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Abstract The methodologies for the construction of a
knowledge structure mainly refer to the query to experts, the
skill maps, and the data-driven approaches. This last method
is of growing interest in recent literature. In this paper, an
iterative procedure for building a skill map from a set of data
is introduced. This procedure is based on the minimization
of the distance between the knowledge structure delineated
by a given skill map and the data. The accuracy of the
proposed method is tested through a number of simulation
studies where the amount of noise in the data is manipu-
lated as well as the kind of structure to be reconstructed.
Results show that the procedure is accurate and that its per-
formance tends to be sufficiently stable even with high error
rates. The procedure is compared to two already-existing
methodologies to derive knowledge structures from a set of
data. The use of the corrected Akaike Information Criterion
(AICc) as a stopping criterion of the iterative reconstruction
procedure is tested against the app criterion introduced by
Schrepp. Moreover, two empirical applications on clinical
data are reported, and their results show the applicability of
the procedure.
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Introduction

The present paper aims to introduce a new methodology
within the framework of the Knowledge Space Theory
(KST; Doignon & Falmagne, 1985, 1999; Falmagne &
Doignon, 2011) to derive a skill map from a data set. A skill
map is a function that assigns to each item the set of abil-
ities needed to solve it. KST has been mainly applied in
the assessment of knowledge of students. One of its most
successful applications is the software ALEKS (Assessment
and LEarning in Knowledge Spaces; Doignon & Falmagne,
1999; Falmagne, Doble, Albert, Eppstein, & Hu, 2013;
Falmagne & Doignon, 2011). Nevertheless, in recent years,
the KST approach has been applied in clinical contexts in
order to carry out an effective and adaptive assessment of
the clinical state of patients (Bottesi et al., 2014). Such
applications have shown both that the KST approach could
adequately fit clinical requirements, and that the possibility
to further theoretically develop these innovative applications
deserves a great attention.

In KST, some basic concepts are defined: a knowledge
domain is the entire set Q of items that can be asked
about a specific topic; a knowledge state is the subset K of
the knowledge domain that a person masters; a knowledge
structure is a pair (Q, K) where K is the collection of all
knowledge states existing in a population, containing at least
the empty set (¥) and the total set (Q).

One of the core issues related to KST is the construction
of knowledge structures. Generally speaking, three main
areas are usually explored in addressing this task: the first
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way is the query to experts procedure (Cosyn & Thiéry,
2000; Kambouri et al., 1993; Koppen, 1993; Koppen &
Doignon, 1990; Stefanutti & Koppen, 2003); the second
methodology refers to the skill maps approach (Doignon,
1994; Diintsch & Gediga, 1995; Heller et al., 2013; Korossy,
1997; Spoto et al., 2010, 2012); the third one—of growing
interest in recent literature—is the data-driven methodology
(Schrepp, 1999b, 2002, 2003; Unlii et al., 201 3). In this arti-
cle, a procedure is proposed that combines the skill map and
the data-driven approaches. The skill map approach, intro-
duced to allow KST to move beyond the mere behavioral
perspective (Doignon, 1994; Doignon & Falmagne, 1999;
Falmagne et al., 1990), represents an appealing method-
ology to build knowledge structures. It is based on the
possibility of assigning to each item g € Q asubset 7 € §
of skills needed to master g. For instance, consider the
following four items in elementary arithmetic:

1. 86+14="2
2. 100—14=7

3. (86+ 14)/4 =72
4. (100 — 14)/2 =2

It can be reasonably assumed that at least three skills
are needed to solve one or more of the four items. More
specifically, the following skills can be defined:

a) sum two integer numbers;
b) subtract two integer numbers;
c) divide two integer numbers.

