggested that researchers
and practitioners should report this measure; however, the
question of its improved accuracy relative to the other five
ESs needs further examination.

In light of the six different ESs available for a two-
independent-samples case, it is crucial for researchers and
practitioners to report and interpret the most appropriate ES,
especially when their data violate the assumptions of normal-
ity and homogeneity of variances, a situation common in be-
havioral science research. On one hand, the robust dr

*, dr, and
Aw appear to be robust to violations of normality and homo-
geneity. On the other hand, robust statistics usually require
more observations than the conventional, parametric statistics
(e.g., d, rpb) to maintain the same level of accuracy as when
the assumptions are met. Hence, a simulation study is required
to examine the pros and cons of reporting different ESs across
different data conditions. Therefore, the purpose of this study
is to fill in the gap by examining the performance of the six ES
measures in a Monte Carlo simulation study. This study was
designed to systematically evaluate the performance of the six
ES measures and offer recommendations to researchers and
practitioners for the reporting and interpretation of the most
appropriate ES under different data conditions.

Although the present study focuses on examining the accu-
racy of the point estimates of the six ESs, many journal edito-
rials or publication manuals (e.g., APA, 2010) strongly recom-
mend the reporting of both an ES and its CI. Hence, a descrip-
tion of how to construct the CIs for the six ESs is provided in
the Appendix to serve as a practical guideline for researchers.

Method

A Monte Carlo study was conducted to systematically evalu-
ate the performance of d, dr

*, dr, rpb, CL, and Aw under the
following simulated conditions.

Factor 1: Distribution (Θ; six levels). The first distribution
follows a normal distribution [N(1, 0)] with skew-
ness (ϒ1) = 0 and kurtosis (ϒ2) = 0. The following
nonnormal (i.e., peaked and skewed) distributions
were generated on the basis of Algina et al. (2005),
in which the generated normal data were multi-
plied by particular g and h values so that the trans-
formed data were expected to associate with the
manipulated levels of skewness and kurtosis.
Specifically, when g and h were nonzero,

Y ¼ exp hZ2=2
� �

⋅ exp gZð Þ−1½ �=g; ð8Þ

where Y is the transformed score and Z is the orig-
inal normal score. When g was zero,

Y ¼ Z⋅exp hZ2=2
� �

: ð9Þ

According to Algina et al. (2005), three types of nonnormal
distributions are common in behavioral science. The first type
is called a peaked (or kurtosis-based) distribution, which is
characterized by a short (or long) tail of the distribution.
Following Algina et al., this study simulated two peaked dis-
tributions: (1) ϒ1 = 0 and ϒ2 = 6 (i.e., g = 0 and h = 0.142) and
(2) ϒ1 = 0 and ϒ2 = 154.84 (i.e., g = 0 and h = 0.225). The
second type of distribution examined is known as a skewed
distribution. It is characterized by unequal-length tails be-
tween the positive and negative sides of a distribution. In
keeping with Algina et al., two skewed distributions were
evaluated: (1) ϒ1 = 2 and ϒ2 = 6 (i.e., g = 0.76 and h =
–0.098; an exponential distribution) and (2) ϒ1 = 4.90 and ϒ2 =
4,673.80 (i.e., g = 0.225 and h = 0.225). Note that positively (or
negatively) skewed distributions often have ϒ1 > 0 (or ϒ1 < 0),
and shorted-tailed (or long-tailed; e.g., t) distributions often
haveϒ2 < 0 (or ϒ2 > 0). The third type of distribution, amixed-
normal distribution, appears to be normal to observers, but
indeed only 90 % of the observations come from a normal
distribution with an SD equal to 1.0, and 10 % come from a
normal distribution with an SD equal to 10. This distribution
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has ϒ1 = 0 and ϒ2 = 24.95, which was found to adversely
affect d in Algina et al.’s study.

Factor 2: Total same size (N; three levels). Three levels of
N—50, 100, and 300—were simulated,

representing small to large sample sizes typical-
ly found in behavioral science.

Factor 3: Base rate (b; three levels). Base rate is defined as
the ratio of sample sizes in Group 1. Following
Ruscio and Mullen (2012), the proportions of ob-
servations in Group 1 were set at .25, .50, and .75.
Hence, the samples sizes could be equal across
groups, or one sample could be three times larger
than another sample.

