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Abstract The design of longitudinal data collection is an es-
sential component of any study of change. A well-designed
study will maximize the efficiency of statistical tests and min-
imize the cost of available resources (e.g., budget). Two fam-
ilies of designs have been used to collect longitudinal data:
complete data (CD) and planned missing (PM) designs. This
article proposes a systematic and flexible procedure named
SEEDMC (SEarch for Efficient Designs using Monte Carlo
Simulation) to search for efficient CD and PM designs for
growth-curve modeling under budget constraints. This proce-
dure allows researchers to identify efficient designs for multi-
ple effects separately and simultaneously, and designs that are
robust to MCAR attrition. SEEDMC is applied to identify
efficient designs for key change parameters in linear and qua-
dratic growth models. The identified efficient designs are
summarized and the strengths and possible extensions of
SEEDMC are discussed.

Keywords Plannedmissing data designs . Growth curve
modeling . Efficiency . Longitudinal data collection

The design of longitudinal data collection is an essential com-
ponent of any study of change. Factors that researchers must
consider when planning such designs include but are not lim-
ited to the number and allocation of repeated measures, sam-
ple size, and minimizing unwanted factors such as carry-over
effects and attrition. In addition to these considerations, re-
searchers are typically constrained by a finite budget and lim-
ited resources which should also be taken into account at the
design stage. Awell-designed study will lead to statistical tests
that are maximally efficient, that is, precise and powerful
(Berger & Wong, 2009), given available resources.

Two families of designs can be used to collect longitudinal
data: complete data (CD) and planned missing (PM) designs.
Each of these designs represents a unique combination of
design factors (e.g., number of repeated measures per partici-
pant and allocation of the repeated measures to time points),
leading to the differential efficiency of target statistical proce-
dures. Given two designs, the more efficient one produces
parameter estimates that have smaller sampling variability,
leading to smaller standard errors, tighter confidence intervals,
and thus higher power to detect non-zero effects. Thus, more
efficient designs are preferred.

Although past research has studied CD designs and specific
PM designs, no study so far has searched for the most efficient
design among all possible CD and PM designs. Furthermore,
the effect of unplanned missingness (missingness that is not
due to design, e.g., attrition) has been studied for CD designs
but not for PM designs. Given that unplanned missingness is
ubiquitous in longitudinal studies, this is an important issue to
address. Identifying efficient designs is not a trivial matter. As
shown in the examples below, using an efficient design may
save up to 75 % of the research budget while achieving the
same efficiency to detect target effects when compared to
commonly used designs. In the current article, we propose a
systematic procedure called SEEDMC to search for efficient
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CD and PM designs with attrition for longitudinal growth
curve designs under budget constraints.

The article is organized as follows. First, we briefly intro-
duce growth-curve modeling with linear and quadratic change
trajectories. We then explain CD and PM designs in detail and
review the literature on these designs. Next, we describe the
SEEDMC procedure and use it to identify efficient designs for
linear and quadratic growth models. We conclude by
discussing the strengths and limitations of SEEDMC and pos-
sible future extensions.

Growth-curve modeling (GCM)

GCM allows researchers to examine the average change trajec-
tory of a trait, behavior, or ability over time, the individual var-
iability in the change trend, and the predictors (e.g., treatment)
that explain individual variability in the change trajectory (Wu,
Selig, & Little 2012). Most commonly, GCM is applied to lon-
gitudinal data with a limited and fixed number of measurement
occasions (e.g., 5-yearly measures of school achievement).

In GCM, the shape of a change curve is determined by so-
called growth coefficients. If the curve is linear, the growth
coefficients are an intercept and linear slope (constant rate of
change over time). If the curve is quadratic, the growth coef-
ficients are an intercept, linear slope (instantaneous rate of
change at some time point), and quadratic rate (the change
rate of the linear slope over time). In GCM, growth coeffi-
cients are random as their values can vary across individuals.

GCM can be implemented as either mixed/multilevel models
or as structural equation models (SEMs) (Chou, Bentler, &
Pentz, 1998). In the SEM framework, the growth coefficients
are treated as latent factors which predict the repeated measures
(Bollen & Curran, 2006; Meredith & Tisak, 1990). Figure 1
displays a linear GCM of 5-yearly observations of a given

outcome (i.e., Y1 – Y5). The factor loadings associated with
the latent slope factor are 0, 1, 2, 3, and 4, indicating the time
elapsed since the beginning of the study. The intercept factor
(β0) in this case represents the subjects’ initial status on Y (e.g.,
children’s achievement in the first year of school) and the slope
factor (β1) represents the change in Y per year (e.g., children’s
linear growth in achievement over 5 years). ε1 – ε5 are residuals
which capture the deviations of the observed data from the
predicted individual curves, and they are typically assumed to
be independent and identically normally distributed.

To extend the linear model to fit a quadratic curve, one
more latent factor representing the quadratic term must be
added to predict the repeated measures. The factor loadings
associated with the quadratic term are squared time scores
(i.e., 0, 1, 4, 9, and 16). In either the linear or quadratic model,
the means of the growth coefficients (e.g., mean intercept and
slope for a linear model) and the covariance matrix of the
growth coefficients are typically estimated along with the re-
sidual variance.1 Predictors of the growth coefficients can also
be incorporated into the model by adding pathways from the
predictors to the latent factors. Means of the growth coeffi-
cients and effects of predictors are often called fixed-effect
parameters because they are constant across individuals. In
contrast, the elements in the covariance matrix of the growth
coefficients are called random-effect parameters as they cap-
ture individual variability on the growth coefficients. For ease
of reference, we refer to the models with and without predic-
tors of the growth coefficients as conditional and uncondition-
al models, respectively.

Complete and planned missing designs

Having introduced the analysis method for change, we now
turn to the CD and PM designs for longitudinal data collec-
tion. We define CD designs as those in which all participants
participate at the same time points (i.e., designs with only one
planned response pattern). For example, if a researcher is in-
terested in the rate of change over 5 years and the outcome can
only be measured once per year, a commonly used CD design
is to collect data from all participants in each of the 5 years.
This is not the only possible CD design, however. Alternate
CD designs for the same research question could collect data
from all participants in year 1, year 2, and year 5, or just year 1
and year 5. Given a fixed budget, these alternate designs could
compensate for fewer measurement occasions by using a larg-
er sample size. It would be interesting to know which CD
design is most efficient for a specific research problem.

Fig. 1 A linear growth curve model of five repeated measures. Note. Y1

– Y5 are repeated measures, β0 and β1 are latent intercept and slope,
respectively, and ε1 – ε5 are residuals. The paths from the triangle to β0

and β1 indicate the mean intercept and slope, respectively

1 Depending on how the model is specified, there can be more or fewer
parameters. For example, there will be fewer parameters if some of the
parameters (e.g., slope variance) are constrained to be 0 and more param-
eters if the residuals have heterogeneous variance over time, autocorrela-
tions, or both.
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Since different CD designs have a different number and allo-
cation of repeated measures, a systematic search for efficient
CD designs can address two important design questions: How
many measurement occasions should be included, and how
should these be allocated across the time span of the study to
achieve maximum efficiency?

