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Abstract Contention of the ovulatory shift hypothesis is
principally supported by failures to replicate previous find-
ings; e.g., recent meta-analytic work suggests that the ef-
fects endorsing the hypothesis may not be robust. Some
possible limitations in this and other ovulatory-effects re-
search—that may contribute to such controversy arising—
are: (a) use of error-prone methods for assessing target
periods of fertility that are thought to be associated with
behavioral shifts, and (b) use of between-subjects—as op-
posed to within-subjects—methods. In the current study
we present both simulated and empirical research: (a) com-
paring the ability of between- and within-subject t-tests to
detect cyclical shifts; (b) evaluating the efficacy of corre-
lating estimated fertility overlays with potential behavioral
shifts; and (c) testing the accuracy of counting methods for
identifying windows of cycle fertility. While this study
cannot assess whether the ovulatory shift hypothesis or
other ovulatory-based hypotheses are tenable, it demon-
strates how low power resulting from typical methods
employed in the extant literature may be associated with
perceived inconsistencies in findings. We conclude that to
fully address this issue greater use of within-subjects meth-
odology is needed.

Keywords Fertility estimation .Ovulatory effects .Ovulatory
shift hypothesis . Statistical analysis . Data simulation

Introduction

Research on ovulatory effects in humans spans a broad range
of behaviors. For example, there is evidence that women’s
fertility status predicts differences in their self-ornamentation
(e.g., Beall & Tracy, 2013; Haselton, Mortezaie, Pillsworth,
Bleske-Rechek, & Frederick, 2007), perceived attractiveness
and desirability (e.g., Roberts et al., 2004; Schwarz &
Hassebrauck, 2008), earnings from lap dances (Miller,
Tybur, & Jordan, 2007), frequency of sexual intercourse
(e.g., Bullivant, et al., 2004; Wilcox et al., 2004), and shifts
in attraction to traits indicative of men’s masculinity (e.g.,
Penton-Voak & Perrett, 2000). Similarly, men have been
found to engage in more mate-guarding behavior (e.g.,
Gangestad, Thornhill, & Garver, 2002; Pillsworth &
Haselton, 2006) and have differential testosterone production
(e.g., Miller & Maner, 2010) in response to women’s fertility
status. However, despite this breadth of effects presumably
related to fertility, criticisms of the field, its research and its
theories, abound.

For example, ongoing criticisms of the ovulatory shift hy-
pothesis (Harris, 2011, 2013; Harris, Chabot, &Mickes, 2013;
Harris, Pashler, & Mickes, 2014) contend that inconsistent
methodologies, failures to replicate findings (e.g., Peters,
Simmons, & Rhodes, 2009), and recent meta-analytic work
concluding ovulatory effects are not robust (i.e., Wood &
Joshi, 2011; Wood, Kressel, Joshi, & Louie, 2012a, b, 2014)
indicate that research supporting the ovulatory shift hypothe-
sis are the result of spurious findings or inflated researcher
degrees of freedom (Simmons, Nelson, & Simonsohn,
2011). These accusations are extreme, and probably false giv-
en a rebuttal meta-analysis by Gildersleeve, Haselton, and
Fales (2014a) and p-curve analysis by Gildersleeve,
Haselton, and Fales (2014b). However, these criticisms were
not completely unfounded. That is, despite recommendations
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of ideal methodological practices when addressing failures to
replicate (e.g., DeBruine et al., 2010), there is generally an
inconsistent use of ovulation estimation methods, between-
versus within-subjects designs, definitions of fertility win-
dows, and methods employed to estimate fertility in the liter-
ature (Harris, 2013; Harris et al., 2013, 2014; Gildersleeve
et al., 2014b). There can be very good reasons for methodo-
logical variability in this area of research (e.g., Gildersleeve
et al., 2013), but such variability in lieu of recommended
practices can give the appearance of post-hoc methodological
modification.

Consider Gildersleeve et al.’s (2014a) sample of studies
specific to the ovulatory shift hypothesis—the Gildersleeve
et al. and Wood et al. (2014) samples are very similar so we
give preference to Gildersleeve et al. as they are expert con-
tributors and proponents of this body of research. Despite
notions of methodological best practices, between-subjects
group designs were used in 43.7 % of studies, and between-
subjects continuous measures were used in 18.3 %. Thus, 62
% of all studies reviewed employed a between-subjects de-
sign. This means that, despite the supposed strength of repeat-
ed measure methods, within-subjects designs were only
employed in 38 % of the studies reviewed.

Furthermore, with respect to fertility estimation, both
forward-counting and fertility-likelihood overlay methods
(e.g., Wilcox, Dunson, Weinberg, Trussell, & Baird, 2001)
were employed heavily in the reviewed literature.
Specifically, continuous overlays were used in 18.3 % of all
studies, and account for 23.9 % of studies that used forward
counting and 11.1 % of studies that used some form of back-
ward counting. Of those studies that employed backward
counting (25.4 % of all studies), only 33.3 % confirmed men-
strual onset to ensure that backward estimates were derived
from the correct start date; i.e., only 8.5 % of all reviewed
studies confirmed menstrual onset. Finally, only six studies
(8.5 % of all studies) employed some sort of assay of hor-
mones, five of which used luteal hormone (LH) testing (7.1
% of all studies).

It may be unfair to evaluate the methodology of the entire
sample of the ovulatory-shift literature given as a single period
given that recommended practices emerge as the field de-
velops. For example, treating Debruine et al.’s (2010) com-
mentary on the methodological limitations of Harris’ (2011)
replication attempt as an indicator of the prevalence of meth-
odological ideals in ovulatory-shift research suggests some
shifts in methodological focus. Specifically, before 2010,
forward-counting methods were used in 69.8 % of studies
and backward-counting methods were used in 22.6 % of stud-
ies. From 2010 onward, forward-counting utilization declined
to 50 % of studies, and backward-counting methods rose to
33.3 % of studies. Similarly, between-subjects designs were
used more often than within-subjects designs (64.2 % and
35.8 %, respectively) before 2010, but from 2010 onward

the use of between-subjects designs declined and within-
subject designs increased (55.6 % and 44.4 %, respectively).
Finally, comparing pre-2010 studies with 2010 and onward
studies there were small increases in the relative frequency
of studies confirming menstruation onset when using back-
ward counting (7.5 % and 11.1 %, respectively), and in the
use of hormonal estimation of ovulation (7.5 % and 11.1 %,
respectively).

While these shifts in methodological practices are encour-
aging, it is clear that there is still a heavy reliance on counting
methods (generally), despite evidence and arguments that oth-
er approaches (e.g., LH testing) may be more effective (e.g.,
Bullivant et al., 2004; Debruine et al., 2010), and on both
forward and pseudo backward counting (specifically), despite
evidence that these procedures are likely more error prone
than backward counting with confirmation of next menstrual
cycle onset (e.g., Fehring, Schneider, & Raviele, 2006).
Utilization of these methods is problematic because increased
error inmeasurement due tomisidentification of ovulation and
fertile periods may diminish power to detect phase-related
behavioral shifts. Since both the follicular and luteal phases
are variable (e.g., Fehring et al., 2006), both between and
within women (Creinin, Keverline, & Meyn, 2004; Fehring
et al., 2006), static assumptions of cycle length—such as when
using counting methods—reduces ovulation estimation accu-
racy by 37-57 % (Howards et al., 2008). This problem is
further compounded when estimation relies on self-reported
cycle length (i.e., pseudo backwards counting) since self-
report of cycle length has been shown to be inaccurate in
women (e.g., Small, Manatunga, & Marcus, 2007).

The present study

While continuing the academic debate over which meta-
analysis is correct (Gildersleeve et al., 2014b; Wood &
Carden, 2014) makes for Bgood theater^ (Ferguson, 2014), it
is plausible that methodological limitations can account for
many of the inconsistencies in these findings (e.g., Harris,
2011, 2013; Wood et al., 2014). Comments regarding meth-
odological limitations and recommendations (e.g., Debruine
et al., 2010; Gildersleeve et al., 2013) reflect the following: (a)
within-subjects designs are better than between-subjects de-
signs; (b) forward counting is less precise than backward
counting, and both are less accurate than hormonal assess-
ments; (c) optimum methods are more expensive with respect
to time and money; and (d) with a sufficiently large sample
less optimum methodology is expected to overcome method-
based reductions in power. However, it is not immediately
clear how these reasonable expectations may actually function
in research. Specifically, it is not well understood how much
of a decrement in power is observed when using different
methods (e.g., between-subjects vs. within-subjects; counting
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vs. LH testing) or when these differences are negligible rather
than pronounced.