Factor 4: SD ratio (SR; three levels). The SR is the ratio of
the SDs between two groups, where

SD ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Variance

p
. As we noted above, Ruscio

and Mullen (2012) stated that SRs of
ffiffiffiffiffiffiffi
:25

p
,

ffiffiffi
1

p
,

and
ffiffiffi
4

p
are common in simulation studies for

behavioral and social sciences research. Wilcox
(1987) found that SRs that exceed 4 are not un-
common in practice. In addition, Grissom and
Kim (2001) found that the SRs could range from
1.80 to 16.88 in clinical and counseling psycholo-
gy. Hence, SR was set at either 1, 4, and 0.25. The
value of 1 assumes that there is homogeneity of
variances, and the values of 4 and 0.25 represent
violations of the homogeneity assumption that are
common in practice.

Factor 5: Population d (δ; five levels). The population values
of dwere fixed at 0, 0.20, 0.50, 0.80, and 1.50. The
levels of 0.20, 0.50, and 0.80 are regarded as small,
moderate, and large ESs, respectively (Cohen,
1988). A zero effect (0) and a very large ES (1.5)
have been included to evaluate the accuracy of the
six ES measures in more extreme conditions. The
corresponding population values for rpb are 0, .10,
.24, .37, and .60 (Eq. 5), and those for CL and Aw
are .50, .56, .64, .71, and .86 (Ruscio, 2008).2

The factors were combined to produce a design with 6 × 3
× 3 × 3 × 5 = 810 conditions. Each condition was replicated
10,000 times.

Data generation

For each of the simulation conditions, first, 10,000 random sam-
ples of sizes n1 and n2 were generated for Y on the basis of a

normal distribution, thereby producing the observations in
Groups 1 and 2, respectively. Without loss of generality, the
population mean (δ1) and SD of the Y scores in Group 1 were
set at 0 and 1, respectively. InGroup 2, the population SD (v) was
set at 0.25, 1.00, and 4.00, respectively, and the population mean

was fixed at δ2⋅
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1−1ð Þ þ n2−1ð Þv2½ �= n1 þ n2−2ð Þp

, where δ2
= (0, 0.20, 0.50, 0.80, 1.50). This process was designed to con-
trol the population d at the specified levels. Second, for the first
four nonnormal distributions, the generated normal scores were
multiplied by the g and h values in Eqs. 8–9, so that they formed
a distribution adhering to themanipulated levels of skewness and
kurtosis. For the mixed-normal distribution, observations were
generated from a uniform distributionU(0, 1). If the observation
was less than or equal to .9, then Y = Z, else Y = 10 ⋅ Z. Given the
generated observations, the six ES measures were estimated in
order to compare their performance. The simulation code was
written in Mathematica 10 (Wolfram Research, Inc., 2014), and
the code can be found at the homepage https://osf.io/msy3h/.

Evaluation criteria

To evaluate the accuracy of each of the six ESs, percentage bias

was used: bias ¼ ES−δt
� �

=δt
� �

⋅100%, where ES is the mean
of the 10,000 ESs obtained in 10,000 simulated samples, and δt
is the population value of an ES.3 According to Li, Chan, and
Cui (2011), a parameter estimate is considered reasonable when
the bias is within ±10%. Note that the denominator must not be
0 in calculating the bias. Thus, the equation became bias ¼
ES−δ
� �

⋅100% when the population ES (δ) was 0.

Results

First of all, the findings of the dr
* estimates are not included in

the following sections because, first, their percentage biases
were found to be identical to the biases obtained by dr. The
reason is that the dr

* estimate was 1.558 (i.e., 1/.642; Eq. 3)
times larger than the dr estimate; hence, when the population
value δt = 1.558 ⋅ δ was used for computing the biases of dr

*,
and when the population value, δ, was used for calculating the

2 According to Ruscio (2008), when the samples sizes are equal for two

groups, rpb ¼ d=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ 4

p
;CL ¼ Φ d=

ffiffiffi
2

p� �
, where Φ is the normal

cumulative distribution function, and Aw is the estimator for CL when
the data violate the parametric assumption (i.e., normality).

3 Comparing the robust drwith the population d (δ) may cause a concern,
because dr is indeed an estimator for the population robust d (i.e., δR in
Algina et al., 2005) instead of δ. On the other hand, in the present study
the original normal scores were generated with a manipulated level of δ,
and these scores were transformed to nonnormal data through Eqs. 8 and
9 for the conditions in which the distribution was nonnormal. Hence, the
expected standardized mean difference for these scores (either normal or
nonnormal) was still δ. In the present study, the accuracy of robust drwas
measured as the bias compared to this value in order to test whether robust
dr could accurately reflect the population d (δ), even when the scores were
nonnormally transformed. In Algina et al.’s study, however, the scores
were generated on the basis of a manipulated level of δR, and hence, the
authors directly compared their sample estimates of dr to the population
robust δR.
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biases of dr, the two biases became identical. Second, given that
the dr estimate resembled the standardized mean difference
metric (d-metric) in the conventional d, which should be more
relevant to researchers in practice, only the results of dr are
reported and discussed in the following sections.