In contrast to CD designs, PM designs divide individuals into
groups, each of which is randomly assigned to a subset of the
measurement occasions (Graham, Taylor, & Cumsille, 2001;
Graham, Taylor, Olchowski, & Cumsille, 2006; Little &
Rhemtulla, 2013; Rhemtulla, Jia, Wu, & Little, 2014). The
resulting dataset has more than one response pattern and contains
missing data due to design. For instance, a possible PM design
for the 5-year example above includes three groups of partici-
pants, one measured at years 1 , 2, and 5, another measured at
years 1, 3, and 5, and the last measured at years 1, 4, and 5 (see
Table 1). In this design, each participant has missing data on two
of the five measurement occasions. Consequently, a missing data
method has to be used to analyze the data.

Depending on the number of patterns, number of repeated
measures in each pattern, and allocation of repeated measures in
each pattern, a large number of PM designs are possible. It would
be interesting to know which PM design is most efficient for a
specific research problem as well as how these PM designs per-
form compared to CD designs for the same problem. A system-
atic search for efficient designs among both types of designs can
address not only the two design questions mentioned above, but
also the additional questions:Howmany response patterns should
be used, andwhichmeasurement occasions should be included in
each response pattern to achieve maximum efficiency?

CD designs are more widely used and easier to implement
than PMdesigns. PM designs, however, have several potential
advantages (Graham, Taylor, & Cumsille, 2001; Mistler &
Enders, 2012). First, given a fixed budget, certain PM designs
can show higher efficiency than CD designs that include the
same number of total observed data points, because they can
offer a better balance between the number of repeated mea-
sures per participant/pattern and sample size2 (Galbraith, Stat,
&Marschner, 2002; Mistler & Enders, 2012). Second, given a
fixed sample size, PM designs require fewer repeated mea-
sures from each individual to achieve the same number of
measurement occasions in the data as a CD design, at substan-
tially reduced cost (Hogue, Pornprasertmanit, Fry, Rhemtulla,
& Little, 2013). Third, because each participant receives fewer
repeated measures, carry-over effects caused by repeatedly
undergoing the same measurement procedure can be reduced
(Jorgensen, Rhemtulla, Schoemann, McPherson, Wu, &
Little, 2014). Finally, attrition rates may be lower when

participants are not required to participate in a large number
of measurement occasions (Harel, Stratton, & Aseltine, 2012).
Note that the missing data in a PM design are missing
completely at random (MCAR), which can be correctly han-
dled by modern missing data treatments such as full informa-
tion maximum likelihood (FIML) and multiple imputation
(MI) (Enders, 2010; Rubin, 1987). The merits of these designs
should be considered along with their efficiency.

Literature review

The majority of research on CD designs for the analysis of
change is found in the optimal design literature in biomedical
research. These studies typically use an efficiency criterion
called the D-optimal criterion, according to which the design
that minimizes the generalized variance of the target effects/
parameters is most efficient (Ouwens, Tan, & Berger, 2002).
The generalized variance is the determinant of the asymptotic
covariance matrix of the target coefficients. In the following,
we summarize the major findings from this literature.

First, given a fixed budget, it is not beneficial to have too
many repeated measures as these will contain redundant in-
formation (Ouwens et al., 2002; Tekle, Tan, & Berger, 2011).
For polynomial change trajectories (linear and quadratic tra-
jectories are special cases), if the shape of the change trajec-
tory is well understood and the goal is to achieve maximum
efficiency to detect fixed-effect parameters (e.g., mean inter-
cept and slope in a linear model), then the optimal number of
repeated measures in a CD design should be as close as pos-
sible to the number of growth parameters (e.g., two or three for
linear curves,3 three or four for quadratic curves; Moerbeek,
2005; Tekle, Tan, & Berger, 2011; Willett, Singer, & Martin,
1998).

Second, the optimal allocation of repeated measures in a
CD design is approximately equally spaced (Berger & Wong,
2009; Ouwens et al., 2002; Tekle et al., 2011). Although non-

Table 1 Example of a
planned missing (PM)
design

Pattern Measurement occasion

1 2 3 4 5

1 1 1 0 0 1

2 1 0 1 0 1

3 1 0 0 1 1

Note. 1= observed, 0 = missing

2 Between the two factors, holding one factor constant and increasing the
other will usually increase the efficiency of a study. However, with a fixed
budget, increasing one factor will cause a decrease of the other. In this
case, finding the right balance between the two factors is the key to
efficient designs.

3 The optimal number of repeated measures was identified assuming that
the model is identified with the number of repeated measures. For exam-
ple, in a CD design with two repeated measures, the linear model cannot
have more than five parameters. Such a model can be a GCMwith only a
random intercept or a GCM with autocorrelations among the repeated
measures but not random effects on the intercept and slope.
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equally spaced designs might turn out to be more efficient
than equally spaced designs in some cases, the difference in
efficiency between equally and nonequally spaced designs is
generally small. In addition, equally spaced designs tend to be
more practical and theoretically relevant than unequally
spaced repeated measures (Berger & Wong, 2009; Galbraith
& Marschner, 2002).

Third, the efficiency of optimal CD designs will be influ-
enced by unplanned missingness incurred during data collec-
tion. Galbraith and Marschner (2002) found that for linear
models, the loss of efficiency due to attrition was within
10 % if the attrition rate was no more than 30 %. Ortega-
Azurbuy, Tan, and Berger (2008) found that the efficiency loss
of D-optimal designs identified using complete data was with-
in 15 % with a 70 % attrition rate at the last time point.

Only a few studies in the optimal design literature have
considered PM designs (referred to as cohort designs in these
studies; Gan, 2011; Ouwens et al., 2002; Tekle, Tan, & Berger,
2008, 2011). These studies are restricted to very specific types
of PM designs. For example, Tekle et al. (2008, 2011) consid-
ered only non-overlapping missing data patterns (i.e., the
missing data patterns share no common measurement occa-
sion) and concluded that PM designs are less optimal than CD
designs. Gan (2011) and Ouwens et al. (2002) examined PM
designs with only two missing data patterns, both of which
were measured at the first and last measurement occasions
(each pattern captured a different intermediate measurement
occasion). Ouwens et al. (2002) found that the efficiency of
PM designs with three repeated measures in each of two
groups was almost as high as that of CD designs with four
repeatedmeasures in detecting linear or quadratic trends under
the same budget.

Outside of the optimal design literature, a few studies
have paid special attention to more complex PM designs
(Graham, Taylor, & Cumsille, 2001; Mistler & Enders,
2012). These studies compared several PM designs to the
corresponding CD designs that included the same number
of total measurement occasions. For example, Graham et al.
(2001) investigated the efficiency of various PM designs in
a longitudinal study with five measurement occasions.
They considered designs with all combinations of response
patterns with two, three, or four observations per pattern.
They found that PM designs resulted in higher efficiency
than the corresponding CD design to detect the effect of a
binary predictor on the linear slope in a quadratic model.
Graham et al. quantified efficiency using the asymptotic
standard error of the regression coefficient. Table 2 shows
the most efficient design in their study, which contains sev-
en missing data patterns, including one pattern with com-
plete data at every occasion and six patterns with complete
data on three occasions each. This design assigned higher
weight (i.e., more participants) to the groups measured at
both the first and last measurement occasions.