To better understand the relation of power and methodolo-
gy as it pertains to ovulatory effects we evaluate the following
conditions for group-based mean comparisons using simulat-
ed data: (a) ovulation estimation method (LH testing vs. for-
ward counting vs. unconfirmed backward counting vs. con-
firmed backward counting); (b) between- vs. within-subject
designs; (c) fertile window length (day of peak fertility vs.
sample from six-day window vs. sample from nine-day win-
dow); and (d) sample size (N = 10, 20,…, 200). Additionally,
we evaluate the ability of fertility overlays (i.e., Wilcox et al.,
2001) to detect behavioral variability correlatedwith predicted
fertility fluctuations as a function of sample size. Finally, we
evaluate differences in fertile days selected as a function of
ovulation estimation method using counting methods in both
simulated and empirical data sets.

Method

Simulation study

Data simulation procedure In the present study we simulat-
ed a population of 20,000 ovulatory cycles. Each simulated
cycle represented a single cycle of an individual woman. All
cycles were made up of daily scores. Cycles were generated
using estimates of the mean, variance, and covariance of
cycle-phase lengths (i.e., menses, follicular, and luteal) previ-
ously reported (Fehring et al., 2006; R. J. Fehring, personal
communication, 7 April 2014) (see Table 1). The Fehring et al.
(2006) sample statistics were used to inform the present sim-
ulation for several reasons: (a) its frequency of citation in
ovulatory research generally; (b) its frequency of citation in
ovulatory-shift research specifically; (c) its citation as evi-
dence of average cycle phase length, variability between and
within women, and relative stability of luteal phase lengths
compared to the follicular phase (e.g., Garver-Apgar et al.,
2008; Gildersleeve et al., 2014a; Larson et al., 2013;
Lukaszewski & Roney, 2009; Miller & Maner, 2010;
Oinonen & Mazmanian, 2007; Prokosch, Coss, Scheib, &
Blozis, 2009; Roney et al., 2011; Rosen & López, 2009;
Schwarz & Hassebrauck, 2008); and (d) Its specific use as
justification for using backward counting, rather than forward,
to estimate ovulation and the fertile window (e.g., Oinonen &
Mazmanian, 2007; Prokosch et al., 2009; Roney et al., 2011;
Rosen & López, 2009; Schwarz &Hassebrauck, 2008). Taken
together, it is apparent that researchers in the field value
Fehring et al.’s work as sufficiently reliable to inform their
own research methodology decisions. We therefore decided
it represented a sound source for the present study’s cycle
simulation parameters.

Shifts in a hypothetical outcome (e.g., attraction to male
traits) were then simulated for each cycle following four dis-
tinct but similar hypothetical process trajectories (see Fig. 1).

Process A consists of a single stepwise (i.e., on-off) behav-
ioral shift corresponding to a six-day peak fertility window
ending on the day of ovulation (e.g., Dunson, Baird, Wilcox,
& Weinberg, 1999; Dunson, Colombo, & Baird, 2002;
Wilcox, Weinberg, & Baird, 1995; 1998); across the six-day
window the degree of behavioral change is equal. Process B is
identical to Process A, except it has a second stepwise behav-
ioral shift during the mid-luteal phase. This mid-luteal shift is
meant to represent a secondary shift sometimes observed in
ovulatory effects research (e.g., Miller et al., 2007) and
thought to reflect dependency on hormonal processes ob-
served across the ovulatory cycle (e.g., Roney & Simmons,
2013). The degree of the secondary shift, relative to the first,
was determined by dividing the predicted mid-luteal estrogen
to progesterone ratio by the average peak fertility estrogen to
progesterone ratio—predicted hormone values reported by
Stricker et al. (2006). This results in a mid-luteal secondary
shift that is 30 % of the fertile phase maximum value. Process
C is like Process A in that it has a single shift corresponding to
the six-day peak in fertility. However, unlike Process A, it has
a continuous curvilinear trajectory such that each day’s weight
of behavioral score increase is equivalent to the daily
projected estrogen value divided by the predicted estrogen
value for the day of peak fertility—this is calculated across
the six-day window (e.g., Dunson et al., 2002; Wilcox et al.,
1995; 1998). Finally, Process D is similar to Process B in that

Table 1 Simulation target values and observed simulation values

Fehring et al. (2006)

Cor matrix Length Follicular Luteal Menses

Length 1 - - -

Follicular 0.826 1 - -

Luteal 0.247 −.335 1 -

Menses 0.194 0.237 −.110 1

M 28.9 16.5 12.4 5.9

SD 3.3 3.4 2 2.9

95 % cases 22–36 9–23 8–17 0–12

Current simulation

Cor matrix Length Follicular Luteal Menses

Length 1 - - -

Follicular 0.836 1 - -

Luteal 0.227 −.345 1 -

Menses 0.180 0.239 −.116 1

M 28.97 16.47 12.5 5.59

SD 3.35 3.47 1.96 1.33

95 % cases 22–36 10–23 9–16 3–8

Note: Fehring et al. (2006) values were the simulation target values, and
current simulation values are the values observed in the simulated data
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it has two surges in change, a maximum corresponding to the
fertile phase and a secondary minor shift corresponding to the
mid-luteal phase. Additionally, weighting of behavioral shifts
are based on hormonal ratios across the entire ovulatory cycle,
and not just restricted to peak fertility and mid-luteal phases. It
is unclear what hormonal processes may be associated with
shifts in behavior, and whether any single hormonal process is
equally predictive across behavior types. To this end, we con-
sidered the average trajectory of two hormonal processes: (a)
the ratio of each day’s predicted estrogen to progesterone level
divided by the predicted estrogen to progesterone level for the
day of peak fertility; and (b) the predicted daily level of estro-
gen divided by the predicted level of estrogen on the day of
peak fertility. The daily weights generated using these two
approaches were averaged together and the resulting aggre-
gate daily weights were used to model average daily behav-
ioral scores.

For each trajectory we created six conditions of maxi-
mum mean value (Mmax = 0.15, 0.25, 0.5, 1.0, 1.5, and
2.0) for days of peak fertility. Maximum mean values
represent the maximum behavioral fluctuation value pos-
sible based on the daily weight. For non-fertile days, in-
cluding mid-luteal days without secondary behavioral
shifts,1 the mean expected score was zero. Across all par-
ticipants and days, variability of behavioral scores was
held constant (SD = 1.0), with the goal being that
within-cycle effect sizes would then be equal to the

difference between the sampled high and low fertility
day behavioral scores (i.e., [High Fertility Score – Low
Fertility Score] / 1) . This generating procedure resulted
in an average within-cycle variability of 1.05 (SD = 0.14,
95 % CI 0.78–1.32) for behavior scores. In addition to
generating behavioral shifts, a null behavioral change
score was generated where no change across the cycle
occurred (Mmax = 0.00, SD = 1.0). Due to variability in
data generation (i.e., SD = 1.0), and variability in degree
of relative differences between peak fertility and mid-
luteal phases (e.g., Processes A & C compared to
Processes B & D) observed effect sizes in the population
are attenuated from generating Mmax values (see Table 2).
Finally, for between-subjects designs each case had a ran-
dom mean score (M = 5.5, SD = 1.0) added to each of
their daily scores to reflect individual differences in aver-
age scores.2

Estimation of fertility For each simulated ovulatory cycle the
true phase lengths and corresponding ovulatory days (e.g.
days −2, −1, 0, 1, and 2) were known, and correspond with
days of ovulation predicted using fertility monitors (i.e.,
Fehring et al., 2006). We estimated day of ovulation for each
simulated cycle using forward counting and confirmed

Fig. 1 Examples of Processes A–D

1 Expected mid-luteal scores with secondary shifts are their
proportion change score, relative to the day of peak fertility
score, multiplied by the maximum mean value.