Among the remaining five ES measures, Aw was found to be
the most accurate, as is shown in Fig. 1. Of the 810 conditions,
770 (or 95.1 %) yielded a bias within the nominal range of
±10 %. The biases ranged from –13.7 % to 16.2 %, with a mean
of –1.5 %, demonstrating excellent accuracy of the Aw measure.
Another robust measure, dr, was found to be appropriate, but it
was slightly less accurate than Aw. Of the 810 conditions, 686 (or
84.7 %) produced a bias within ±10 %. The mean of the 810
biases was –3.0 %, which ranged from –54.3 % to 53.1 %. The
third ES, CL, was generally reasonable. Of the 810 conditions,
648 (or 80 %) yielded a bias within ±10 %. The biases ranged
from –31.0 % to 31.1 %, with a mean of –0.6 %.

However, the two parametric-based ESs, d and rpb, were
not robust to the data violations. The biases ranged from
–221.9 % to 184.7 % with a mean of –21.7 % for d, and they
ranged from –204.2 % to 138.2 % with a mean of –26.4 % for
rpb, demonstrating downward-biased estimates of the true ES.
Of the 810 conditions, only 258 (or 31.9 %) and 210 (or
25.9 %) produced a bias within ±10 % for d and rpb, respec-
tively. The following sections discuss the specific effects of
each of the manipulated factors on the ESmeasures, which are
based on the findings shown in Fig. 2.

Effects of the simulated factors on the ES measures

Normal data The four manipulated factors—total samples
size (N), base rate (b), SD ratio (SR), and population ES
(δ)—did not show obvious impacts on d, dr, CL, and Aw, with
mean biases of 1.1 %, 1.9 %, 5.9 %, and 0.3 %, respectively.
This demonstrates that these ESs are appropriate when the
data are normal. On the other hand, rpb was slightly less de-
sirable than others, as is evidenced by its largest mean bias
(6.9 %). This is because an unbalanced base rate (.25 and .75)
would decrease its accuracy. Of the 90 conditions with b = .25
and .75, only 30 (or 33.3 %) produced a bias within the nom-
inal range of ±10 %. When b = .50, all of the 45 conditions
resulted in an appropriate bias. This is understandable, be-
cause the parameter

ffiffiffiffiffi
pq

p
in Eq. 4 is influenced by the base

rate, which, in turn, affects rpb. In sum, Aw was the most
desirable because of its smallest mean bias (0.3 %).

Nonnormal data (peaked) Comparing the five ES measures
(i.e., d, dr, rpb,CL, andAw),CLwas found to be themost accurate
and robust to peaked distributions (i.e.,ϒ1 = 0 andϒ2 = 6;ϒ1 = 0
and ϒ2 = 154.84). The mean bias was 0.2 %, and the range was
[–3.2%, 3.4%]. All of the 270 conditions produced a biaswithin
the nominal range of ±10%, and theMAPEwas 1.4%, showing

excellent performance.When δ increased, the bias increased only
slightly, but the impact was very minimal. Other factors did not
show obvious effects on CL.

The secondmost accurate ESwasAw. Of the 270 conditions,
260 (or 96.3 %) produced a bias within ±10 %. These biases
ranged from –11.5 % to 4.0 %, with mean –1.9 %. The MAPE
was 2.7 %, which showed good performance. Most of the
undesirable results were found under conditions with b = .25,
δ = 1.50, and SR = 0.25, andwhen b = .75, δ = 1.50, SR = 4, and
Θ = 2. These were conditions of severe violations of the ho-
mogeneity of variances and balanced base rate in the present
simulation, but the biases were only marginally unacceptable
(–10.0 % to –11.5 %). Thus, Aw is regarded as a good estimator
for the true ES when the data follow a peaked distribution.

The performance of dr was found to be comparable to that
of Aw. Of the 270 conditions, 264 (or 97.8 %) yielded a bias
within ±10 %, and the biases ranged from –11.0 % to 2.5 %,
with mean –3.3 %. The MAPE was 3.5 %, demonstrating a
good estimate. Most of the unacceptable conditions were ob-
served when b ≠ .50,N = 50, SR = 1, andΘ = 2, but these were
just marginally beyond the criterion (i.e., –10.2% to –11.0 %).
Hence, dr is also considered a good ESmeasure when the data
follow a peaked distribution.