A follow-up study by Mistler and Enders (2012) examined
PM designs for linear and quadratic growth models with six
measurement occasions. They used power (the proportion of
coefficients whose confidence intervals excluded zero) from
Monte Carlo simulation as a proxy for efficiency, with higher
power indicating higher efficiency. They compared three de-
signs: design 1 was a CD design with six measurement occa-
sions, design 2 was a PM design containing all possible com-
binations of 4 measurement occasions, and design 3 contained
only those combinations of four measurement occasions that
included the first and last measurement occasions (see
Table 3). They found that design 3 led to the most efficient
estimates of linear and quadratic growth trends given a fixed
totally number of observed data points.

Limitations of previous research

Research on CD designs in the optimal design literature has
focused on multiple fixed effects simultaneously (e.g., both
intercept and slope). Thus, it is not clear whether the design
that is most efficient for multiple effects is most efficient for
any given effect. In addition, this research has only considered
the efficiency of a design to detect the shape of a change
trajectory. None have examined the predictor effects (e.g.,

Table 2 Design 3c in Graham et al. (2001)

Pattern Measurement occasion Percentage of sample

1 2 3 4 5

1 1 1 1 1 1 9.1 %

2 1 1 1 0 0 10.1 %

3 1 1 0 1 0 10.1 %

4 1 0 1 1 0 10.1 %

5 1 1 0 0 1 20.2 %

6 1 0 1 0 1 20.2 %

7 1 0 0 1 1 20.2 %

Note. 1= observed, 0 = missing

Table 3 Design 3 in Mistler and Enders (2012)

Pattern Measurement occasion Percentage of sample

1 2 3 4 5 6

1 1 1 1 0 0 1 16.7 %

2 1 1 0 1 0 1 16.7 %

3 1 0 1 1 0 1 16.7 %

4 1 1 0 0 1 1 16.7 %

5 1 0 1 0 1 1 16.7 %

6 1 0 0 1 1 1 16.7 %

Note. 1= observed, 0 = missing. See Table 41.4 in Mistler and Enders
(2012)
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treatment) on change trajectories, which are often key effects
in longitudinal studies.

The research on PM designs also has several limitations.
First, many studies on PM designs compared PM designs to
only a single CD design: the design with data on all measure-
ment occasions, which is not necessarily the most efficient CD
design for the target analysis. As a result, it is not clear how
these PM designs would perform compared to more efficient
CD designs (i.e., CD designs with fewer repeated measures).
Second, these studies have not accounted for attrition or addi-
tional unplanned missingness in PM designs. Thus, it is not
clear whether the designs that are efficient under planned
missingness would continue to be efficient when unplanned
missingness occurs. Third, although some specific PM de-
signs are recommended in these studies, a systematic proce-
dure to search for efficient PM designs is lacking.

In response to these limitations in the previous liter-
ature, we propose a systematic procedure to search for
efficient designs for growth-curve modeling within a
large pool of CD and PM designs using Monte Carlo
Simulation. We call this procedure SEEDMC (SEarch
for Efficient Designs using Monte Carlo Simulation).
Although Monte Carlo simulation is not a new tech-
nique, this is the first attempt to develop a comprehen-
sive search process that incorporates both CD and PM
designs with attrition taken into account. More impor-
tantly, due to the flexibility of Monte Carlo simulation,
this procedure can be readily extended to any change
trajectory (linear or nonlinear), type of missing data
whether planned or unplanned, type of variables (con-
tinuous or categorical), and estimation method (e.g.,
maximum likelihood-based estimation methods or
weighted least square-based estimation methods;
Hancock & French, 2013; Muthén & Muthén, 2002).
This flexibility will be revisited in the discussion
section.

SEEDMC (SEarch for Efficient Designs usingMonte
Carlo Simulation)

Three steps are involved in the search procedure. The
first is to decide the maximum number of measurement
occasions (MNM). BMaximum^ is used here to indicate
the fact that the total number of measurement occasions
in a design may not necessarily include all possible
measurement occasions (e.g., a CD design could include
three, four, or five measurement occasions when MNM
= 5). The MNM is defined based on a reasonable and
practical unit of time (e.g., month, half a year, or year)
and a desirable length of study. Second, based on the
MNM, a design pool that contains all possible CD and
PM designs is defined. Third, Monte Carlo simulation is

used to evaluate the efficiency of each parameter esti-
mate for each design in the design pool, and the most
efficient designs are identified for the target estimate(s).
The second and third steps are explained further below.

In the second step, to reduce the size of the design pool to a
manageable level, it is reasonable to impose certain con-
straints on the design pool. For example, to make sure that
all CD designs share the same length of study, we restrict the
CD designs to ones with observations at the first and last
measurement occasions. In addition, a minimum number of
repeated measures should be specified for CD designs so that
the model under consideration can be identified. For example,
a typical linear GCM requires at least three and a typical qua-
dratic GCM requires at least four repeated measures to be
identified.

We restrict our search for PM designs to ones that
satisfy the following conditions: (1) the number of re-
peated measures in the sample is equal to the MNM but
the number of repeated measures per pattern is less than
the MNM (i.e., no pattern has complete data at all mea-
surement occasions), (2) the response patterns in each
design include the same number of repeated measures
(ranges from 2 to MNM - 1), and (3) the proportion of
participants assigned to each pattern is uniform, that is,
the missing data patterns are equally weighted. We im-
posed these restrictions in order to keep the number of
PM designs under consideration to a manageable num-
ber, though it is possible that the best PM design is
excluded by these constraints.

The following notation is used for each design. Each re-
sponse pattern is given as a list of the measurement occasions
included in that pattern; multiple response patterns are sepa-
rated by a bar, and the set of response patterns for a design is
enclosed in brackets. For instance, the design shown in
Table 3 is presented as {1,2,3,6 | 1,2,4,6 | 1,3,4,6 | 1,2,5,6 |
1,3,5,6 | 1,4,5,6}.

Having defined the design pool, SEEDMC then uses the
Monte Carlo method to generate a large number of samples/
replications (e.g., 5,000) for each design based on the hypoth-
esized model, the response pattern(s) in the design, and the
pre-specified rates of attrition imposed at each of the measure-
ment occasions (details about how attrition is imposed are
provided in the first example).

Given a fixed budget, N of the simulated data varies across
designs. Specifically, the N for a design is a function of the
total budget (B), the cost of collecting each data point (C), and
the number of repeated measures per pattern (T),

N ¼ B
.

T � Cð Þ: ð1Þ

Note that this function assumes that every data point is
equally expensive, which may be an unreasonable assumption
(i.e., collecting the first data point from a new participant may
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be much more expensive than collecting a subsequent data
point from someone who is already enrolled in the study).
This possibility is discussed further in the Discussion. After
the samples are generated, the hypothesized model is fitted to
each sample. The analysis results are used to evaluate the
efficiency of each design for each target parameter.