2 The mean of these scores has no impact on mean differences
as this merely transposes the average value location. What is
potentially impactful is the variability in scores between indi-
viduals as this additional variability cannot be separated from
behavioral variability when only using between-subjects
designs.
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backward counting—when the date of next menstrual onset is
known. For these two methods we assume accuracy of prior
and later menstrual onset for forward and backward counting,
respectively. We also estimated day of ovulation using a pseu-
do backward counting method where participants had a 50 %
chance of accurately predicting next menstrual onset, a 40 %
chance of incorrectly indicating next menstrual onset by ±1
day, and a 10 % chance of incorrectly indicating next men-
strual onset by ±2 days. This method adds a relatively small
error component to self-report or prediction of next menstrual
onset—as is often observed in studies that evaluate discrepan-
cies between expected and observed future menstrual onset
dates (e.g. Wilcox, Dunson, & Baird, 2000).

Wood et al. (2014) and Gildersleeve et al. (2014a, b)
came to different conclusions about the effect of fertile
phase window width on statistical conclusions in the extant
literature. By using very precise to less precise windows
under controlled conditions we assess what effect, if any,
fertile window width can have on statistical power. Three

different peak fertility sampling methods were applied
using each of the fertility estimation method (e.g. forward
and pseudo backward) ovulatory calendars: (a) the day of
peak fertility (cycle day −1); a random day from the six-
day fertile window (cycle days −5 through 0); and (c) a
random day from a nine-day fertile window (cycle days
−8 through 0)3 (see Table 2). Thus, we have a degree of
precision reflecting the day of greatest expected change, a
random day from the entire six-day fertile window, and a
random day from a nine-day fertile window to determine
what influence fertility window size and estimation method
have on power and effect size. To calculate a non-fertile

Table 2 Observed population level effect sizes by process type, max mean, estimation method, and fertile window size

TRUE windows Forward windows Pseudo backward windows Backward confirmed windows

Process Mmax 1 6 9 1 6 9 1 6 9 1 6 9

Null 0.00 0.00 0.00 0.00 0.00 −0.01 0.00 0.00 0.01 −0.01 0.01 0.01 0.00

A 0.15 0.10 0.10 0.06 0.03 0.03 0.01 0.08 0.06 0.04 0.09 0.07 0.05

0.25 0.18 0.17 0.11 0.05 0.04 0.03 0.14 0.13 0.10 0.14 0.13 0.10

0.50 0.35 0.35 0.24 0.12 0.10 0.08 0.28 0.24 0.18 0.28 0.24 0.18

1.00 0.70 0.70 0.45 0.20 0.18 0.12 0.53 0.48 0.35 0.54 0.49 0.36

1.50 1.06 1.05 0.64 0.28 0.24 0.17 0.77 0.69 0.51 0.78 0.69 0.52

2.00 1.40 1.41 0.79 0.33 0.29 0.19 1.00 0.87 0.65 0.98 0.86 0.64

B 0.15 0.07 0.07 0.03 0.01 0.01 -0.01 0.06 0.05 0.03 0.05 0.05 0.02

0.25 0.12 0.12 0.06 0.02 0.02 0.00 0.08 0.07 0.05 0.09 0.07 0.05

0.50 0.25 0.24 0.13 0.05 0.04 0.00 0.18 0.14 0.08 0.18 0.15 0.09

1.00 0.50 0.50 0.25 0.11 0.08 0.01 0.34 0.28 0.16 0.35 0.29 0.17

1.50 0.75 0.75 0.35 0.14 0.10 0.01 0.48 0.39 0.22 0.49 0.39 0.22

2.00 0.98 0.98 0.43 0.18 0.13 0.02 0.62 0.51 0.29 0.61 0.50 0.28

C 0.15 0.11 0.05 0.04 0.03 0.02 0.00 0.04 0.03 0.02 0.05 0.04 0.03

0.25 0.18 0.10 0.06 0.02 0.02 0.01 0.09 0.07 0.05 0.08 0.07 0.05

0.50 0.35 0.19 0.12 0.04 0.03 0.02 0.16 0.14 0.10 0.17 0.15 0.10

1.00 0.70 0.37 0.24 0.09 0.06 0.03 0.34 0.26 0.18 0.35 0.27 0.19

1.50 1.06 0.54 0.34 0.11 0.08 0.02 0.49 0.38 0.27 0.49 0.38 0.27

2.00 1.41 0.70 0.45 0.15 0.10 0.03 0.62 0.48 0.34 0.64 0.49 0.36

D 0.15 0.07 0.05 0.02 0.00 0.01 0.01 0.03 0.02 0.01 0.03 0.02 0.01

0.25 0.13 0.09 0.06 0.02 0.02 0.00 0.06 0.06 0.03 0.07 0.06 0.04

0.50 0.26 0.16 0.10 0.04 0.04 0.01 0.12 0.10 0.06 0.13 0.11 0.07

1.00 0.51 0.30 0.20 0.09 0.07 0.02 0.26 0.22 0.15 0.26 0.22 0.15

1.50 0.75 0.44 0.29 0.14 0.11 0.04 0.37 0.33 0.23 0.37 0.32 0.22

2.00 1.02 0.59 0.40 0.16 0.12 0.05 0.47 0.42 0.29 0.48 0.42 0.29

Note: Shaded cells indicate a maximum effect size value for the row. Each row represents a unique process by max mean value

3 Based on the estimation method used (i.e., pseudo backward
counting) and the length of a cycle, it is possible that the
earliest follicular cycle days may not extend to cycle day −5
or −8. In these cases where a 6- or 9-day windowwas used, the
cycle days sampled ranged from the earliest follicular cycle
day (e.g., cycle day −6) through cycle day 0.
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period, we selected from the mid-luteal phase. Specifically,
we used cycle day 7 for each method of estimating
ovulation.4

Additionally, we applied Wilcox et al.’s (2001) fertility
estimation overlays—all, regularly, and irregularly cycling
women—to each cycle, yielding a daily score of expected
conception likelihood for each simulated cycle. Consistent
with the predominant application of fertility overlays in
between-subjects studies, these fertility overlays were treated
in a forward-counting manner. That is, the first day of each
cycle corresponded to the first day of the overlay, and so on.
However, Wilcox et al. (2000) indicate that variability in av-
erage cycle length relates to variability in occurrence of fertile
days. This suggests that aligning fertility overlays based on
other estimates of fertility—rather than treating it as a consis-
tent forward-counting estimate of fertility—may improve cor-
respondence of fertility overlays and person-specific fertili-
ty—as well as fertility-related behavioral shifts. That is, if
days of estimated fertility are aligned with estimated fertile
days (e.g., using backward counting or LH testing), then the
overlay may better correspond with actual fertility status. To
test this we aligned overlays for all simulated cycles such that
peak overlay fertility scores corresponded with the estimated
day of peak fertility using forward, backward, and pseudo
backward-counting methods, and true estimation.

Procedure for testing effects For between-subjects t-tests of
sample size N (i.e., 10, 20, …, 200), N random participants’
peak fertility scores were drawn. Then an independent and
random sample of N additional participants’mid-luteal scores
was drawn. Mean phase differences (i.e., peak fertility com-
pared to mid-luteal), pooled SD, effect size (Cohen’s d), t-
value, and p-value were calculated, then determination of
whether the correct statistical decision was made. This process
was repeated across all behavioral shift trajectories, ovulation
estimationmethods, and fertile window-width conditions. The
within-subject t-test procedure was identical to the between-
subject t-tests except that N random participants’ peak fertility
scores were drawn and matched to the participants’ corre-
sponding mid-luteal scores.5 The procedure for testing

between-subject correlations using fertility overlays consisted
of sampling a random cycle day from N randomly selected
cycles. Cycle-day behavior scores were matched with corre-
sponding fertility overlay scores. The resulting samples were
tested using the Pearson correlation where r(N-2) served as the
effect size. Similar to the t-test procedure, we concluded by
determining whether the correct statistical decision was made
for each test of correlation.