It can be argued that item 1 requires skill a, item 2
requires skill b, whereas item 3 requires both skills @ and
¢, and item 4 requires both skills » and c. Starting from
such assignment, it is possible to deduce which knowledge
states appear in the structure (as explained in Section 2).
One of the crucial aspects to be considered in performing
the item-skill association is the rule, here named model,
about the relation between items and skills. A skill map is
a triple (Q, S, r) where Q is a nonempty set of items, S
is a nonempty set of skills, and 7 is a mapping from the
set Q of items to the power set of S, assigning to each
item a nonempty set of skills. Three different models are
usually taken into account: the disjunctive, the conjunctive,
and the competency model (Doignon & Falmagne, 1999;
Korossy, 1997). In the disjunctive model, in order to mas-
ter ¢, it is sufficient to have one of the skills in 7(g). In the
conjunctive model, on the contrary, all the skills assigned
to an item are needed to master it, this model applies, for
instance, to the example given above. For a detailed expla-
nation of these two models as well as of the competency
model, which is beyond the scope of this article, refer to,
e.g., Doignon and Falmagne 1999. The data-driven method-
ology refers to the possibility to generate a knowledge
structure starting from a set of collected data. All the data-
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driven methods available at the present for the construction
of knowledge structures can be subdivided into two main
categories (Falmagne et al., 2013): on one hand, we have
the Boolean analysis of questionnaires methods, aimed at
building an implication relation among the items of a ques-
tionnaire (Sargin & Unlii, 2009; Schrepp, 1999b); on the
other hand, the second group of methods derives structures
directly from data (e.g.; Desmarais & Maluf, 1996; Schrepp,
1999a). Both methodologies follow approximately the same
three-step procedure: the first step consists of constructing
a set of relations/knowledge structures; the second step tests
such models according to a set of fitting criteria; in the last
step, the best fitting model is selected as the best represen-
tation of the latent structure. Examples of the first class of
methods are the Item Tree Analysis (ITA; Unlii & Albert,
2004; vanLeeuwe, 1974) and the Inductive Item Tree Anal-
ysis (IITA; Schrepp, 2002, 2003). Examples of the second
class of methods can be found, for example, in Schrepp
(1999a). In the present paper, we propose a method to derive
a skill map from an empirical data set. The method, which
is the first attempt in literature to carry out this task, consists
of first deriving a knowledge structure from data, and then
deriving the skill map that corresponds to that structure. The
next sections present some further details on the main con-
cepts of KST, illustrate the proposed procedure, and, finally
review a simulation study and two practical applications on
real data to show how the procedure works and its pros and
cons.

Extracting knowledge structures from skill maps

As already stated in the Introduction, a skill map is a triple
(0, S,t) where Q is a nonempty set of items, S is a
nonempty set of skills, and 7 is a mapping from Q to 25\{@},
assigning to each item a nonempty set of skills. Consider-
ing again the example proposed in the Introduction, if we
set 0 ={1,2,3,4} and S = {a, b, c}, then the displayed in
Table 1 can be obtained.

A skill map allows two different interpretations, corre-
sponding to two different models. According to the con-
junctive model, in order to master an item g a student must
possess all the skills in 7(g). Therefore, if T C § is the set

Table 1 Skill map used in the example (see the text)

Item(q) 7(q)

1 {a}

2 {b}

3 {a,c}
4 {b, ¢}
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of all skills possessed by a student, then, the set of items
mastered by this student will be:

K ={q € Qlt(q) € T} ey

This model applies to the example provided in the Intro-
duction. Suppose that {a, b} is the set of skills possessed by
a student. By an application of Eq. 1 it is possible to con-
clude that the knowledge state of that student is {1, 2}. If
Eq. 1 is applied to every possible subset 7 C S, a collection
C of knowledge states is obtained. This collection is called
the knowledge structure delineated by skill map 7 via the
conjunctive model. In the example at hand, the delineated
knowledge structure is:

C=1{0. {1} {2}, (1,2}, {1, 3}. {2, 4}, Q}. 2

It can be observed that the intersection of any two sets in
Cis again in C, i.e., the structure is closed under intersection
and it is named closure space. This is not a coincidence, but
a precise property of knowledge structures delineated via
the conjunctive model. According to the disjunctive model,
in order to master an item, ¢, a student must possess at least
one of the skills in t(g). Therefore, if T C S is the set of all
skills possessed by a student, then the set of items mastered
by this student will be:

K ={q e Qlt(g)NT #0}; 3

The collection of all knowledge states obtained in this
way is the knowledge structure X delineated via the dis-
junctive model. Knowledge structures delineated via the
disjunctive model are closed under union, i.e., every union
of sets in I produces a set already contained in K; such
structures are named knowledge spaces. To give an example,
consider the skill map (Q, S, t/), where S’ = {a’, ¥, ¢'},
and 7’ is such that /(1) = {d'}, T’2Q) = {b'}, T'(3) =
{a’, c'}, and T/ (4) = {I', ¢'}. Then, the knowledge structure
IC delineated by this skill map via the disjunctive model is:

K =1{9,{1, 3}, {2,4}, (3,4}, {1, 3,4}, {2, 3,4}, O}. “)

An important relationship exists between the knowledge
space K and the closure space C delineated by the same skill
map (Q, S, 7). In fact, C can be obtained from /C as the set
of the complements of the states in C, known as the dual
of K:

C={0\K|K € K}.

To summarize, the knowledge space K delineated by a
skill map 7 via the disjunctive model and the closure space C
delineated by the same skill map via the conjunctive model
are dual of one another.

Deriving skill maps from knowledge structures

The material in the previous section was based on the
assumption that a skill map can be constructed starting
from theoretical considerations about the items. The knowl-
edge structure on the set of items is then derived from the
skill map. In this section, we consider the opposite situ-
ation: a knowledge structure is available and a skill map
delineating this structure has to be identified. This is possi-
ble if the knowledge structure is closed under either union,
intersection or both. The former case is considered first.

Any knowledge space defined on a finite set O, has a
basis, which is the minimal set of states that cannot be
obtained as unions of other states. Starting from the basis,
it is possible to reconstruct the knowledge space by closing
the basis under set union. In the example above, it is possible
to see that the basis By of Eq. 4 is:

Bxc = {{1,3}, {2, 4}, {3, 4}}.

Theorem 6.3.8 of Falmagne and Doignon (2011) asserts
that any knowledge space is delineated by some (minimal)
skill map if and only if it has a basis whose cardinality
equals that of the set of skills. A strong relationship exists
between the basis of a knowledge space and the smallest
skill map delineating it.

Corollary 1 Assume that K is a space with basis B, and S
an arbitrary set such that there is a bijective correspondence
f S — B. Then the space delineated by the disjunctive
skillmapt(q) ={s € S:q e f(s)}is K.

Proof First, it can be seen that t(q) = {s € S : g €
f()} & s € t(q) & q € f(s). Then, by the disjunctive
model, we know that K = {g € Q : t(¢) N T # @},
i.e., Eq. 3. By applying Eq. 3 to the singleton {s} we have
g e Q:t@n{st #0 =1{qg € Q:5¢€1(@)=
{g € O :q € f(s)}. By applying the same procedure to all
the singletons, all the element of the basis B are reproduced.
Then, K is obtained by closure under union of 5. O

To give an example of the application of Corollary 1, let
S = {a, b, ¢}, and define the bijection f : § — Bx such
that f(a) = {1, 3}, f(b) = {2,4}, and f(c) = {3, 4}. Now,
setting 7(q) = {s € S : g € f(s)} for each item g € Q the
skill map in Table 1 is obtained. We recall that this is exactly
the skill map delineating /C under the disjunctive model.

Suppose now that a knowledge structure C is closed
under set intersection. The dual of C is a knowledge space
and by Corollary 1 it is delineated by a minimal skill map ¢
via the disjunctive model. This implies that C is delineated
by 7 via the conjunctive model. Therefore, if in a concrete
situation the objective is to find the skill map delineating C
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via the conjunctive model, the following steps provide the
desired results:

1. the dual K of C is computed,;

2. the basis By of K is obtained;

3. aset S of abstract skills is defined such that there is a
bijection f : S — B;

4. the skill map 7 is defined such thatt(g) = {s € S: q €
f(s)} foreachg € Q.