Neither d nor rpb was an appropriate estimator for the true
ES. For d, the biases ranged from –35.9 % to 0.2 %, with mean
–20.2 %. Of the 270 conditions, only 54 (or 20.0 %) were
acceptable. The MAPE was 20.2 %, which was inappropriate.
For rpb, the biases ranged from –44.6 % to 1.0 %, with mean
–24.6 %. Of the 270 conditions, only 54 (or 20.0 %) were
acceptable. The MAPE was 24.6 %, which was undesirable.
Thus, the parametric d and rpb did not show robustness to
violation of normality and should not be reported in practice
when the data violate the normality assumption. Because these
measures were also inaccurate in the remaining nonnormal data
conditions, they will not be discussed in the following sections.

Nonnormal data (skewed) In comparison with other ESs, Aw
was the most accurate and robust to skewed distributions (i.e.,
ϒ1 = 2 and ϒ2 = 6; ϒ1 = 4.90 and ϒ2 = 4,673.80). The biases
ranged from –12.6% to 16.2%, with a mean of –0.7 %. Of the
270 conditions, 252 (or 93.3 %) produced a bias within
±10 %. The MAPE was found to be 3.7 %, which is good.
The unacceptable biases were found when b = .25, SR ≠ 0, and
δ > 0.80. For instance, when b = .25, δ = 1.5, and Θ = 1, the
biases were slightly larger than 10 % (i.e., 14.0 % to 14.2 %)
when SR = 4, and they were slightly smaller than –10 % (i.e.,
–12.0 % to –12.6 %) when SR = 0.25. This finding is not
surprising, because a larger (or smaller) variance in the more
favorable Group 2, with one fourth (i.e., b = .25) of the total
sample size, may overestimate (or underestimate) the true ef-
fect (or mean) in this group, thereby producing an ES that is
slightly larger (or smaller) than its true value. Other manipu-
lated factors did not show obvious effects on Aw.
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The rescaled robust drwas generally appropriate, but it was
less accurate than Aw. The biases range from –54.3 % to
53.1 %, with a mean of –2.7 %. Of the 270 conditions, 199
(or 73.7 %) resulted in a bias within ±10 %. The MAPE was
reasonable (8.7 %). The unacceptable biases were mainly
found in conditions when δ = 0.20, SR ≠ 0, and Θ = 1. For
instance, the biases ranged from 23.2 % to 53.1 %, with a
mean of 38.3 %, when δ = 0.20, SR = 4, and Θ = 1, whereas
they ranged from –26.1 % to –54.3 %, with a mean of
–38.4 %, when δ = 0.20, SR = 0.25, and Θ = 1. This finding
is explainable because dr is the d for the trimmed mean differ-
ence over the Winsorized variance, and hence, the observed
mean difference does not reflect the true difference, especially
when the true difference is less substantial (e.g., δ = 0.20) and
the variance ratio is large between the two groups. Or, stated
differently, the trimmed dr contains larger errors due to the
(small) true difference being less likely to be identified when
a proportion of the observations are discarded, as is donewhen
calculating dr. When the true ES was larger (δ ≥ 0.80), dr
became more stable and accurate.

In the skewed data condition,CL did not result in estimates
as good as it did in the peaked distribution condition. The
biases ranged from –13.0 % to 31.1 %, with a mean of
–0.1 %. Of the 270 conditions, 196 (or 72.6 %) resulted in a
bias within ±10 %. The MAPE was 8.1 %, which is reason-
able. This lower performance was likely due to the fact that the
unbalanced tails decreased the accuracy of the normality-
based cumulative distribution function (Φ) whenCLwas com-
puted in Eq. 6.

Nonnormal data (mixed-normal) Similar to the results ob-
tained from the skewed distributions, both Aw and dr were
appropriate when data were mixed-normal, but Aw slightly
outperformed dr. Regarding Aw, the biases ranged from
–13.7 % to 0.9 %, with a mean of –3.3 %. Of the 135 condi-
tions, 123 (or 91.1 %) were within the nominal range of
±10 %. The MAPE was 3.5 %, which is appropriate. The 12
unacceptable conditions were found when b = .25, SR = 0.25,
and δ ≥ 0.80, and when b = .75, SR = 4, and δ ≥ 0.80, but the
biases were just slightly beyond the criterion of ±10 % (i.e.,
–10.4 % to –13.7 %). Hence, Aw is regarded as robust to the
mixed-normal distribution, even when the variance ratio and
base rate are unbalanced between the two groups.