Relative efficiency

We measure the efficiency of an estimate in a design by
the inverse of the sampling variance of the estimate
resulting from the design. Sampling variance is inverse-
ly proportional to the amount of information available
for estimating the parameter. Thus a design that mini-
mizes the sampling variance would also maximize the
amount of information available for estimating the pa-
rameter, leading to maximized efficiency. A lower sam-
pling variance will also correspond to a smaller standard
error, a larger test statistic value, leading to higher pow-
er to detect non-zero parameters. This measure of effi-
ciency is consistent with the D-optimal criterion adopted
in the optimal design literature (with the difference that
the D-optimal criterion summarizes efficiency over all
parameter estimates rather than considering them singly)
and the criterion used in Graham et al. (2001). Note
that in Monte Carlo simulation, we obtain the empirical
sampling variance (i.e., the observed variance of param-
eter estimates over repeated samples) instead of the as-
ymptotic variance of a parameter estimate. Compared to
the asymptotic variance, the empirical variance better
captures the sampling variability of the parameter esti-
mate under finite sample sizes and missing data. Let θ

be a given parameter and var θ̂
� �

be the empirical sam-

pling variance of an estimate of θ (θ̂). var θ̂
� �

is com-

puted as follows:

var θ̂
� �

¼

Xp

i¼1

θ̂i−θ
� �2

p
; ð2Þ

where θ̂i is the parameter estimate from the ith replication,

θ is the average parameter estimate across replications, and p
is the number of replications.

To compare the efficiency of multiple designs, we hold
constant the total number of observed data points associated
with the design, as a proxy for the cost of a design. To facilitate
comparison of efficiency among designs, the relative efficien-
cy of each design can be estimated for each parameter. The
relative efficiency (RE) of a design is the efficiency of a design
relative to the most efficient design. Let design 0 be the most
efficient design (i.e., the design with the smallest sampling

variance), and design 1 be any other comparison design, the
relative efficiency of design 1 is computed as follows.

cRE ¼ efficiencydesign1
efficiencydesign0

¼
1=var θ̂

� �
design1

1=var θ
� �

design0

¼
var θ̂

� �
design0

var θ
� �

design1

; ð3Þ

where cRE represents the estimated relative efficiency of

design 1. cRE ranges from 0 to 1 with higher values indicating

a more efficient design. For example, if the cRE is .80, then the
sampling variance from design 0 is 80 % as large as the var-
iance from design 1, and design 1 can be said to be 80 %

efficient relative to design 0. cRE can be used to compute the
additional number of data points (a proxy for cost, if the cost
of collecting each data point is equal) necessary for a design to
achieve the same efficiency as the most efficient design, using
the formula (1/ RE – 1)×100 %. For instance, if the RE for a
design is .80, then (1/.80 – 1)×100 % = 25%more data points
(or a 25 % higher budget) are needed for the design to achieve
the same efficiency as the most efficient design.

Due to the infinite number of replications used in the

Monte Carol simulation, cRE is subject to random simulation

error. In other words, cRE can change if one runs the search
process for more than one time. The simulation error de-
creases as number of simulated samples/replications in-
creases. We recommend at least 5,000 replications to mini-
mize the simulation error.

Once the relative efficiency of each design is obtained for
each parameter, one can start selecting the efficient designs. In
this study, instead of focusing only on the design with the largestcRE, we consider all designs with cRE ≥ .90 as efficient designs.
There are two benefits of doing this. First, this will offer more
design options, some of which might be preferable to the others
due to practical concerns. Second, considering more than one
efficient design for each effect can also facilitate the search for
designs that are simultaneously efficient for multiple key effects
(e.g., all fixed effects related to a slope factor). In this case, a
design that is simultaneously efficient across multiple effects

(e.g., has cRE ≥ .90 for all of the effects) is preferred to a design
that is maximally efficient for one specific effect but may be
inefficient for other key effects. Note that the threshold for effi-
cient designs (.90 is used here) may be adjusted according to the
extent to which a loss of efficiency can be tolerated.

In the next section, we use two examples to demonstrate
how the SEEDMC procedure identifies efficient designs for
key effects in linear and quadratic GCMs, respectively. In both
examples, MNM = 5 which is a commonly seen number of
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measurement occasions in practice. In addition, to examine
the effect of attrition on the relative efficiency of a design
and to identify efficient designs that are robust to attrition,
we imposed three levels of unplanned attrition (none, low,
and high).

Example 1: Linear GCM

In the first example, we applied SEEDMC to a linear growth
curve model described in Biesanz, Deeb-Sossa, Papadakis,
Bollen, & Curran (2004). This model had five measurement
occasions (i.e., MNM = 5), resulting in seven possible CD
designs and 48 PM designs that satisfy the restrictions de-
scribed above. Details of how the designs are identified are
given in Appendix 1. For ease of reference, we assign a label
to each design consisting of a letter to indicate whether it is a
complete data (C) or missing data (M) design and a number to
indicate the order of the design in the design pool. The order is
arbitrary and is not related to the efficiency of a design.

The SEEDMC algorithm simulated data from a linear
growth model with p = 5000 replications for each design un-
der each level of attrition. The population values of the param-
eters were taken from Biesanz et al. (2004). In the linear mod-
el, the latent intercept and slope had means of 39.46, and 8.06
respectively, variances of 28.78, and 8.20, respectively, and a
covariance of 1.56. The residual variances were constrained to
be equal to 30 at each measurement occasion. We adjusted the
residual variances and the covariance between the linear slope
and the intercept as the values reported in Biesanz et al.
(2004) led to convergence problems. To search for efficient
designs for predictor effects, we added a time-invariant pre-
dictor, Z, which had a .30 correlation with the intercept and the
linear slope.

Asmentioned above, we imposed three levels of unplanned
attrition (none, low, or high). Following Ortega-Azurduy, Tan,
and Berger (2008), for low or high attrition, the probability of
attrition at each measurement occasion was a linear function
of time.4 This probability increased as time increased which is
consistent with the common trend of attrition in longitudinal
studies. Since the probability of attrition is only determined by
time, which is treated as a fixed variable in the model, the
missing data mechanism is MCAR.

Low attrition : p yi j is missing
� �

¼ :075� time j ð4Þ

High attrition : p yi j is missing
� �

¼ :175� time j ð5Þ

where yij represents the outcome measure for the ith partic-
ipant at the jth measurement occasion, and timej represents the
elapsed time since the first measurement at the jth measure-
ment occasion.

For CD designs, all participants enter the study at the first
occasion. Thus, they all share the same probability of attrition
at each occasion. For low attrition, the probabilities are 0 %,
7.5 %, 15 %, 22.5 %, and 30 % at the five measurement
occasions, respectively (see Eq. 4). For high attrition, the
probabilities are 0 %, 17.5 %, 35 %, 52.5 %, and 70 %, re-
spectively (see Eq. 5). As indicated by a review conducted by
Gustavson, von Soest, Karevold, and Røysamb (2012), attri-
tion rates ranging from 30 % to 70 % are not uncommon in
longitudinal studies.

For PM designs, however, the participants enter the study
at different times depending on their designated response pat-
terns. As a result, the probability of attrition at a specific time
may also differ across participants. For instance, if a partici-
pant enters a study at the second measurement occasion and is
followed at the fourth and fifth measurement occasions, then
the time scores used to compute the probability of attrition will
be 0, 2, and 3 at the three occasions, respectively. Based on
Eq. 5, this will result in a probability of attrition of 0 %, 15 %,
and 22.5%. Compared to 7.5 %, 22.5%, and 30% at the same
measurement occasions in a CD design, these probabilities
were much lower. This way of computing probability of attri-
tion reflects the advantage of PM designs as a tool to reduce
unplanned attrition.