For the reasons explained above, the skill map t delin-
eates the structure C via the conjunctive model. To give an
example, suppose that the knowledge structure is as in Eq. 2.
Since C is closed under intersection, the procedure described
above can be applied for deriving the corresponding skill
map. To do so, it is necessary to compute first the dual of C,
which is already defined in Eq. 4 and its basis Byc. There-
fore, since By contains three states, the set S of skills will
also contain three skills that we name a, b, and c. Now, by
applying step 4 of the procedure, the skill map t displayed
in Table 1 is obtained. Of course the interpretation of the
skill map is in this case conjunctive.

The basic local independence model

So far, we introduced the main deterministic concepts of
KST. In practical applications, however, probabilistic mod-
els are needed. One of the most common probabilistic
models applied to knowledge structures is the basic local
independence model (BLIM; Falmagne & Doignon, 1988a;
Doignon & Falmagne, 1999; Falmagne & Doignon, 2011).
BLIM parameters are the n, (i.e., a lucky guess), the 8,
(i.e., a careless error), and mx (i.e., the probability assigned
to each state of the structure). In the BLIM, the answers to
the items are locally independent given the particular knowl-
edge state of a person in the sense displayed by Eq. 5. The
response pattern of an individual is represented by the set
R C Q of all items that obtained a correct response. This
model has been applied in several contexts (e.g., Falmagne
et al., 1990; Stefanutti, 2006; Spoto et al., 2010). Starting
from the probabilistic structure (Q, KC, 7r) the probability of
aresponse pattern R € Q is (Falmagne & Doignon, 1988b):

p(R) =) p(R. K)m(K).

Kek

where p is a function assigning to each R its conditional
probability given a state K. Notice that the knowledge
states are latent, so they are not directly observable; what is
observed is the response pattern R, which may be the result
of some lucky guesses and/or careless errors on single items.
The function p satisfies local independence for the items in
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0, thus p(R, K) is determined on the basis of the two error
parameters of the items, B, and n, by Eq. 5:

p(RK)=| T] || T] -8
qeK\R qgeKNR
<| T] na || TT O=no |- ©)
qeR\K ¢eKUR

The introduction of these notions about KST allows
considering in more detail some of the already-existing pro-
cedures to build a knowledge structure from a set of data.
More specifically, in the next subsection, the critical ele-
ments of both Boolean analysis of questionnaires and IITA
are explored in order to clarify the rationale for looking for
a new method able to cope with all these limitations.

Limitations of existing data-driven methods

In general, from a cognitive perspective, the most important
limitation of both query and data-driven procedures is that
they work at the items level, leaving out any information
concerning the skills level. However, what people learn is
skills, not items. Items (regarded as questions or problems)
are means for ascertaining whether skills are mastered or
not by individuals. Shifting the attention from the behavioral
level of the items to the competence level of the skills offers
a possible cognitive interpretation of the response behavior
of an individual. Referring to the example proposed in the
Introduction, both query and data-driven procedures would
reconstruct the structure, but do not formally/explicitly pro-
vide information about the cognitive aspects that make item
1 less demanding than item 3. Importantly, a great amount
of research concerning the role of the skills or abilities
to master items has been conducted in the area of cogni-
tive diagnosis models (CDM; e.g., DeLaTorre & Douglas,
2008; Templin & Henson, 2006), and it has also been deeply
investigated in KST (see e.g., Doignon, 1994; Diintsch &
Gediga, 1995; Heller et al., 2013; Korossy, 1997). Further-
more, considering the main data-driven approaches, some
other considerations have to be taken into account. In his
paper, Schrepp (1999a) indicates at least two main criti-
cal aspects of his procedure based on sorting the observed
response patterns by decreasing frequency and then adding
to the reconstructed structure one pattern at a time. At
each step, a fit index is computed and the model that dis-
plays the minimum value of such index is selected as the
correct knowledge structure. The two main criticisms of
the procedure introduced by Schrepp are: the number of
observed patterns necessary to reliably reconstruct the struc-
ture increases heavily with the cardinality of Q, thus, a
researcher who wants to use such a procedure may have
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to face the impossibility of collecting such immense data
sets; if the states of the underlying knowledge structure do
not have equal probability, the accuracy of the procedure
is influenced negatively. Furthermore, the procedure does
not account for any state that is not observed in terms of
response pattern, and this could be a problem. In fact, sup-
pose a population is characterized by a knowledge structure
IC on the set Q of items, and a sample of response patterns
R C Q is available. Some of the states K € X might be not
contained in the sample for at least two different reasons:
(1) g is small, and for this reason K does not belong to
the sample at hand, or (2), due to lucky guesses and careless
errors, none of the response patterns in the sample equals
K. If either of these two cases occurs, Schrepp’s procedure
fails to reconstruct the “true” structure /. In other words,
if the response pattern corresponding to a latent state of
the knowledge structure is not observed in the sample, it
will never be included in the structure. Moreover, given that
the introduction of a pattern into the structure follows the
frequency criterion, the procedure does not guarantee to pro-
duce a knowledge structure (since either the total set Q or
the empty set ¥ may have a very low frequency in the sam-
ple at hand). Another important criticism of this procedure
is that it both underestimates the error rates of the items and
assumes that such values are equal for all the items of the
domain (Schrepp, 1999a).