Evaluating power using simulated data For estimates of
power using between- and within-subjects t-tests a correct
statistical decision was defined using two criteria: (a) mean
differences were in the same direction as the population (i.e.,
MHighFertility >MLowFertility); and (b) the effect was statistically
significant using a one-tailed test (α = .05). All other results
were scored as incorrect decisions. Power was defined as the
number of correct decisions divided by the total number of
tests.6 Power estimates using correlations of fertility overlays
were defined using the same criteria as t-tests with the excep-
tion that criterion (a) refers to correlation direction (i.e., posi-
tively related) rather than mean differences and criterion (b)
uses two-tailed tests (i.e., α = .05 split above and below the
estimated correlation value).7

Empirical data

A publicly available dataset was used in the present study
(Fehring, Schneider, Raviele, Rodriguez, & Pruszynski,
2013). In the present study, cycle inclusion from the public
data set was contingent upon whether participants had been
assigned to monitor fertility status using Clear Blue Easy
Fertility Monitors (CBFM), and whether there was sufficient
ovulatory cycle event data to characterize each cycle; i.e.,
CBFM indicated day of peak fertility, estimated day of ovula-
tion, and both cycle onset and offset were recorded. These
criteria resulted in the inclusion of 91 women’s cycles, each
with 1–43 ovulatory cycles (Ncycles = 906, Mcycles per woman =
9.98, SDcycles per woman = 7.37). For a full description of the
study we refer readers to the original study and data hosting
site (Fehring et al., 2013; e-Publications@Marquette, 2012).

4 Based on the estimationmethod used (i.e., forward counting)
and the length of a cycle, it is possible that the estimated luteal
cycle days may not extend to cycle day 7. In these cases the
latest luteal day (e.g., cycle day 6) was used.
5 Note that total sample size for between-conditions is actually
twice that in within-conditions for sample size N. This sug-
gests that for between- and within-samples t-tests to be
matched in total sample size N = 10 for within-subjects corre-
sponds toN = 20 for between-subjects. However, this match is
not perfect either as dfwould still differ (e.g., when N = 20, df
= 18 and 19 for between- and within-subject designs,
respectively).

6 We had 6,000 replications for each t-test condition, and 125,
000 replications for each overlay condition. The discrepancy
in the number of replications was based on necessity to suffi-
ciently represent sampling between cycles and cycle days
using the overlay method. Fewer replications (i.e., 6,000)
showed underrepresentation of both these dimensions with
respect to the simulated data.
7 For null conditions any significant effect was counted as a
Type I error, non-significant effects were considered to be
correct statistical decisions.
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Estimation of fertility Estimates of ovulation based on
CBFM results were used to determine six-day periods of peak
fertility (e.g., Dunson et al., 1999, 2002; Wilcox et al., 1995,
1998) which were then used as a comparison to forward and
confirmed backward counting methods.8 These estimation
methods were then compared with CBFM by determining
the frequency with which each method corresponded with
CBFM indicated days of peak fertility. These comparisons
includedwhen considering capturing the day of expected peak
fertility and any of the six days of peak fertility. This was
considered for each estimation method when using the pre-
dicted day of peak fertility, a six-day window of predicted
peak fertility, and a nine-day window of peak fertility.

Results

Predicting power

A total of 11,520 power estimates were generated for between-
(n = 5,760,M = .44, SD = .36) and within- (n = 5,760,M = .51,
SD = .37) subject t-tests. A t-test was used to determine that,
generally, within-subjects designs, compared to between-
subjects designs, had greater power to detect fertility-based
differences (t(11518) = 11.17, p < .001, d = .21).

To test and control other simulation conditions a Factorial
ANCOVAmodel was fit using type II sums of squares and the
following additional predictors: (a) six-day and nine-day win-
dows compared against day of predicted peak fertility; (b)
pseudo backward, confirmed backward, forward counting
and true estimation; (c) sample size; (d) a four-way interaction
of within- versus between-subjects designs, fertility estima-
tion method, window size, and sample size as well as all
three-way and two-way interactions of these terms; and (e)
average effect size as a control. This second model (see
Table 3) explained a significant proportion of variance in pow-
er (F(48, 11,471) = 710.1, p < .0001,R2 = .748). It is important
to note that in this second model the increase in power when
using within-subjects tests (B = .10, SE = .02, p < .001) is
consistent with our initial t-test results—after accounting for
other simulation conditions.

Dummy-coded contrasts were used to investigate the inter-
action between fertility estimation method and within- versus
between-subjects designs. Results indicate that the interaction
was driven by a reduction in within-subjects designs’ power,
relative to between-subjects designs, when comparing for-
ward counting with both pseudo backward- and backward-
counting fertility estimation methods (B = −.07 and −.07, SE
= .035 and .35, p = .046 and .047, respectively)—also note

that within-subjects designs were still more powerful than
between-subjects designs, despite this reduction. This sug-
gests that the benefit of using within-subjects designs is re-
duced when coupled with forward-counting estimation, but
this effect was only significant when comparing forward-
and backward-counting methods.

To understand the interaction between fertility estimation
method and fertility window size, data was subset by fertility
estimation type and a one-way ANOVA was conducted for
each subset where power was predicted by window size.
Results indicate that fertility window size was a significant
predictor of power when using forward (F(2, 2,877) =
16.26, p < .001, R2 = .01), pseudo backward (F(2, 2,877) =
4.87, p < .01, R2 = .003), backward (F(2, 2.877) = 4.76, p <
.01, R2 = .003), and true ovulation estimation methods (F(2,
2.877) = 75.01, p < .001, R2 = .05). It is evident that the effect
of window size was larger for true ovulation estimation rela-
tive to the other estimation procedures. Pairwise comparisons
using the Bonferroni correction were used to test if there were
specific differences in the pattern of window effects within
each ovulation estimation method. Results indicated several
key conclusions: (a) 1-day estimates of peak fertility yielded
significantly more power than either six-day or nine-day win-
dows; (b) there is a significant difference in power between
six-day (M = .63, SD = .37) and nine-day (M = .50, SD = .37)
windows for true ovulation estimation (t(1,918) = 7.71, p <
.001), but not for any of the other ovulation estimation
methods; and (c) effect size patterns were larger for the true
ovulation estimation condition relative to all other estimation
methods, and for forward counting estimation relative to pseu-
do backward and backward counting (see Table 4).

Investigation of the interaction between sample size and
fertility estimation method was completed using dummy-
coded estimation variables. The interaction effect was driven
by a difference in the rate of change in power as a function of
sample size between pseudo backward counting (B = .007, SE
= .002, p < .001), backward counting (B = .007, SE = .002, p <
.001), and true ovulation (B = .004, SE = .002, p = .04) with
forward counting. These results indicate that power increases
faster for pseudo backward, backward, and true ovulation
methods. For example, with sample sizes of 20, 50, and 100
pseudo backward and backward (additional power = .14, .35,
.70) and true ovulation (additional power = .08, .20, .40)
would have more power relative to forward estimation.

Comparing estimation methods

To understand differences in power between estimation
methods we evaluated the frequency that peak fertility days,
defined by true ovulation, were identified using different fer-
tility estimation counting methods when applied to both the
simulated population data and the Fehring et al. (2013) data
(see Table 5). Comparisons were made with respect to correct

8 Pseudo backward counting could not be adequately com-
pared as participant estimation of menstrual onset was not a
component of the study and its data.
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and incorrect selection of the day of peak fertility, and then of
any six fertile days in a cycle. Correct percentages were based
on how many target (i.e., true fertile) days were captured di-
vided by the total possible (e.g., 20,000 possible days of peak
fertility in the simulated data). Incorrect percentages were
based on how many non-target days were captured divided
by the total number of captured days (e.g., 180,000 total days
when using a nine-daywindow). To evaluate efficacy, the one-
day predicted peak fertility and both six- and nine-day win-
dows of peak fertility were used.

Generally, accuracy at predicting the true day of peak fer-
tility was very poor when using the one-day and six-day win-
dows. While inclusion of the true day of peak fertility did
increase considerably using the six-day window, these esti-
mates were accompanied by a comparable proportion of in-
correctly identified days (compared with the one-day win-
dow). However, it should be noted that when considering
the number of total true fertile days (six days total), the error
rates drop by 30–50 %; error declined greatest for pseudo
backward and backward. Unsurprisingly, moving to a nine-
day window necessarily caused both correct target identifica-
tion and non-target identification percentages to increase rel-
ative to the six-day window. Forward counting consistently
underperformed compared to both backward methods, and
pseudo backward slightly underperformed relative to
backward.