For dr, the biases ranged from –15.3 % to 0.3 %, with a
mean of –7.7 %. Of the 135 conditions, 89 (or 65.9 %) yielded
a bias within ±10 %. The MAPE was 7.7 %, which is reason-
able. When δ = 0, all of the biases in the 27 conditions were
highly desirable. When δ ≥ 0.20, the undesirable biases occa-
sionally appeared when b = .25 or b = .75 and other factors
were held constant. Specifically, of the 72 conditions, 38 (or
52.8 %) resulted in a bias between –10 % and –15.3 %, which
showed a slight downward bias greater than the acceptable

criterion of ±10 %. In sum, Aw is more accurate than dr, al-
though both ESs are deemed reasonable.

CL did not provide desirable ES estimates. The biases
ranged from –20.8 % to 0.4 %, with mean –9.9 %. Of the
135 conditions, only 60 (or 44.4 %) resulted in an acceptable
bias. The MAPE was 9.9 %, which was just smaller than the
criterion of 10 %. This showed thatCLwas highly sensitive to
a mixed-normal distribution even when only 10 % of the ob-
servations followed a normal distribution with a larger vari-
ance than the remaining 90 %. Thus, CL is not recommended
in general.

Conclusion and discussion

This article evaluated the performance of six ES mea-
sures when data violated the assumptions of normality
and homogeneity of variances, circumstances that are
common in behavioral science research. The results
showed that both Aw and dr were generally robust to
the violations of these assumptions. Specifically, Aw

slightly outperformed dr especially when the data
followed a skewed distribution (i.e., exponential distri-
bution; ϒ1 = 2 and ϒ2 = 6) and a mixed-normal distri-
bution (i.e., ϒ1 = 0 and ϒ2 = 24.95). The conventional
d and rpb, however, were not robust to these violations,
and hence, they should not be reported, or should at
least be interpreted with caveats in practice. The follow-
ing sections discuss the practical implications of using
Aw and dr, and also provide guidelines for researchers
and practitioners to report and interpret ESs when
reporting their findings.

Interpreting Aw

Given that Aw was found to be an accurate estimator for
CL in this study, researchers are encouraged to report
and interpret Aw directly, especially when their data vi-
olate the assumptions of normality and the homogeneity
of variances. The conventional rule of thumb for small,
moderate, and large ESs in d (i.e., 0.20, 0.50, and 0.80)
can be easily converted to the Aw-metric (i.e., .56, .64,
.71; see the equations in note 2). According to Ruscio
(2008), Aw communicates ES in a common-language
way, so that laypersons can understand the meaning of
superiority in one group over another. For example, if a
cognitive psychology researcher finds that the observed

�Fig. 2 Percentage biases of the effect sizes listed by the manipulated
factors. ES is an effect size that includes d (Cohen’s d), dr (rescaled
robust d), rpb (point-biserial correlation), CL (common-language ES),
and Aw (nonparametric estimator for CL). SR is the SD ratio, n is the
total sample size, θ is the data distribution, δ is the true ES value in the
d-metric, and b is the base rate
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Aw is .71 when examining the difference in typing speed
between female and male participants, then the research-
er can conclude that there is a 71 % chance that a
randomly selected female participant would possess a
faster typing speed than a randomly selected male par-
ticipant. This is regarded as a large ES between the two
groups.

Interpreting the d-metric ES through Aw or dr

In light of the popularity of d, researchers and practi-
tioners are more familiar with the interpretation of d in
real-world research. The prevalence notwithstanding, d
was found to be inaccurate when the normality and
homogeneity-of-variances assumptions were violated in
this study, thereby severely affecting the accuracy of d
in evaluating the true ES in the research literature. This
article provides two alternative estimators for the true
ES—Aw and dr—which are more robust than the con-
ventional d in Eq. 1.

A hypothetical data set was simulated to demonstrate the
interpretative procedure with manipulated factors:Θ = exponen-
tial distribution, base rate = .50, population ES = 0.50, SR = 0.25,
and total sample size = 50, producing Group 1 = {–0.831, –
0.745, –0.735, –0.716, –0.510, –0.509, –0.471, –0.448, –0.378,
–0.283, –0.041, 0.024, 0.151, 0.174, 0.193, 0.299, 0.346, 0.523,
0.808, 0.854, 1.050, 1.608, 2.491, 4.536, 4.970}, and Group 2 =
{0.156, 0.176, 0.198, 0.200, 0.210, 0.220, 0.227, 0.228, 0.237,
0.269, 0.277, 0.307, 0.311, 0.351, 0.355, 0.361, 0.399, 0.437,
0.464, 0.483, 0.503, 0.519, 0.565, 0.616, 0.674}. When one
evaluates the ES between Groups 2 and 1 (i.e., Group 2 minus

Group 1), the observed d becomes –0.135 [i.e., :350−:494ð Þ=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25−1ð Þ⋅ :022ð Þ þ 25−1ð Þ⋅ 2:279ð Þ½ �= 25þ 25−2ð Þp

Eq . 1 ] ,
meaning that the ES is small, and the observations are smaller
in Group 2 than Group 1. However, this interpretation is highly
inaccurate because the true ES is indeed 0.50. Reporting d =
–0.135 causes a serious problem in that it leads to an inaccurate
interpretation of the actual observed ES between the two groups.