The IITA procedure, on the other hand, is conceived to
build knowledge structures that are closed under both set
union and set intersection, that is, it systematically produces
quasi-ordinal knowledge spaces (Falmagne & Doignon,
2011). In this respect, one main criticism arises: the assump-
tion of having a structure both (1) — and (_J —closed may be
too strong in several applicative contexts. Given the limita-
tions of the existing procedures, we aimed at proposing a
new approach able to cope with most of the critical issues
described above. More specifically, we aimed at obtaining
a structure that could be traced back to a skill map (i.e., it
has to be closed under intersection, union, or both) and does
not present IITA strong assumptions. In the next section, the
procedure used to derive the knowledge structure and the
skill map is described.

Procedure

The procedure needed to exploit the task of building a skill
map out of a set of data is supposed to address the following
two problems:

i) to build a chain of nested closure spaces on the basis
of a given criterion (as described below);

ii) to select one of the closure spaces according to an
appropriate criterion.

The procedure would then end up with the best fitting
closure space from which, following the principles descri-
bed in the previous sections, a conjunctive skill map is
obtained. Let R = 2¢ be the power set on Q. The data set
consists of N response patterns R € R. We assume that for
every theoretically observable response pattern R, the obser-
ved frequency F(R) is known (with ) ", 7o F(R) = N).

To address problem i), a distance is minimized between
the structure I and the data R. Suppose that a student
in knowledge state K € [C exhibits response pattern
R € R. Then, the distance between R and K is at least
dmin(R, K) = min{|RAK| : K € K}, with

A = (RK) U (KR)

denoting the symmetric distance between R and K. The
average minimum distance for the whole data set R is:

d(R,K) = % > F(R)dmin(R. K)
ReR

The procedure is aimed at finding the structure X for which
d(R, K) is the smallest possible. The starting structure is the
simplest possible closure space, i.e., Co = {{J, Q}. Then, a
chain of closure spaces with a strictly increasing cardinality
is built. In every single step n > 0 of the iterative procedure,
the transition from C,_| to C, is carried out by calculating,
for each observed response pattern R € R \ C,—_1, the dis-
tance d (R, Dg) where Dg is the closure under intersection
of C,—1 U {R}. This computation is repeated for every R €
R\C,,—1. The pattern Rp,;, for which d(R, Dg) is the min-
imum, is considered. At this point, C, is set equal to Dg,,,.
The procedure ends at step m such that R \ C,,—1 = ¥,
i.e., when there are no patterns left to add. The procedure,
thus, minimizes at each step the average minimum distance
between the built structure and the observed data, respect-
ing the condition of closure under intersection. Furthermore,
it must be stressed that at each step of the procedure, this
distance monotonically decreases and attains the value 0
when all the patterns are included in the model; this turns
out to be nothing but the closure under intersection of the
set of response patterns. For this reason, the distance cannot
be considered a good model selection criterion, as it would
always select the most complex structure. The establishment
of a reliable and adequate criterion for selecting the best
model both in terms of fit and parsimony is then a crucial
issue and represents the second task of the procedure.
Problem ii) is mainly a task of model selection. In the
literature, two of the main indexes used to evaluate the
goodness of a model are the Akaike Information Crite-
rion (AIC), and the corrected AIC (AICc; Brockwell &
Davis, 1991; Burnham & Anderson, 2002) which can be
used conveniently with small sample sizes. Nevertheless,
the application of these criteria to KST models may be
problematic because, even with item sets of moderate size,
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the sample will usually be small compared to the total
number of observables. For instance, with |Q| = 20, the
number of observables is 220, which is more than one mil-
lion different response patterns. Every reasonable sample
size is small compared to this number. Schrepp (1999a)
introduced the app stopping criterion which is defined as
follows:

> rer(F(R) — FL(R))?
IR|

app(Kr,R) =

Such an index refers to the distance between the recon-
structed knowledge structure Ky, at each step of the pro-
cedure, and the set of observed response patterns R. This
distance is the ratio between the squared difference of
relative frequencies F(R) of the patterns and theoretical
frequency Fp(R) expected assuming Ky to be the cor-
rect structure, and the cardinality of R. The smaller the
value of app, the better the approximation of the model
to the data is. The step in which app reaches its mini-
mum corresponds to the best fitting model. In our appli-
cation, we selected this index as a stopping criterion.
Its computation requires that the theoretical frequencies
F1(R) are available. These expectations can be obtained
by estimating the BLIM for the knowledge structure
Kr.

Once the structure is selected, since it is a closure space,
the basis of its dual can be obtained, and, from this basis, the
corresponding conjunctive skill map can be derived. Like
Schrepp’s procedure, the proposed one is carried out in a
number of steps. In each step i a knowledge structure is
specified, which is a strict superset of the one obtained in
step i — 1. A stopping criterion is used for deciding when the
procedure should terminate. The proposed procedure differs
from the Schrepp’s one with respect to three basic aspects:
(1) the next response patterns to be added to the structure
are selected by a minimum distance, rather than by the max-
imum frequency criterion; (2) the structure is closed under
intersection in every single step; in the proposed procedure
the app criterion is based on the careless error and lucky
guess parameter estimates obtained by fitting the BLIM to
the data, meaning that 8 and n parameters can be different
for different items.

So far, the procedure was described for extracting a con-
junctive skill map from data. Nevertheless, if the aim is to
extract a disjunctive skill map, this procedure can be adapted
with minimal effort. In fact, it is sufficient to replace clo-
sure under intersection by closure under union at each step
n of the procedure. The remaining parts of the procedure
are exactly the same. Of course, there is the possibility of
performing both closures at each step, thus obtaining, as the
final result, a quasi-ordinal knowledge space as in the IITA
procedure.
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Simulation study

In this section, we introduce a simulation study carried out
to test the efficiency and accuracy of the iterative procedure
to build a closure space starting from a set of observed data.
The performance of the Data Driven Skill Map Extraction
Procedure (D-SMEP) is compared to that of two of the main
alternative procedures, i.e., the Schrepp’s method and the
Inductive Item Tree Analysis (IITA).

Method

For the simulation, the following procedure was applied.
We aimed at testing the performance of the three proce-
dures by varying both the characteristics of the given “true”
structure, and the magnitude of the careless error and lucky
guess probabilities of the items. As it has been described
in Section 2, Schrepp’s procedure extracts a knowledge
structure that needs being closed under neither union nor
intersection; on the other hand, IITA extracts quasi-ordinal
knowledge spaces, and finally, the procedure proposed in
this article extracts a closure space (respectively, knowledge
space) and the corresponding conjunctive (respectively, dis-
junctive) skill map. For this reason, the three procedures
were compared to one another with respect to their capabil-
ity of reconstructing (1) a “true” structure neither closed to
union nor intersection, (2) a “true” structure closed under
both union and intersection, and, finally, (3) a “true” struc-
ture closed under intersection. The error rates of the items
were randomly selected within an interval ranging between
0 and a maximum chosen among the three values 0.1,
0.2, and 0.3. The probability assigned to each state of the
structure (i.e., the parameter wx) was a random number in
the open interval (0, 1). This scheme leads to non-uniform
sampling from the distributions over the knowledge states
(Smith & Tromble, 2004); nevertheless, given that these val-
ues are assigned only once, this distortion in the simulation
at hand is negligible. The mx parameters were then nor-
malized to sum up to 1. A total of 3 types of knowledge
structures x3 maximum error rates were considered. For
each condition, the following procedure was carried out:

i) A number of 100 random samples each containing
1000 response patterns were generated by parametric
bootstrap (Efron & Tibshirani, 1993), where the prob-
abilistic model was the BLIM. In all replications, the
same fixed knowledge structures /C; on eight items
containing 50 states for the conditions (1) and (2) and
containing 48 states for the condition (3), were used as
the true structure.

ii) The three iterative procedures were applied to every
single data set, obtaining a structure for each of the 100
data sets in each of the nine conditions.
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iii) With respect to the new reconstruction procedure, at
every step both the corrected AIC (Brockwell & Davis,
1991; Burnham & Anderson, 2002), the app index
(Schrepp, 1999a) and a Distance from the True Struc-
ture (DTS) were computed. The DTS was obtained
through the following:

DTS(]Ctv Cn) = d(lC[, Cn) + d(cn’ ICI)

1
_| Z dmin(K’ Cn)

|’Ct KE’C{
1

|Cal

+—— > duin(C. Ky)

ceC,

where C, is the structure obtained at step n of the
procedure. The DTS attains the value O if an only if
K¢ = C,. On the other hand, given that by definition
both the empty set (¥) and the total set Q belong to
both /C; and C,, the maximum possible value of DTS is
equal to | Q|/2. In fact, the maximum value of the min-
imum distance between a given state in K; and a state
in C,, is half the number of items in Q. Moreover, if the
DTS between the two structures KC; and C, is d, then
on the average any given state K € K; differs from its
closest state C; € Cy, by d items.

With respect to the other two methodologies (IITA
and Schrepp), for each condition, all the steps of
the procedures were carried out in order to obtain a
structure according to the assumptions of each method.

iv) The following additional statistics were computed for
each of the three procedures, in each of the nine
conditions:

a) The average proportion of states of the “true”
structure contained in the reconstructed structure
(true positive states).

b) The average proportion of states not contained in
the “true” structure, but contained in the recon-
structed structure (false positive states).

¢) The average distance d(K;, C,,) between the “true”
structure and the reconstructed one.

d) The average distance d(C,, K;) between the
reconstructed structure and the “true” one. It
should be observed that, in general d(C,, K;) #
d(K, Cp) (see e.g., Falmagne & Doignon, 2011).

e) The average DTS.

Concerning Schrepp’s procedure, all these indexes were
computed on the structures obtained at the iteration in
which the minimum app was obtained; the IITA proce-
dure does not allow to compute the app index. Therefore,
for this procedure, these statistics were computed on the
obtained model; in D-SMEP these statistics were computed

on the structures obtained when the app reached its own
minimum. Additionally, for the proposed procedure, the
statistics were computed also on the structure corresponding
to the minimum of the AICc.

Results

Tables 2, 3 and 4 display the main results of the simulations
carried out to compare the efficiency and accuracy of the
three procedures.

Table 2 displays the results obtained in reconstructing
a structure neither closed to union nor to intersection at
increasing error rates. In these conditions, the best per-
forming procedure is the one proposed by Schrepp. In fact,
it maximizes the proportion of true states, minimizes the
amount of false states in the reconstructed structure as well
as the distances between the true and the reconstructed mod-
els. In this set of conditions, the underlying knowledge
structure cannot be obtained through any skill map (since no
closure is present). Nevertheless, it has to be stressed that
the proposed method (using the app index as a stopping cri-
terion) performs almost as well as the Schrepp’s one. Thus,
it produces a structure that is adequately close to the true
one, and it can be conveniently described by a skill map.