Efficacy of fertility estimation overlays

Generally, the fertility overlay for all participants (i.e., both
regularly and irregularly cycling participants) yielded the larg-
est effect sizes, but these gains were minor with respect to the
overlay for regularly cycling participants (see Table 6).
Nonetheless, we focus our interpretation on the overlay that
had the best ability to detect the effect of fertility (i.e., the
overlay for all participants). Across all processes, power only
exceeded 80 % for the greatest maximum (max) mean condi-
tion (Mmax = 2.0) for Processes A and B (8.3 % of conditions;
see Fig. 2). Even at a reduced power threshold of 50 %, only
seven (29.2 %) of the considered conditions (i.e., Mmax = 2.0

Table 3 Factorial ANCOVA table predicting power to detect ovulatory effects

Conditions Type II SS df F-value p-value

Within 20.04 1.00 577.30 < .001

Fertility estimation method 22.18 3.00 212.91 < .001

Window size 1.04 2.00 14.96 < .001

N 111.93 1.00 3,223.71 < .001

Effect size 773.82 1.00 22,285.99 < .001

Within:fertility estimation method 0.66 3.00 6.29 < .001

Within:window size 0.01 2.00 0.17 0.84

Fertility estimation method: window size 5.27 6.00 25.31 < .001

Within:N 0.02 1.00 0.72 0.40

Fertility estimation method: n 3.73 3.00 35.77 < .001

Window size: n 0.02 2.00 0.30 0.74

Within: fertility estimation method: window size 0.11 6.00 0.51 0.80

Within: fertility estimation method: n 0.23 3.00 2.20 0.09

Within: window size: n 0.00 2.00 0.01 0.99

Fertility estimation method: window size: n 0.42 6.00 2.01 0.06

Within: fertility estimation method: window size: n 0.01 6.00 0.04 1.00

Residuals 398.30 11,471.00

Note: Type II sums of squares were used to account for covariance between predictors regardless of predictor entry into the model

Table 4 Effect sizes comparing power between window size
conditions within fertility estimation methods

Fertility estimation method 1-day vs.
6-day

1-day vs.
9-day

6-day vs.
9-day

Forward counting 0.219 0.220 0.001

Pseudo backward counting 0.123 0.124 0.001

Backward counting 0.121 0.122 0.001

True ovulation 0.195 0.555 0.352

Note: Computed effects sizes are Cohen’s d. For forward, pseudo back-
ward, and backwardmethods, there was essentially no difference between
6-day and 9-day windows. For true ovulation, there was an effect, and this
effect was larger than any of the calculated effects with respect to detected
differences between 1-day and either 6- or 9-day windows for forward,
pseudo backward, and backward counting methods. Generally, true ovu-
lation effects were larger than the other methods, suggesting greater sen-
sitivity of true ovulation with respect to window size effects. Similarly,
forward counting demonstrated greater sensitivity to window size effects
with respect to pseudo backward and backward counting, though this was
not as pronounced
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for Processes A–D, Mmax = 1.5 for Processes A and B, and
Mmax = 1.0 for Process A; see Fig. 3) met or exceeded the
threshold. This means that for 70.8 % of the conditions con-
sidered, detection of the true effect would be less likely than a
coin toss, even with a sample of 200 participants.

This can be better understood by considering the average
effects observed within individuals. A second set of analyses
considered the relation of fertility overlay values with simu-
lated behavioral shifts for each overlay type, effect size, and

process type (see Table 7). Average cycle effects and power
were relatively consistent across overlay types, but as with the
between-cycle results, effect size and power diminished with
process complexity. Even when power was greatest (i.e.,
Process A), the effect was not successfully detected in just
over 50 % of the cycles—this disparity maximized at 78–80
% for Processes C and D.

As previously mentioned, it may be beneficial to consider a
cycle-centered approach with respect to overlay use. That is, if

Table 5 Percent of true fertile days captured using different fertility windows and estimation methods

Simulated data Fehring et al. (2013) data

Condition Correct % Incorrect % Correct % Incorrect %

Forward: 1-day in 1-day 8.10 91.91 13.25 86.76

Pseudo back: 1-day in 1-day 14.77 85.24 - -

Backward: 1-day in 1-day 15.06 84.94 20.09 79.91

Forward: 1-day in 6-day 50.17 81.73 66.89 80.56

Pseudo back: 1-day in 6-day 75.87 81.63 - -

Backward: 1-day in 6-day 79.85 81.46 90.95 73.57

Forward: 6-day in 6-day 45.76 54.24 57.36 42.64

Pseudo back: 6-day in 6-day 68.85 31.15 - -

Backward: 6-day in 6-day 71.78 28.22 72.94 27.06

Forward: 6-day in 9-day 54.24 63.84 63.32 57.79

Pseudo back: 6-day in 9-day 79.85 46.69 - -

Backward: 6-day in 9-day 81.76 45.45 76.67 48.88

Note: The Correct % 1-day in 1-day indicates the percent of true days of peak fertility that fell within the estimation method’s predicted day of peak
fertility; 1-day in 6-day indicates the percent of true days of peak fertility fell within the 6-day window of the estimation method; 6-day in 6-day indicates
the percent of true fertile days (six per cycle) that fell within the 6-day window of the estimation method; and 6-day in 9-day indicates the percent of true
fertile days (six per cycle) that fell within the 6-day window of the estimation method. The Incorrect % corresponds with the Correct %; however, these
scores represent the percent of days incorrectly selected as corresponding with fertility. Pseudo backward percentages could not be estimated using
empirical data as sufficient information for those estimates were not a part of the study and resulting data set

Table 6 Average Pearson correlation values by maximum difference, process type, and fertility overlay

Process Mmax All Regular Irregular Process Mmax All Regular Irregular

A 0.15 0.020 0.020 0.015 C 0.15 0.012 0.012 0.011

0.25 0.033 0.033 0.025 0.25 0.018 0.017 0.016

0.50 0.069 0.067 0.050 0.50 0.038 0.036 0.034

1.00 0.134 0.131 0.099 1.00 0.075 0.072 0.068

1.50 0.193 0.189 0.141 1.50 0.111 0.107 0.099

2.00 0.245 0.240 0.178 2.00 0.145 0.139 0.130

B 0.15 0.019 0.018 0.020 D 0.15 0.010 0.010 0.010

0.25 0.030 0.028 0.031 0.25 0.020 0.019 0.019

0.50 0.061 0.058 0.064 0.50 0.039 0.038 0.035

1.00 0.118 0.111 0.119 1.00 0.078 0.075 0.070

1.50 0.168 0.159 0.170 1.50 0.115 0.110 0.104

2.00 0.212 0.201 0.216 2.00 0.151 0.145 0.135

Null 0.00 0.000 0.000 0.000

Note:Note that effect size generally increased with sample size, but decreased with process complexity. Also, while the fertility overlay for both regular
and irregular cycles was best related to ovulatory fluctuations, the overlay for regular cycles performed nearly as well
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individual cycle-estimated fertility is used to center overlays
then overlay efficacy (e.g., power) may increase. This ap-
proach was tested with the overlay for both regular and irreg-
ular cycles, using forward, pseudo backward, backward, and
true ovulation to center overlays. Improvements in power
across estimation types are striking. For Processes A and B,
Mmax values of 2.0 and 1.5 exceed 80 % power with a sample
size of 200 for pseudo backward, backward, and true ovula-
tion estimation. Given aMmax value of 2.0, forward estimation
also exceeds 80 % with a sample size of 200 for Processes A
and B (see Figs. 4, 5, 6, and 7).

Similarly, for Processes C and D, increased power has re-
sulted in exceeding the 80 % power threshold for the Mmax

value of 2.0 using both backward and true ovulation (see
Figs. 8, 9, 10, and 11). Further, 45.8 % of true ovulation
conditions, 41.7 % of pseudo backward and backward condi-
tions, and 25 % of forward conditions now exceed 50 % pow-
er given a sample size of 200. While these represent marked
improvements in power, the number of conditions that can
achieve power of 80 % given a maximum sample size of
200 is, at best, almost 50%, and is favored by the largest effect
and sample sizes considered.