We arbitrarily set the cost of collecting each data point (C)
to US$20 and the total budget to US$100,000, so that the
sample size for the CD design with five repeated measures is
1,000. Note that although cost affects efficiency, we don’t
expect that the relative efficiency of a design given a fixed
cost would change much across different levels of cost. In this
sense, one can plug in any assumed cost values and obtain
similar results. However, we encourage researchers to provide
realistic values for the total cost and the cost of each data point
so that theMonte Carlo simulationwill be carried out based on
a realistic N for each design. In the case where the N is too
small, having additional attrition may cause convergence
problems in some of the designs.

The sample size for each of the other designs is determined
by Eq. 1. For example, for a PM design with three repeated
measures per pattern (T = 3), given B = US$100,000, and C =
US$20, N = 100,000/(3×20) = 1,667. By obtaining two fewer
observations from each participant, this design allows re-
searchers to collect data from 66.7 % more participants than
the corresponding CD design under the same budget.

After generating the data, two models are fit to each
data set. One is an unconditional linear model (without
the predictor Z) and the other is a conditional linear model
(with the predictor Z). The former is used to evaluate the
designs with respect to the means and variances of the

4 Ortega-Azurduy, et al. (2008) also examined a scenario where the prob-
ability of attrition increased as a quadratic function of time. However,
they did not find any meaningful difference in the result between the
linear and quadratic functions.
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growth factors. The latter is used to evaluate the designs
for the predictor effect on the growth factors.

Example 1: Results

We focus on efficient designs (i.e., designs with cRE ≥ .90) for
the fixed effects related to the slope (i.e, the mean slope and
the effect of Z on the slope) as they are often more interesting
to researchers than the fixed effects related to the intercept
(i.e., the mean intercept and the effect of Z on the intercept)
or the random effects of the intercept or slope. Efficient de-
signs for these target effects are presented in Table 4. The
results for the other parameters are included in the online
supplementary material. Generally speaking, the designs that
were efficient for the fixed effects related to the intercept are
those with complete data at the first measurement occasion.
This result makes intuitive sense, because the intercept repre-
sents the initial status of the outcome variable in the hypoth-
esized model. The designs efficient for the random effects
usually required at least one more repeated measure per pat-
tern than the efficient designs for the fixed effects because the
estimation of random effects requires more information than
the estimation of fixed effects.

As can be seen in Table 4, there are multiple efficient de-
signs for each target effect. For example, with no attrition,
there are six efficient designs for the predictor effect on the
linear slope. Given the space limit, we choose not to explain
every efficient design but focus on the common features of the
designs. Briefly, these designs are either PM designs with two
or three repeated measures per pattern or CD designs with
three repeated measures, suggesting that when the true change
trajectory is linear, one does not need more than three repeated
measures per participant to detect a linear trend or a predictor
effect on a linear trend. These PM designs allow researchers to
collect one fewer repeated measure per participant without
substantially sacrificing efficiency. In addition, almost all de-
signs include complete data (data on all participants) at the last
occasion.

Based on Table 4, researchers can select the design that
matches best with their research purposes, practical concerns,
and expected attrition levels. For instance, if the research
question centers around the predictor effect on the linear slope
and unplanned attrition is not expected, thenM18 = {1,5 | 2,5 |

3,5 | 4,5} (cRE = 1) is the most efficient design which contains
all combinations of response patterns with two repeated mea-
sures per pattern and complete data at the last measurement

occasion. C1 = {1,2,5} (cRE = .96) and C3 = {1,4,5} (cRE =
.95) are also good choices in this case if a CD design is
preferred.

In many cases, a researcher may prefer a design that is
efficient for the mean linear slope and the predictor effect on
the linear slope if they are both theoretically important, or a
design that is efficient across all attrition levels for a key effect
if prior knowledge on the expected attrition rates is not avail-
able. These designs can be found in the last row and last
column of Table 4 respectively. For instance, if the efficient
designs for both fixed effects is desired and the expected at-
trition level is low, then M18 = {1,5 | 2,5 | 3,5 | 4,5 }, C3 = {1,
4,5}, and M32 = {1,2,5 | 1,3,5 | 1,4,5} are all efficient designs
(see the last row of Table 4). If the mean linear slope is of
interest and the expected attrition rates are unknown, then
M18 is the best choice as it is the only efficient design for
the mean linear slope across all levels of attrition. In fact, for
the linear model,M18would be the best choice to detect either
or both of the fixed effects related to the slope regardless of the
attrition level.

The influence of attrition on cRE seemed to be dependent on
the type of design and the attrition level. M18, the most effi-
cient PM design for both effects was quite robust to MCAR

attrition. However, the cRE of the other efficient PM designs
(e.g., M32) tended to be decreased by high attrition but not by
low attrition. For CD designs, attrition seemed to affect the
allocation of the assessments but not the number of repeated
measures per pattern. Specifically, given the attrition rate in-
creasing over time, attrition tended to shift the data collection
points toward the occasion with a higher probability of

Table 4 Efficient designs for the fixed effects related to the slope in the linear model

Effect Attrition

None Low High All levels

Mean linear slope M18 (1.00)
C3 (.90), C1 (.90)

M18 (1.00), C3 (.96)
M32 (.90)

M18 (1.00) M18

Z on linear slope M18 (1.00), C1 (.96), C3 (.95)
M32 (.94), C2 (.93), M14 (.90)

M18 (1.00), C3 (.97)
M32 (.93), C2 (.90)

M18 (1.00) M18

Both fixed effects M18, C3, C1 M18, C3, M32 M18 M18

Note. The values in the parentheses are cRE s

C1 = {1, 2, 5}, C2 = {1, 3, 5}, C3 = {1, 4, 5}, M14 = {1, 2| 1, 3| 1, 4| 1, 5},

M18 = {1, 5| 2, 5| 3, 5| 4, 5}, M32 = {1, 2, 5| 1, 3, 5| 1, 4, 5}

1054 Behav Res (2016) 48:1047–1061



attrition. For example, C3 = {1,4,5} was preferred to C1 = {1,
2,5} with low attrition although their efficiencies were com-
parable when there was no attrition.

It is useful to show how the designs considered in the

previous studies perform. Here we reported the cRE s for
three designs: (1) the CD design with five repeated
measures (i.e., C7 = {1,2,3,4,5}). This is a commonly
used design in practice and the design to which the past
research on PM designs are compared, (2) Design 3c in
Graham et al., (2001; see Table 2) (note that this design
was not in the defined design pool because it has un-
equal assignment of participants to different patterns and
combines patterns with different numbers of repeated
measures; if this design is more efficient than the de-
signs in our design pool, then we might need to revise
the restrictions we imposed on the design pool to ac-
commodate such designs), and (3) a design comparable
to Design 3 in Mistler and Enders (2012; see Table 3).
Design 3 in Mistler and Enders (2012) has six measure-
ment occasions. A comparable design with five mea-
surement occasions that shares the same feature is
M22 = {1,2,3,5 | 1,2,4,5 | 1,3,4,5}.