To improve the accuracy, one can use dr. In

th i s example , dr i s 0 .392 [ i . e . , :642⋅ :328−:083ð Þ=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25−1ð Þ⋅ :012ð Þ þ 25−1ð Þ⋅ :310ð Þ½ �= 25þ 25−2ð Þp

Eqs. 2 and
3], which is closer to the true ES of 0.50. The interpretation for
0.392 will be a small-to-moderate ES with the observations
larger in Group 2.

The most accurate estimator of the true ES in this example
is Aw, which is equal to .6416 [i.e., 401/(25 ⋅25) Eq. 7].
Converting Aw to the d-metric, the value becomes 0.51 (i.e.,

dA ¼ ffiffiffi
2

p
⋅Φ−1 :6416ð Þ; equation in note 1), which is almost

identical to the true ES of 0.50. Thus, researchers and practi-
tioners are encouraged to compute Aw and convert it to the d-
metric for interpreting the ES, especially when the data violate
the normality and homogeneity-of-variances assumptions

(with the restrictions that the data are not mixed-normal and
the observed Aw is neither 0 nor 1).4

Research scenarios for Aw or dr

In addition to the empirical evidence supporting the appropriate-
ness of Aw and dr researchers should also consider which type of
ES makes the most sense to report in their particular research
domain. In particular, Aw and dr express very different kinds of
effects, and researchers should choose between them on the basis
of their meaningfulness within the research domain. Take, for
example, a researcher interested in comparing the difference in
communication skills between female andmale college students.
If the researcher is interested in presenting a magnitude that
reflects the difference between the two groups, and finds that
the data do not follow the conventional parametric assumptions
(i.e., normality and homogeneity of variances), the researcher
should report dr (e.g., 0.50). This choice still accurately presents
that the female students, on average, score 0.50 SDs higher than
the male students in communication skills. On the other hand, if
the researcher intends to present how likely a randomly selected
female student would be to outperform a randomly selectedmale
student (or vice versa) from the same data set, the researcher
should report Aw (e.g., .64). This choice accurately presents that
there is a 64 % chance that a randomly chosen female student
would possess better communication skills than a randomly cho-
sen male student.

Application of Aw and dr in meta-analysis

It is also important to note a potential application of Aw and dr
in meta-analysis. A common research interest in behavioral
research involves the summary or meta-analysis of a subgroup
difference (e.g., males vs. females) in a numeric variable (e.g.,
cognitive ability). Depending on the research interest of a
meta-analyst, the meta-analyst can either provide a summary
of the standardized mean differences (d-metric) or the proba-
bility of superiorities (Aw-metric) in a research domain. If one
is interested in pooling the d-metric statistics, the ds are

4 Note that the transformation from Aw to dr is not linear

[i.e., dA ¼ Φ−1 AWð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1s

2
1 þ p2s

2
2

� �
=s21 þ s22

q
, where pi is the propor-

tion of observations and si
2 is the variance for group i = 1, 2; Ruscio,

2008]. Hence, the bias of the converted dA could be different from that
of the original Aw and could be better or poorer than that of the dr
estimate. Regarding the performance of dA as compared to dr, the biases
of dA ranged from –115.78 % to 101.13 %, with a mean of –1.80 %,
when distributions were normal, peaked 1, peaked 2, skewed 1, or
skewed 2. Comparatively, the percentage biases of the dr estimates
ranged from –120.50 % to 107.93 %, with a mean of –1.97 %, which
is slightly less accurate than the dA estimates. However, this advantage
diminished when the distribution was mixed-normal. The biases ranged
from –21.69 % to 0.29 %, with a mean of –12.71 %, for dA, and they
ranged from –15.26 % to 0.32 %, with a mean of –7.58 %, for dr.
Moreover, an observed value for Aw should be neither 0 nor 1, because
the transformed dAwould become negative or positive infinity.
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usually either directly found in published studies or can be
estimated from the descriptive statistics provided in these
studies. For studies in which the parametric assumptions are
violated, if dr is reported in these studies, it can be directly
plugged into the mean d, because dr is a robust estimator for
the true population value.