Fig. 2 Power trajectories for Processes A–B using Wilcox et al.’s (2001) fertility overlay for all participants across sample size. Power trajectories from
the bottom to the top correspond with Mmax values of 0.15, 0.25, 0.5, 1.0, 1.5, and 2.0

Fig. 3 Power trajectories for Processes C–D using Wilcox et al.’s (2001) fertility overlay for all participants across sample size. Power trajectories from
the bottom to the top correspond with Mmax values of 0.15, 0.25, 0.5, 1.0, 1.5, and 2.0
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Table 7 Average within-cycle correlation values and power to detect effects using fertility overlays

Wilcox fertility overlays

All Regular Irregular

Process Mmax Mcor SD Power Mcor SD Power Mcor SD Power

A 0.15 0.03 0.19 0.03 0.03 0.19 0.03 0.02 0.19 0.03

0.25 0.05 0.19 0.04 0.05 0.19 0.04 0.03 0.19 0.04

0.50 0.10 0.19 0.08 0.10 0.20 0.08 0.06 0.20 0.07

1.00 0.19 0.20 0.19 0.18 0.21 0.19 0.13 0.23 0.16

1.50 0.26 0.21 0.33 0.25 0.22 0.33 0.17 0.27 0.29

2.00 0.31 0.23 0.45 0.31 0.23 0.44 0.21 0.30 0.41

B 0.15 0.03 0.19 0.03 0.03 0.19 0.03 0.03 0.19 0.03

0.25 0.04 0.19 0.04 0.04 0.19 0.04 0.04 0.19 0.04

0.50 0.09 0.19 0.07 0.08 0.19 0.07 0.09 0.19 0.07

1.00 0.16 0.20 0.16 0.16 0.21 0.16 0.16 0.21 0.17

1.50 0.23 0.21 0.27 0.22 0.22 0.26 0.22 0.23 0.30

2.00 0.28 0.23 0.38 0.26 0.24 0.36 0.27 0.25 0.42

C 0.15 0.02 0.19 0.03 0.02 0.19 0.03 0.02 0.19 0.03

0.25 0.03 0.19 0.04 0.03 0.19 0.03 0.02 0.19 0.03

0.50 0.06 0.19 0.05 0.05 0.19 0.05 0.05 0.19 0.05

1.00 0.11 0.20 0.09 0.11 0.20 0.09 0.09 0.20 0.08

1.50 0.16 0.20 0.15 0.15 0.21 0.15 0.13 0.21 0.13

2.00 0.20 0.21 0.22 0.19 0.22 0.22 0.17 0.22 0.20

D 0.15 0.02 0.19 0.03 0.01 0.19 0.03 0.01 0.19 0.03

0.25 0.03 0.19 0.04 0.03 0.19 0.04 0.03 0.19 0.04

0.50 0.06 0.19 0.05 0.05 0.19 0.05 0.05 0.19 0.05

1.00 0.11 0.19 0.09 0.11 0.19 0.08 0.09 0.20 0.09

1.50 0.16 0.20 0.14 0.15 0.20 0.14 0.14 0.22 0.15

2.00 0.21 0.20 0.22 0.20 0.20 0.21 0.17 0.23 0.23

Null 0.00 0.00 0.19 0.05 0.00 0.19 0.05 0.00 0.19 0.05

Note: Mcor is the average within-person Pearson correlation between overlay fertility and simulated behavioral data across all 20,000 simulated cycles.
SD describes between-cycle variability in correlation values. Power is the proportion of within-cycle correlations (out of 20,000) that detected the true
effect

Fig. 4 Power trajectories for Processes A–B using Wilcox et al.’s (2001) fertility overlay for all participants centered using forward counting estimated
peak fertility. Power trajectories from the bottom to the top correspond with Mmax values of 0.15, 0.25, 0.5, 1.0, 1.5, and 2.0
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Discussion

Summary

In the present study we used a simulated population of ovula-
tory cycles and an empirical data set to demonstrate significant
discrepancies between fertility overlays and counting methods
when compared with more accurate hormonal measures to de-
tect ovulation (e.g., Bullivant et al., 2004; Fehring et al., 2013;
Lloyd & Coulam, 1989; Tanabe et al., 2001; Trussel, 2008).
Furthermore, we demonstrated that between-subject methods
(i.e., independent samples t-tests and fertility overlays) showed
significantly less power to detect effects present in the popula-
tion when compared to within-subjects approaches.

Power disparities between counting methods and true ovu-
lation, with respect to detection of ovulatory effects, are likely
due to differences in days identified as fertile. As error rates in
fertile day identification increased, estimates of mean differ-
ences tended to be less than those observed at the population
level. This was particularly true for curvilinear processes C
and D because their apex corresponds with the population
level maximum change in simulated behavior. In contrast,
because processes A and B had stable differences across all
fertile days, errors in fertile day identification did not diminish
estimates of population mean differences to the same degree.
As a result, while pseudo backwards and backwards estima-
tion was underpowered compared to true ovulation, these dif-
ferences were not as large across most sample sizes and

Fig. 5 Power trajectories for Processes A–B using Wilcox et al.’s (2001) fertility overlay for all participants centered using pseudo backward counting
estimated peak fertility. Power trajectories from the bottom to the top correspond with Mmax values of 0.15, 0.25, 0.5, 1.0, 1.5, and 2.0

Fig. 6 Power trajectories for Processes A–B usingWilcox et al.’s (2001) fertility overlay for all participants centered using backward counting estimated
peak fertility. Power trajectories from the bottom to the top correspond with Mmax values of 0.15, 0.25, 0.5, 1.0, 1.5, and 2.0
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maximum difference values when compared with discrepan-
cies observed when using forward counting.

Differences in fertile day estimation using forward and
backward counting methods compared with hormonal detec-
tion were replicated in our empirical example. We observed
that both forward and backward counting methods differed in
the days identified as fertile when compared to hormonal de-
tection. These differences were consistent with those from our
simulated data set, which was derived from data describing a
different empirical sample (i.e., Fehring et al., 2006). Taken
together, this lends support to the veracity of our simulated
data, and conclusions drawn from it with respect to power
estimates.

Implications

Several implications can be drawn from these findings; one of
the most evident is that within-subjects t-tests are preferable
when studying ovulatory effects compared with between-
subjects t-tests. This is likely due to the inability to separate
between-subject variability in scores from between-phase
(high fertility vs. low fertility) differences when using
between-subjects designs. While these conclusions do not
contradict any typically expressed expectations, what is inter-
esting about them is that with an average predicted increase in
power of .1007 when using a within-subjects design, and a
predicted increase in power of .0019 for each participant

Fig. 7 Power trajectories for Processes A–B using Wilcox et al.’s (2001) fertility overlay for all participants centered using true peak fertility. Power
trajectories from the bottom to the top correspond with Mmax values of 0.15, 0.25, 0.5, 1.0, 1.5, and 2.0

Fig. 8 Power trajectories for Processes C–D using Wilcox et al.’s (2001) fertility overlay for all participants centered using forward counting estimated
peak fertility. Power trajectories from the bottom to the top correspond with Mmax values of 0.15, 0.25, 0.5, 1.0, 1.5, and 2.0
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sampled, we would predict needing approximately 53 addi-
tional participants to achieve comparable power using a
between-subjects design using hormonal, backward counting,
or pseudo backward counting estimation—assuming self-
report error in pseudo backward counting was not worse than
that used in our simulation study. It should be noted that due to
the significant interaction between fertility estimation
methods and sample size it would take an additional 30 par-
ticipants (in addition to the initial 53) to achieve equal power
for a between-subjects design if using forward counting
estimation.

Another implication is that, whereas backwards and pseudo
backwards counting estimation outperformed forward

counting estimation of ovulation, they appear to be inferior
methods compared to hormonal assessments. While it may be
argued that the inferiority of backwards estimation compared
with other assessment methods is already known within the
field (e.g., Bullivant et al., 2004; Debruine et al., 2010), the
present state of the supporting literature suggests it is very
popular (particularly pseudo backward counting; e.g.,
Gildersleeve et al., 2014a, b; Harris, 2013). Although it is true
that larger and larger sample sizes would diminish power dif-
ferences due to estimation method, the average sample size
employed in a sample of the extant literature is a heavily
skewed 95 participants (Mdn = 50, SE = 37.4; i.e.,
Gildersleeve et al., 2014a, b). Therefore, while larger sample

Fig. 9 Power trajectories for Processes C–D using Wilcox et al.’s (2001) fertility overlay for all participants centered using pseudo backward counting
estimated peak fertility. Power trajectories from the bottom to the top correspond with Mmax values of 0.15, 0.25, 0.5, 1.0, 1.5, and 2.0

Fig. 10 Power trajectories for Processes C–D using Wilcox et al.’s (2001) fertility overlay for all participants centered using backward counting
estimated peak fertility. Power trajectories from the bottom to the top correspond with Mmax values of 0.15, 0.25, 0.5, 1.0, 1.5, and 2.0
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sizes could diminish concerns over estimation effects on pow-
er, those studies employing more typical sampling procedures
should take these effects into account during study design.