It turns out that the cRE of the CD design ranged from .57 to

.66, the cRE of Graham et al.’s design ranged from .71 to .82,

and the cRE of Mistler and Enders’ design ranged from .69 to
.75 for the two fixed effects across the levels of attrition, com-
pared to the corresponding design with the smallest empirical

variance for each fix effect. These cRE s were low and none of
the designs outperformed the efficient designs identified using
our procedure. These results indicate that using the efficient
designs identified by SEEDMC can save up to 75 % of the
research budget [(1/0.57 − 1)×100 %] while achieving the
same level of efficiency for target effects, compared to the
commonly used or recommended designs in the previous
literature.

Example 2: Quadratic GCM

Example 2 aims to search for efficient designs for a quadratic
GCM. The same steps in Example 1 were applied here.5 The
only difference lies in the third step in which we simulated
data from a quadratic model instead of a linear model. The
population parameter values of the quadratic model were se-
lected to match those of a model reported in Singer andWillett
(2003; model C on page 221). Time was coded as 0, 1, 2, 3,
and 4. The intercept, linear slope, and quadratic term had

means of 13.97, −1.15, and 0.2, respectively, and variances
of 107.08, 24.60, and 1.22, respectively. The mean quadratic
curve is shown in Fig. 2. The covariance was −3.69 between
the linear slope and the intercept, −1.36 between the quadratic
slope and the intercept, and −4.96 the covariance between the
quadratic slope and the linear slope. The residual variances
were constrained to be equal to 41.98 across time.

Similarly, we included a predictor Z and fit both un-
conditional and conditional versions of the quadratic
models. The predictor Z had a .30 correlation with the
intercept, linear slope, and quadratic curvature. In the re-
sults report, we focus on describing the efficient designs
for four fixed effects: the fixed effects related to the linear
slope (i.e., the mean linear slope and the Z effect on the
linear slope) and the quadratic curvature (i.e., the mean
quadratic curvature and the Z effect on the quadratic
term). The results for the other parameters can be found
in the online supplementary material.

Example 2: Results

Table 5 lists the efficient designs for each of the four fixed
effects under the three levels of attrition.

Again, multiple efficient designs were identified for each
effect. These designs are either PM designs with three or four
repeated measures per pattern or CD designs with four repeat-
ed measures, indicating that researchers generally need one
more repeated measures per participant to detect a fixed effect
in a quadratic model than in a linear model.

Based on the designs, researchers can select the one that
best fits their needs. For example, if a researcher is most in-
terested in detecting the mean quadratic term and the expected

attrition level was low, then C4 = {1, 2, 3, 5} (cRE = 1) is the

most efficient design and M43 = {1,2,3,5 | 1,3,4,5} (cRE = .94)

and C6 = {1, 3, 4, 5} (cRE = .92) are good alternatives. If a
researcher wants a design that is efficient for both fixed effects
related to the quadratic term and the expected attrition level is

high, then C4 = {1,2,3,5} (cRE s ≥ .99 for both effects) and

M37 = {1,3,5 | 2,3,5 | 3,4,5} (cRE s ≥ .99 for both effects)

5 For convenience, the same design pool is used in both studies. This
design pool contains the CD designs with three repeated measures which
are not identified for a quadratic model. Including these designs does not
affect the search results.
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Fig. 2 The mean quadratic curve in Example 2
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are best choices (see the fourth column of Table 5). In
this case, M37 would be preferred if practice effect is a
concern as it requires one fewer assessment from each
participant than C4.

The designs that are efficient for all four fixed effects at a
specific attrition level and the designs that are efficient across
all attrition levels for a specific effect are presented in the last
row and last column of Table 5, respectively. If all four effects
are of interest and the expected attrition level is low, then three
designs will lead to highly efficient tests: C6 = {1,3,4,5}, C4 =
{1,2,3,5}, and M43 = {1,2,3,5 | 1,3,4,5}. On the other hand, if
one is interested in the efficient design for the mean quadratic
term but is unsure about the attrition level, then C4 = {1,2,3,5}
is a good choice as it is efficient across all levels of attrition.
Taking a closer look at the designs in the last row and column
of Table 5, one can see that most of the efficient designs shared
the following features. First, they all had four assessments per
pattern. Second, all patterns in these designs have complete
data on three occasions (first, third, and fifth), indicating that
the designs with assessments spread out through the length of
the study were quite efficient for the target fixed effects in the
quadratic model.

Similar to the result for the linear model, the influence of
attrition on the efficiency of a design depends on the type of
design as well as the level of attrition. For CD designs, attri-
tion tended to influence the allocation of the assessments but
not the number of occasions per pattern. However, different to
the result for the linear model, attrition shifted the repeated
measures toward the occasion with lower instead of higher
probability of attrition (e.g., C4 = {1,2,3,5} is preferred to
C6 = {1,3,4,5} with high attrition). For PM designs, the most
efficient PM designs under no attrition were not much affected
by low attrition. However, their REs decreased substantially

by high attrition. For example, for the mean linear slope, M30

= {1,2,3 | 1,3,4 | 1,3,5} (cRE = 1)was most efficient under no or

low attrition. However, with high attrition, its cRE dropped to
.90. For the fixed effects related to the quadratic term, M43 =

{1,2,3,5 | 1,3,4,5} (cRE = 1) was most efficient under no attri-

tion. Its cRE dropped to .94 by low attrition and further dropped
to .87 by high attrition.

Again, we examined the cRE of the CD design with five re-
peated measures (i.e., C7), Graham et al.’s (2001) design, and
Mistler and Enders’ (2012) design (i.e.,M22) for the target effects

in the quadratic model. The cRE of the CD design ranged from .80

to .86, the cRE of Graham et al.’s design ranged from .71 to .88,

and the cRE of Mistler and Enders’ design ranged from .83 to .92
across the four effects. Although the efficiencies of these designs
for the quadratic model were generally higher than those for the
linear model, none of them outperformed the most efficient de-
signs identified using SEEDMC except that Mistler and Enders’

(2012) design was efficient (cRE = .92) for the mean quadratic
term and the predictor effect on the quadratic term. These results
suggest that using the efficient designs identified by SEEDMC
can save up to 41 % of the research budget [(1/0.71 − 1)×100 %]
while achieving the same level of efficiency, compared to the
commonly used or recommended designs in the previous
literature.