A potential issue with this approach is that dr may not have
been widely employed in the existing literature since its develop-
ment in Algina et al. (2005). If that is the case, one can first search
for the Aw statistic, which may either be reported in published
studies or calculated from the Mann–Whitney U statistic, which
is a popular nonparametric statistical-significance test that is an
alternative to the conventional independent-samples t test—that
is, Aw = (n1n2 –U)/n1n2, whereU = [#(p > q) + .5#(p = q)] is the
Mann–WhitneyU statistic. Next, one can transform an observed

Aw to dA—that is, dA ¼ Φ−1 AWð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1s

2
1 þ p2s

2
2

� �
= s21 þ s22
� �q

,

where pi is the proportion of observations and si
2 is the variance

for group i = 1, 2, and Φ–1 is the inverse normal cumulative
distribution function (Ruscio, 2008). Hence, dA is a robust esti-
mator for the true population value, which can be used for
pooling the ds in meta-analysis. On the other hand, if one at-
tempts to pool the Aw-metric statistics, one can transform the
published ds (and drs) into the Aw statistics—that is,

AWd ¼ Φ d⋅
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1s

2
1 þ p2s

2
2

� �
= s21 þ s22
� �q� �

, with an assumption

that the data of the reported ds met the parametric assumptions in
the original studies.

Future directions

A first direction for future research involves extending
the framework of robust ES measures (e.g., Aw, dr) in
the two-independent-samples case to the more general
univariate and multivariate analysis-of-variance
(ANOVA) scenarios that involve single or multiple in-
dependent variables with more than two groups and
multiple DVs. Ruscio and Gera (2013) have generalized
Aw in the univariate ANOVA scenario, but their study
did not systematically evaluate the benefits of Aw in
comparison with the conventional ESs—eta-squared,
partial eta-squared, and omega-squared—used in
ANOVA. Moreover, no study has discussed the general-
ization of dr in the ANOVA framework.

Second, future research can examine the performance
of the CIs surrounding each of the ESs (see the
Appendix). For example, Ruscio and Mullen (2012)
and Algina et al. (2005) have examined the performance
of bootstrap CIs for Aw and dr, respectively, in a two-
independent-samples case. However, these studies did
not investigate the bootstrap CIs for these robust ESs
in more general univariate and multivariate ANOVA

scenarios. Thus, additional studies will be needed to
further examine the robustness of these ESs as well as
their CIs in more general cases.

Appendix: Confidence intervals for the ESs

Two different types of CIs (parametric and nonparametric) can
be used to estimate the sampling error for the ESs in this study.
The parametric CIs often require a mathematical proof or an-
alytic equation that is usually based on the parametric assump-
tions (e.g., normality), and the CIs are typically symmetric in
terms of the upper and lower limits surrounding a point esti-
mate. On the other hand, the nonparametric CIs do not depend
upon these assumptions, and the bootstrap (resampling) pro-
cedure has been frequently used to estimates these CIs.
Because researchers and practitioners usually report a 95 %
CI in practice, the following equations are reported on the
basis of this percentage.

Parametric CIs

CI for d According to Algina et al. (2005), one can
make use of the noncentral t distribution in order to
construct a 95 % CI for either d or dr. Regarding d,
first, find the lower and upper limits from the noncen-
tral t distribution, conditional on two parameters: (a)
degrees of freedom (i.e., df = n1 + n2 – 2) and (b) a

noncentrality parameter [i.e., λ ¼ d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1n2= n1 þ n2ð Þp

].
Second, when these two parameters (i.e., df and λ) are
found, identify the lower limit (i.e., 2.5 % percentile; lλ)
and upper limit (97.5 % percentile; uλ) for λ from the
noncentral t distribution. Third, transform these lower

and upper limits to the d-metric—that is, ld ¼ lλffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1 þ n2=n1n2

p
and ud ¼ uλ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1 þ n2ð Þ=n1n2

p
.

CI for drAccording to Algina et al. (2005), the above-
mentioned procedure can be applied to dr replaced by
robus t pa rame te r s . F i r s t , t h e two pa rame te r s
for obtaining the lower and upper limits (i.e., ldr
and udr ) for the robust noncentrality parameter (λr)
become (a) degrees of freedom, dfr = h1 + h2 – 2,
where hi is the number of observations remaining af-
ter trimming for group i = 1, 2, and (b) noncentrality

parameter λr ¼ dr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h1h2= h1 þ h2ð Þp

. After obtaining the
ldr and udr from the noncentral t distribution, trans-

form them in to the d -met r ic— tha t i s , ldr ¼ lλrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h1 þ h2ð Þ=h1h2

p
and udr ¼ uλr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h1 þ h2ð Þ=h1h2

p
.
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CI for rpbAccording to Tate (1955), a CI for rpb can be estimated

by CIrpb ¼ rpb � 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2pbþ2p1 1−p1ð Þ 2−3r2pb

� �
4np1 1−p1ð Þ 1−r2pb

� �2
r

, where

p1 is the proportion of scores in Group 1, and n is the total sample
size.