An important issue that has been raised is whether fertility
window size may have an influence on the likelihood of de-
tecting effects. Our simulated results suggest that fertility win-
dow size does have several effects. Most consistently, that
using the single day of estimated peak fertility (i.e., cycle
day −1) resulted in greater power to detect effects than using
days sampled from either a six- or nine-day window, regard-
less of estimation method. Also, while differences between
six- and nine-day windows were not detected using any of
the counting methods, a difference was detected when using
true ovulation. This is likely due to the ratio of target days
identified compared to the number of non-target days identi-
fied. That is, while the six-day window identifies slightly few-
er target days than the nine-day window, it also identifies
fewer non-target days than the nine-day window. These ratios
appear to average out, suggesting that both six-day and nine-
day windows are, generally, going to yield similar results
when using counting methods. This, however, has less to do
with increased accuracy, andmore to dowith averaged error to
accuracy ratios in identifying fertile days.

Finally, our simulated results suggest that fertility overlays,
though popular, perform very poorly with respect to both ef-
fect size and power. Based on these results, we have to dis-
agree with recommendations that researchers use fertility
overlays as a method for estimating fertility (Gildersleeve
et al., 2014a). While using overlays may help alleviate con-
cerns of researcher degrees of freedom abuse due to inconsis-
tent definitions of fertility and fertility window size (e.g.,
Harris, 2013), such an approach may substantially impair
power to detect effects. However, if research design imposes

limitations preventing other methods of assessment (e.g. LH
testing), it is strongly recommended that researchers maximize
potential power by at least following up with participants re-
garding onset of menstruation so that backwards estimation
can be used to center overlay fertility values with participants’
observed data, or so that researchers can forego the use of
fertility overlays in favor of more accurate identification of
high and low fertility days.

Limitations and concerns

One possible limitation of our study is that we simulated ovu-
latory cycles using descriptive statistics and covariances from
a study that used hormonal assessment methods to determine
occurrence of ovulation. As a result, any error inherent in that
estimation method may have been passed on to our simulated
data. However, there is substantial evidence suggesting that
hormonal estimation of ovulation is highly accurate (Behre
et al., 2000; Lloyd & Coulam, 1989; Tanabe et al., 2001).
This suggests that estimation inaccuracy was likely low in
the empirical data informing this study (Fehring et al., 2006;
Fehring et al., 2013), and that hormone-based estimates of
fertility are a reasonable proxy of true ovulation for compari-
son with counting methods.

Another possible limitation is the process trajectories con-
sidered in the present study. These were selected for two prin-
cipal reasons. One, they demonstrate processes that are either
solely dependent on fertility (Processes A and C), or that are
associated with co-occurring processes across the ovulatory
cycle such as hormone level fluctuations (Processes B and
D; e.g., Lukaszewski & Roney, 2009; Roney & Simmons,
2008). Two, they demonstrate varying degrees of complexity
ranging from a simple, constant, step-wise effect during

Fig. 11 Power trajectories for Processes C–D using Wilcox et al.’s (2001) fertility overlay for all participants centered using true peak fertility. Power
trajectories from the bottom to the top correspond with Mmax values of 0.15, 0.25, 0.5, 1.0, 1.5, and 2.0
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periods where change occurs (Processes A and B) to a curvi-
linear trajectory (Processes C and D) similar to those in reports
of ovulatory effects on behavior (e.g., Miller et al., 2007;
Roney & Simmons, 2008). While we cannot simply assume
that any of these simulated trajectories are perfectly represen-
tative of specific behavioral processes, they do demonstrate
how representative processes varying in complexity affect
power to detect ovulatory effects, and can help inform re-
searchers as they develop future research designs.

One of the estimation methods was pseudo backward
counting. Pseudo backward counting is commonly used in
lieu of true backward estimation. Rather than confirmingmen-
strual onset and counting backwards, researchers use a partic-
ipant’s estimate of their next menstrual onset and count back
from that date. The problem, as previously discussed, is that
many factors may cause a participant to be inaccurate in their
estimation of menstrual onset—even if they consider them-
selves to be regularly cycling (e.g., Wilcox et al., 2000).
However, this problem is not studied as well as some others.
As a result, we erred on the side of caution in developing our
probability of participant error in predicting their next men-
strual onset, such that error rates were approximately normally
distributed around the correct date, with error being no more
extreme than ±2 days. The rationale behind this was to be as
consistent as possible in defining the cycles as regular for
participants (though this is rarely confirmed). Using this rela-
tively small rate of error, pseudo backward and backward
estimation resulted in similar efficacy.

However, if the error rate was increased in relation to fre-
quency of error and degree of error then it is easy to demon-
strate how pseudo backward estimation could be as ineffec-
tive, if not worse, than forward counting estimation. For ex-
ample, if we modify the simulation procedure used to generate
the previously reported pseudo backward days to have a 30 %
chance of correct prediction, 22.2 % chance of ±1 day, 17.8 %
chance of ±2 days, 13.3 % chance of ±3 days, 8.8 % chance of
±4 days, and 4.4 % chance of ±5 days then rates of correct

identification and incorrect identification are comparable, if
not a little worse, than forward counting (see Table 8).
Similarly, when using empirically demonstrated prediction er-
ror proportions based on average cycle length (i.e., Creinin
et al., 2004) pseudo backward counting performs on par with
forward counting. Clearly, pseudo backward estimation is
heavily dependent on accuracy of menstrual onset prediction.
As a consequence, pseudo backward estimation should not be
assumed to be as effective as backward counting given that
without menstrual onset confirmation there is no way to be
certain that the correct date to count back from was identified.
Further, while backward counting appears to be more accurate
than forward counting because the luteal phase is more stable
than the follicular phase, it is important to recall that it is still
variable.

Another potential limitation is that for t-tests, while we
focused on different fertile windows as tenable for sampling
high fertility days, we only sampled from the same luteal
phase day (ovulatory calendar day 7 or day 21), or its closest
neighbor. However, like high fertility day sampling, low fer-
tility day sampling methodology is quite variable and ranges
from a target day in the luteal phase (e.g., Cárdenas & Harris,
2007), a range of days or all days in the luteal phase (e.g.,
Caryl et al., 2009; Moore et al., 2011; Morrison, Clark,
Gralewski, Campbell, & Penton-Voak, 2010; Pawlowski &
Jasienska, 2005), and all days outside the high fertility win-
dow (e.g., Little, Jones, & Burriss, 2007; Little, Jones, &
DeBruine, 2008; Penton-Voak & Perrett, 2000; Puts, 2005;
Vaughn, Bradley, Byrd-Craven, & Kennison, 2010). In
terms of error in identifying high fertility days as low
fertility days, these methods did not differ substantially in
the present study (see Table 9), and we have focused on
reporting results when using the luteal sampling method
that yielded the lowest overall error rate.