Software implementation

We developed an R package BSEEDMC^ to implement the
proposed procedure (Jia, & Wu, 2015). This package can be
downloaded from http://www.people.ku.edu/~wwei/. SEED

Table 5 Efficient designs for the target fixed effects in the quadratic model

Effect Attrition

None Low High All levels

Mean
linear slope

M30 (1.00), C6 (.97), M43 (.93),
M20 (.90)

M30 (1.00), C6 (.99), C4 (.96),
M43 (.96), M20 (.92), M39 (.91)

C4 (1.00), M39 (.91), M43 (.91),
M29 (.90), M30 (.90)

M30, M43

Mean
quadratic term

M43 (1.00), C4 (1.00), C6 (.99),
M22 (.92)

C4 (1.00), M43 (.94), C6 (.92) C4 (1.00), M37 (.99), M11 (.93) C4

Z on
linear slope

M30 (1.00), C6 (1.00), M43 (.95),
C4 (.91), M20 (.91)

C6 (1.00), M30 (.97), M43 (.96),
C4 (.96), M20 (.92), M39 (.90)

C4 (1.00), M43 (.92), M39 (.91) M43, C4

Z on
quadratic term

M43 (1.00), C4 (.99), C6 (.99),
M22 (.92)

C4 (1.00), M43 (.94), C6 (.93) M37 (1.00), C4 (.99), M11(.92),
M27 (.90), M46 (.90)

C4

All fixed effects C6, M43 C6, C4, M43 C4 NA

Note. The values in the parentheses are cRE s

C4 = {1, 2, 3, 5}, C6 = {1, 3, 4, 5}, M11 = {1, 2, 3| 1, 3, 4| 1, 3, 5| 2, 3, 4| 2, 3, 5| 3, 4, 5},

M20 = {1, 2, 3, 4| 1, 2, 3, 5| 1, 3, 4, 5}, M22 = {1, 2, 3, 5| 1, 2, 4, 5| 1, 3, 4, 5},

M27 = {1, 2, 3, 5| 1, 3, 4, 5| 2, 3, 4, 5}, M29 = {1, 2, 3| 1, 2, 4| 1, 2, 5},

M30 = {1, 2, 3| 1, 3, 4| 1, 3, 5}, M37 = {1, 3, 5| 2, 3, 5| 3, 4, 5}, M39 = {1, 2, 3, 4| 1, 2, 3, 5}, M43 = {1, 2, 3, 5| 1, 3, 4, 5}, M46 = {1, 2, 3, 5| 2, 3, 4, 5}
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MC creates the design pool, and uses functions in the R
package MplusAutomation (Hallquist & Wiley, 2014) to au-
tomate the Monte Carlo simulation in Mplus (Muthén &
Muthén, 1998–2012). The current version of the package
(i.e., SEEDMC 1.0.0) can accommodate user-specified un-
conditional linear and quadratic GCMs, and output the effi-
cient designs for any single effect and multiple effects based
on a selected threshold. The conditional models will be added
in a later version. The R codes used in the two examples above
(for the unconditional models with low attrition condition on-
ly) are included in Appendix 2. More examples and guidance
on the use of SEEDMC 1.0.0 can be found in the help docu-
ment of the package and from http://www.people.ku.edu/
~wwei/.

Discussion and conclusion

In the article, we proposed a systematic procedure, SEEDMC,
to search for efficient PM and CD designs in growth curve
modeling using Monte Carlo simulation. SEEDMC allows
researchers to identify the designs that are efficient for any
single effect of interest in a hypothesizedmodel or for multiple
effects simultaneously. Furthermore, it allows researchers to
identify efficient designs that are robust to MCAR attrition.

Applying SEEDMC to linear and quadratic GCMs, we
found that the efficient designs for the fixed effects related to
the slope factor in the linear model were PM designs with two
or three repeated measures per pattern and CD designs with
three repeated measures per pattern. The efficient designs for
the fixed effects related to the slope factors in the quadratic
model were PM designs with three or four repeated measures
per pattern and CD designs with four repeated measures per
pattern. Comparing to the most efficient CD designs, the PM
designs generally allow researchers to collect one fewer re-
peated measure from each participant without sacrificing effi-
ciency. These results echo those from the optimal design lit-
erature, indicating that the optimal number of repeated mea-
sures per pattern in the efficient designs for fixed effects
should be as close as possible to the number of fixed effects.
Our study also showed that the efficient designs for the pre-
dictor effect on a growth coefficient tended to have a great
deal of overlap with those for the mean growth coefficient.
This is good news because it means that researchers can resort
to one design to maximize the efficiency of tests on both fixed
effects.

With this procedure, we are also able to identify designs
that are efficient across multiple effects and at the same time
robust to MCAR attrition. For the linear model, a PM design
with two occasions per pattern (M18 = {1,5 | 2,5 | 3,5 | 4,5}) is
especially promising as it maximized the efficiency of the tests
for both fixed effects related to the linear slope regardless of
level of attrition. For the quadratic model, we failed to find a

design that is efficient across all target fixed effects and all
levels of attrition. However, the designs that were efficient
across all target effects at a specific level of attrition and the
designs that were efficient across all attrition levels for a spe-
cific effect were successfully identified.

Furthermore, we found that the influence of attrition on thecRE of efficient designs varied depending on the type of de-
sign, the level of attrition, and the form of the change trajec-
tory. For CD designs, attrition tended to influence the alloca-
tions of the repeated measures instead of the optimal number
of repeated measures in the CD designs. For linear model, the
repeated measures were shifted toward the occasions with
higher probability of attrition, while for the quadratic model,
the direction was the opposite. For PM designs, the most ef-
ficient PM design for the linear model was robust to MCAR
attrition. However, the most efficient PM designs for the qua-

dratic model tended to have a much lower cRE when attrition
rates were high. The mechanism by which PM designs are
influenced by attrition and why attrition favors one PM design
over another deserve further investigation.

It is important to note that we examined only one set of
parameter values for each of the linear and quadratic models.
Thus, the generalizability of the efficient designs we identified
in the two examples needs to be investigated. Researchers are
encouraged to use the R package we have developed to iden-
tify the efficient designs for their own hypothesized models
and parameter values.

As alluded to above, the biggest advantage of SEED
MC is its flexibility due to the use of Monte Carlo simu-
lation. It can be extended in several ways to solve design
problems in longitudinal studies. First, it can be extended
to MNM greater or less than 5. For example, given a fixed
length (e.g., 5 years), a smaller unit (e.g., half a year
instead of 1 year) results in more possible measurement
occasions which will result in a larger pool of CD and PM
designs. In this case, the SEEDMC approach may be also
used as a tool to identify the appropriate time interval.
For example, if the 1-year interval leads to designs with
similar efficiency to the half-a-year interval, then it
would not be necessary to collect data in a smaller
interval.

Second, SEEDMC can be extended to the change trajecto-
ries other than linear or quadratic (e.g., spline, exponential,
and logistic). To do so, one must simply simulate data from
the hypothesized form of the change trajectory and analyze the
simulated data using the hypothesized model. This will be a
big advantage over the traditional optimal design research
because the asymptotic covariance matrix is more difficult to
derive and the D-criterion is more difficult to optimize with
complex nonlinear models.

Third, SEEDMC can be extended to categorical outcome
variables such as ordinal or nominal outcome variables. The
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categorical data can be simulated in the third step and ana-
lyzed using estimators specifically designed for categorical
data such as weighted least squares types of estimators.
Efficient designs can be then identified in the same way as
described.

Fourth, SEEDMC can be extended to accommodate more
types of simulated attrition. The attrition we simulated in the
studies is determined by time. In longitudinal studies, the rea-
son a participant misses a planned measurement can be related
to his previous measures. In this case, having data on the
previous measurement is important to correctly model the
missingness mechanism and remove bias. In other words, if
the probability of missing an observation is related to a previ-
ous measure but one does not have observed data for that
measurement, then the missing data mechanism will be miss-
ing not at random (MNAR), resulting in biased parameter
estimates. In this case, designs should be selected not just
based on efficiency but also based on the accuracy of param-
eter estimates. In addition, attrition itself can be an interesting
outcome in some longitudinal studies. For example, in an
intervention study, attrition may reflect tolerability of the in-
tervention. In this case, the probability of attrition at each
measurement wave is often modeled jointly with the change
model. The proposed procedure can also be extended to this
case to search for designs that are jointly efficient for estimat-
ing effects in the change model as well as predictor effects of
attrition.