CIs for CL and Aw According to Ruscio and Mullen
(2012), there are at least seven different analytic proce-
dures for the CI surrounding CL or Aw. Among them,
Cliff’s (1993) CI procedure is regarded as a popular CI
construction method—that is,

CICL ¼ CL� 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21
X n1

i¼1
Di�−Dð Þ2 þ n22

X n2

j¼1
Dj� −D
� �2−X n1

i¼1

X n2

j¼1
Di j−D
� �2

n1n2 n1−1ð Þ n2−1ð Þ

vuut
;

where Dij = sign(Yi – Yj) refers to the dominance score, in
which Dij = 1 if Yi > Yj, Dij = –1 if Yi < Yj, and Dij = 0 if Yi =
Yj, D ¼ ∑n1

i¼1∑
n2
j¼1Di j=n1n2, and Di⋅ is the marginal mean of

the dominance scores in Group 2, andD⋅j is the marginal mean
of the dominance scores in Group 1.

Given that Aw is the robust estimator for CL, the same
equation can be used—that is, CIAW ¼ AW � 1:96�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n21∑
n1
i¼1 Di�−Dð Þ2 þ n22∑

n2
j¼1 Dj� −D

� �2−∑n1
i¼1∑

n2
j¼1 Di j−D

� �2
n1n2 n1−1ð Þ n2−1ð Þ

r
.

Nonparametric CIs

Another popular CI construction procedure involves using a
nonparametric (or nonanalytic) procedure. In the existing lit-
erature, the bootstrap CI has been found to be appropriate for
the construction of the CIs, especially when the data violate
the parametric assumptions, the analytic equation for the CI is
difficult to derive, and the confidence widths are asymmetric
for the upper and lower ends (Beasley & Rodgers, 2009).
Generally, the bootstrap procedure first resamples a data set
with replacement to form B (e.g., 5,000) numbers of bootstrap
samples, and each of them has the same sample size as the
original dataset. Second, an ES estimate (i.e., d, dr

*, dr, rpb,
CL, or Aw) is computed for each of the bootstrap samples,
thereby producing B numbers of the bootstrap ESs (δBs).
Third, these bootstrap ESs are rank-ordered in ascending order
to derive a sampling distribution. Consequently, the rank-
ordered bootstrap ESs are sufficient for constructing three dif-
ferent types of bootstrap CIs—the bootstrap standard interval
(BSI), bootstrap percentile interval (BPI), and bootstrap bias-
corrected and accelerated interval (BCaI)—that a researcher
can choose from. Generally, BSI constructs a 95 % CI by BSI
= δt ± 1.96sB, where sB is the SD of the B = 5,000 bootstrap
ESs, and δt is any one of the five ESs examined in the present
study. Regarding BPI, the 2.5 and 97.5 percentiles of the B =
5,000 bootstrap ESs are extracted—that is, BPI = [δB(l),
δB(u)], l = 2.5 percentile rank, and u = 97.5 percentile rank.
The BCaI is regarded as a bias-adjusted BPI, in which

BCaI = [δB(l'), δB(u')], where l0 ¼ B⋅Φ iþ aþz1− α=2ð Þ
1−b aþz1− α=2ð Þ½ �

	 

,

and u0 ¼ B⋅Φ iþ a−z1− α=2ð Þ
1−b a−z1− α=2ð Þ½ �

	 

. The first correction pa-

rameter in the equation, a=Φ−1{#[δb(b)<δt]/B} is a cor-
rection factor that accounts for the overall bias (e.g.,
skewness) of the bootstrap ESs (δb) that deviate from
the original ES estimate (δt), where Φ−1 is the normal
inverse cumulative function distribution, and #[δb(b)<δt]
is the count function that counts the number of the boot-
strap ESs below the estimate δt in the original data set.
The second correction parameter (b) corrects for the rate
of change of δt with respect to its true parameter value—
that is, b=∑k = 1

K [δt(.)−δt(k)]3/6{∑k = 1
K [δt(.)−δt(k)]2}3/2,

where δt(k) is the jackknife value of the ES estimate ob-
tained by removing the kth row of the original data set,
and δt(.) is the mean of the n jackknife ES estimates.
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