It is worth noting, though perhaps self-evident from the
trajectories that were considered, that selecting different low
fertility sampling methods would have little impact on effect

Table 8 Accuracy of pseudo backward estimation using alternative error probabilities in simulation

Increased prediction error Creinin et al. (2004) error

Condition Correct % Incorrect % Correct % Incorrect %

Pseudo Back: 1-day in 1-day 12.56 87.45 10.59 89.41

Pseudo Back: 1-day in 6-day 45.68 92.39 44.93 92.51

Pseudo Back: 6-day in 6-day 45.69 54.32 38.39 61.61

Pseudo Back: 6-day in 9-day 38.83 61.17 36.33 63.67

Note: The Correct % 1-day in 1-day indicates the percent of true days of peak fertility that fell within the estimation method’s predicted day of peak
fertility; 1-day in 6-day indicates the percent of true days of peak fertility fell within the 6-day window of the estimation method; 6-day in 6-day indicates
the percent of true fertile days (six per cycle) that fell within the 6-day window of the estimation method; and 6-day in 9-day indicates the percent of true
fertile days (six per cycle) that fell within the 6-day window of the estimation method. The Incorrect % corresponds with the Correct %; however, these
scores represent the percent of days incorrectly selected as corresponding with fertility
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sizes when sampling from processes that only generated a
behavioral shift during high fertility (i.e., Processes A and
C). However, when the process has a secondary shift during
the luteal phase (i.e., Processes B and D) then only sampling
low fertility days from the luteal phase would reduce the

average difference in the target behavior between high and
low fertility phases (see Table 10). If a process had a consistent
relation to hormonal levels (i.e., Process D), then regardless of
where low fertility days are sampled from, the average differ-
ence between low fertility and high fertility days may be

Table 10 Average behavioral scores by ovulatory cycle day

Ovulatory day Null A 0.50 A 2.00 B 0.50 B 2.00 C 0.50 C 2.00 D 0.50 D 2.00

−13 0.00 0.00 0.01 0.00 0.00 −0.01 −0.01 0.08 0.29

−12 0.00 0.00 0.00 0.00 0.00 −0.01 0.00 0.08 0.30

−11 0.00 0.01 0.00 0.00 0.00 −0.01 0.01 0.10 0.35

−10 0.00 −0.01 0.00 −0.01 0.01 0.01 0.00 0.09 0.34

−9 −0.01 −0.01 0.01 0.00 0.00 0.01 0.00 0.09 0.43

−8 0.00 −0.01 0.02 0.00 0.00 0.00 0.00 0.12 0.47

−7 0.00 0.00 0.01 −0.01 0.01 0.00 0.01 0.14 0.51

−6 0.00 0.01 0.00 0.00 0.02 0.00 0.01 0.19 0.75

−5 −0.01 0.50 2.00 0.51 2.01 0.07 0.22 0.21 0.83

−4 −0.01 0.50 2.00 0.49 2.01 0.11 0.45 0.26 1.01

−3 0.00 0.50 2.00 0.51 2.00 0.22 0.85 0.39 1.56

−2 −0.02 0.49 2.00 0.50 2.00 0.42 1.68 0.49 1.96

−1 0.00 0.50 2.00 0.51 2.00 0.51 2.00 0.50 1.99

0 0.01 0.50 2.01 0.50 1.99 0.31 1.24 0.29 1.18

1 0.00 0.00 0.00 0.00 0.00 0.06 0.23 0.11 0.42

2 0.00 0.00 −0.01 0.04 0.11 −0.01 0.00 0.08 0.31

3 0.01 0.00 0.00 0.11 0.40 0.01 0.00 0.10 0.38

4 0.01 0.00 0.02 0.16 0.60 0.00 0.00 0.13 0.50

5 −0.01 0.00 0.01 0.14 0.60 0.01 0.01 0.13 0.57

6 −0.01 0.00 0.00 0.17 0.62 0.01 0.00 0.13 0.55

7 0.00 0.00 −0.01 0.13 0.48 0.00 −0.01 0.14 0.58

8 0.00 0.00 0.01 0.11 0.49 0.01 0.01 0.15 0.56

9 0.00 0.00 0.01 0.12 0.49 0.00 0.01 0.15 0.55

10 0.02 −0.01 0.00 0.06 0.23 0.00 0.00 0.17 0.61

11 0.00 0.00 −0.01 0.07 0.26 −0.01 0.01 0.09 0.39

12 0.01 0.00 0.00 0.08 0.32 0.01 0.01 0.10 0.38

13 0.00 −0.01 0.01 0.01 −0.01 0.01 −0.01 0.07 0.27

14 −0.02 −0.01 −0.01 0.00 0.01 0.01 0.00 0.07 0.31

Note: Null and Max Mean values of 0.50 and 2.00 are shown for processes A–D. From top to bottom, black boxes encircle selection of follicular low
fertility, all follicular high fertility, and selection of luteal low fertility days

Table 9 Percent of errors made using different low fertility sampling methods

Low fertility sampling strategy Forward % Pseudo backward % Backward %

Day 7 (or closest neighbor) of luteal phase 1.7 0 0

All luteal days 1.6 0.9 0.8

All outside 6-day fertile window 1.4 0.9 0.8

All outside 9-day fertile window 1.2 0.7 0.6

Note: All values are percents. Forward, Pseudo backward, and Backward indicate the ovulation estimation method being used in connotation with the
low fertility sampling strategy. Low fertility sampling strategies consisted of sampling from day 7 of the ovulatory calendar (i.e., −13 through 14), all
luteal days (i.e., days 1–14), all days outside of a 6-day fertile window (i.e., days −13 through −6 and 1 through 14), and all days outside of a 9-day fertile
window (i.e., days −13 through −9 and 1 through 14). Errors occur when a counting method and low fertility sampling strategy select a high fertility day
as being low fertility. These error rates are based on 200,000 samplings
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smaller. Therefore, how researchers choose to sample both
high and low fertility days can impact their ability to detect
behavioral shifts between these phases. Problematically, little
is known about behavioral trajectories in relation to phases
over the cycle, so it may be difficult for researchers to deter-
mine a priori what the best sampling approach may be.

Future directions

Within-subjects t-tests performed better than between-subject
t-tests and overlay correlations, but this represents a very min-
imal approach to studying ovulatory effects. An advantage of
sampling more frequently from each participant’s ovulatory
cycle is that it would allow researchers to assess between-
phase effects using multilevel modeling (e.g., Miller et al.,
2007; Prokosch et al., 2009; Roney & Simmons, 2013). This
modeling approach has several advantages, such as allowing
for the evaluation of multiple time scales concurrently (e.g.,
participant age, ovulatory calendar day, and day of the week)
while controlling for within-subject variability. Additionally,
with more observations across the cycle, estimates of average
participant-specific scores and fluctuations would be more
accurate, and would allow for more complex partitioning of
score variance.

Moreover, increased frequency in sampling would help
researchers to actually describe the trajectories of target be-
haviors across the cycle—better informing theory about ovu-
latory shifts of target behaviors and best methodological prac-
tices to sample them. As sampling frequency from each par-
ticipant increases, the likelihood of sampling from distinct
ovulatory phases for each participant also increases.
Consequently, researchers could describe these processes
across the ovulatory cycle (e.g., using linear growth models;
McArdle, 2009), and investigate how distinct ovulatory
phases (e.g., fertile days) or hormonal correlates (e.g., estro-
gen and progesterone) are associated with these behavioral
trajectories. In this way, the study of ovulatory effects could
transition from an investigation of one to two days sampled
from a 22- to 36-day cycle to the study of the cycle itself.

Finally, an inherent limitation in one- to two-day sampling
from the cycle is the possibility of under-representing periods
of interest from the cycle. While counting estimation methods
can reduce the likelihood of this, they are not full-proof. In
fact, we found that the easiest and most common counting
method, forward, is less than half as effective at sampling from
fertile days as taking a random sample, and both backward
methods, while more effective than forward, were still only
about three-quarters as effective as taking a random sample
(i.e., for a one-day peak). Further, true backwards counting
can only truly be applied after sampling has occurred. The
more typically used pseudo-backward counting method relies
on an estimate of next menstrual onset that necessitates an

assumption of cycle length regularity and participant accura-
cy. This is an assumption that has been demonstrated to be
untenable for several reasons (e.g., Creinin et al., 2004;
Fehring et al., 2006; Small et al., 2007; Wilcox et al., 2000).
By increasing sampling frequency, at a minimum, true back-
wards estimation or LH testing could be incorporated, and the
risk of failing to sample from critical phases of the ovulatory
cycle would be reduced.

Conclusion

The results of our study cannot inform the validity of the
ovulatory shift hypothesis, or the broader field of research
on ovulatory effects in humans. Nor does our study discuss
a novel concern over the potential inadequacy of methodology
popularly employed in this area of research. What our study
does is make explicit the degree of the problem that popular
methods can create. With these methodological limitations
made clear, debate over best practices on these topics can
reside on more than conjecture, and the field can adopt some
minimal methodological guidelines to maximize power while
mitigating the risk of spurious findings as it moves forward.
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