Note that there are two ways to impose unplanned attrition.
One is to impose attrition after computing the sample size for
each design, as we do in the current article. With this way of
taking into account attrition, the extent to which the designs
that are cost comparable with planned missingness are robust
to unplanned attrition is examined. However, the designs will
no longer be cost comparable after imposing the attrition. The
other is to compute the sample size for each design with the
expected attrition rates taken into consideration. When some
participants fail to attend planned assessment, a certain
amount of the budget can be freed up to recruit more partici-
pants. In this case, the designs will be still cost comparable
after imposing attrition at the design stage. This way of taking
into account unplanned attrition may sound better and can be
incorporated into the SEEDMC approach; however, it requires
researchers to have an accurate prediction of the attrition rates.
Otherwise, the actual cost will be different across the designs,
which will introduce bias into the predicted efficiency of the
designs.

In the current study, we assumed that the cost of collecting
a single data point is the same, whether it represents the first
data point of a new participant or the fifth data point of an
already-enrolled participant. In practice, the cost of an initial
measurement (i.e., recruiting a participant) can be much
higher than that of an additional repeated measurement (i.e.,
maintaining a participant) (Tekle et al., 2011). If this cost

discrepancy were high, CD designs would receive an efficien-
cy boost due to their lower average cost-per-data point. The
SEEDMC procedure can be extended to account for the dif-
ferent costs. In this case, sample size associated with each
design would be determined as a function of the total budget
(B), cost of recruiting new sample (CA), and cost of repeated
measure (CB), and the number of repeated measures in each
missing data pattern in the design (T): N = B/[CA + (T - 1) ×
CB]. This extension has been implemented in SEEDMC 1.0.0.

Finally, SEEDMC can be easily adjusted to accommodate
other types of resource constraints such as sample size con-
straints. For instance, studies targeting participants with spe-
cial characteristics (e.g., autism) may have a limited pool of
participants. With a fixed sample size, the CD design with
maximum number of repeated measures would be more effi-
cient than both CD designs with a smaller number of repeated
measures and all PM designs as it extracts the most informa-
tion from the fixed set of participants. However, there might
be PM designs that are almost as efficient as the CD design but
cost less. In addition, when practice effects occur (e.g., in
cognitive measurements; see Salthouse, Schroeder, & Ferrer,
2004), PM designs would be preferred because they lead to
more valid results even though they are less efficient than the
corresponding CD designs. SEEDMC can identify these de-
signs by fixing the sample size instead of budget to be equal
across designs. For example, for the quadratic model consid-
ered in the article, the efficiency of a PM design with four
measures per pattern {1, 2, 3, 5| 1, 3, 4, 5} (cRE = 92 %) is
an acceptable alternative to the CD design with five measures
(the most efficient design) in detecting the mean quadratic rate
given the same sample size and low attrition. SEEDMC 1.0.0
allows researchers to specify whether they have a budget or
sample size constraint.

In sum, analysis of change is of central interest to many
areas of research in social and behavioral sciences. The design
issues for analysis of change have received much less atten-
tion than the analysis issues. Focusing on an important design
issue, how to collect longitudinal data in a way to maximize
the efficiency of analysis of change, we developed a flexible
procedure to search for efficient CD and PM designs.
Combined with power analysis, this procedure will offer re-
searchers a data collection scheme that not only yields a de-
sirable level of power but also does so at a minimized cost. We
strongly advocate conducting such a search prior to data col-
lection for any longitudinal studies. We also hope that this
study will increase emphasis on design issues in longitudinal
studies in social and behavioral sciences.
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Appendixes

Appendix 1

Define the design pool

1) Complete data designs

Let MNM represent the maximum number of measurement
occasions and T be the number of repeated measures. The total
number of complete data designs with T ≥ 3 and repeated mea-
sures at the first and last measurement occasions is given by

KCD ¼
X

3≤T≤MNM

MNM−2
T−2

� �
:

For example, if MNM = 5, there are seven possible com-
plete data designs.

KCD ¼ 5−2
3−2

� �
þ 5−2

4−2

� �
þ 5−2

5−2

� �
¼ 3þ 3þ 1 ¼ 7

2) Missing data designs

Let Tc be the number of measurement occasions that have
complete data (Tc = 0, 1,…, MNM-2) and Tm be the number
of missing observations in a specific response pattern (1 ≤ Tm
≤ MNM - Tc -1), then the total number of PM designs is given
by

KPM ¼
X

1 ≤ Tm<MNM − Tc −1; Tc¼0

MNM
Tc

� �

þ
X

1 ≤ Tm ≤MNM − Tc −1; Tc>0

MNM
Tc

� �
:

For example, if T = 5, there are 48 possible missing data
designs.

KPM ¼ 5
0

� �
� 3þ 5

1

� �
� 3þ 5

2

� �
� 2þ 5

3

� �
� 1

¼ 3þ 15þ 20þ 10 ¼ 48

Appendix 2

R code used in the two examples

Example 1: Unconditional linear model

library(SEEDMC)
### Step 1: Create the design Pool

pool_linear <- designPool(type ="both",
traj = "linear",
time = 5, budget = 100000, unitcost = 20,
attrition = c(0, 0.075, 0.15, 0.225,
0.3))
summary(pool_linear)
## notations of the complete and missing
data designs
pool_linear$Complete$patterns_notation
pool_linear$Missing$patterns_notation
## Sample sizes of the complete and miss-
ing data designs
pool_linear$Complete$N
pool_linear$Missing$N
### Step 2: Create the Mplus syntax for hy-
pothesized model
fl <- matrix(NA, 5, 2)
fl[,1] <- 1
fl[,2] <- 0:4
latcov <- matrix(NA, 2, 2)
diag(latcov) <- c(28.776, 8.201)
latcov[1, 2] <- 1.56
latcov[2, 1] <- 1.56
latmean <- c(39.457, 8.063)
resvar <- 30
mod_linear <- modelMplus(fl = fl, latcov
= latcov,
latmean = latmean, resvar = resvar)
### Step 3: Monte Carlo simulation using
Mplus
seedmc_linear <- seedmcMplus(pattern =
pool_linear,
model = mod_linear,
nreps = 5000,
seed = 123321)
### Step 4: Compute relative efficiencies
of each design for
### target parameters
e f f _ l i n e a r < - t o p D e s i g n s ( x =
seedmc_linear,
param = c("Means.S"),
out = "mix", maxerr = 0.05,
recut = 0)

Example 2: Unconditional quadratic model

library(SEEDMC)
pool_quadratic <- designPool(type
="both", traj = "quadratic",
time = 5, budget = 100000, unitcost = 20,
attrition = c(0, 0.075, 0.15, 0.225,
0.3))
fl <- matrix(NA, 5, 3)
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