Table 2 The performances of the three procedures in reconstruct-
ing a structure neither closed under union nor intersection. The table
displays the proportion of true states included in the reconstructed
structure (True Pos), the proportion of the false states in the recon-
structed structure (False Pos), the average distance between the true
structure and the reconstructed structure (d(K;,C,)), the average
distance between the reconstructed structure and the true structure
d(C,, K)), and the DTS (notice that each of the three distances take
on values in the interval [0, |Q|/2]). For our procedure, we reported
these statistics with respect to two different model selection criteria:
the AICc (D-SMEP AICc) and the app index (D-SMEP app)

Error Method True False d(K;,C,) d(C,, K, DTS
rate Pos  Pos
Schrepp 0.997 0.168 0.003 0.168 0.171
IITA 0.320 0.693 0.879 0.697 1.576
.10 D-SMEP AICc 0.979 0.788 0.021 0.935 0.956
D-SMEPapp  0.980 0.786 0.020 0.932 0.953
Schrepp 0.990 0.483 0.010 0.491 0.501
IITA 0.389 0.693 0.775 0.723 1.498
.20 D-SMEP AICc 0.789 0.752 0.216 0.871 1.087
D-SMEPapp  0.985 0.789 0.015 0.939 0.954
Schrepp 0.952 0.680 0.048 0.732 0.779
IITA 0.564 0.711 0.559 0.777 1.336
.30 D-SMEP AICc 0.274 0.602 1.004 0.632 1.636
D-SMEPapp  0.999 0.804 0.001 0.963 0.964
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Table 3 The performances of the three procedures in reconstruct-
ing a structure closed under both union and intersection (notice
that d(IC;, Cp), d(Cp, KC;) and DTS take on values in the interval

[0, 1Q1/2])

Error Method True False d(K;,C,) d(C,,K;) DTS
Rate Pos  Pos
Schrepp 0.991 0.004 0.009 0.004 0.012
IITA 1 0.001 0 0.001 0.001
.10 D-SMEP AICc 0.393 0.184 0.699 0.184 0.883
D-SMEPapp 0976 0.439 0.024 0.457 0.481
Schrepp 0.987 0.082 0.013 0.082 0.094
IITA 0.935 0.046 0.065 0.046 0.111
.20  D-SMEP AICc 0.482 0.156 0.542 0.161 0.704
D-SMEPapp 0977 0.414 0.024 0.462 0.485
Schrepp 0.982 0424 0.012 0.440 0.459
ITA 0.992 0.376 0.001 0.428 0.428
.30 D-SMEP AICc 0421 0.138 0.735 0.139 0.873
D-SMEPapp  0.991 0.566 0.009 0.642 0.651

Our procedure provides adequate results in all the three error
rate conditions when the app is used as a stopping crite-
rion, while the use of AICc seems to be much more critical
when the error tends to increase. Concerning Tables 3 and 4,
analogous conclusions can be drawn. For this reasons, it
was decided to use the app as a stopping criterion. With
respect to the performance of the IITA procedure, it has
to be stressed that its performance is systematically lower

Table 4 The performances of the three procedures in reconstructing
a structure closed under intersection (notice that d(/C;, Cy,), d(Cp, KC;)
and DTS take on values in the interval [0, |Q|/2])

Error Method True False d(K;,C,) d(C,,K;) DTS
Rate Pos  Pos
Schrepp 0.994 0.016 0.006 0.016 0.022
IITA 0.588 0.492 0.492 0.568 1.060
.10 D-SMEP AICc 0.981 0.405 0.019 0.431 0.450
D-SMEPapp  0.965 0.361 0.035 0.383 0418
Schrepp 0.991 0.408 0.009 0.415 0.424
IITA 0.459 0.636 0.634 0.805 1.439
.20 D-SMEP AICc 0.798 0.343 0.209 0.369 0.575
D-SMEPapp  0.969 0.599 0.031 0.699 0.730
Schrepp 0.969 0.604 0.033 0.677 0.709
IITA 0.604 0.584 0.525 0.676 1.201
.30 D-SMEP AICc 0.483 0.273 0.627 0.316 0.944
D-SMEP app  0.966 0.728 0.034 0.926 0.960
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when the true model is not a quasi-ordinal knowledge space.
On the other hand, it is the best performing method when
the underlying true structure satisfies this condition. It is
important to stress that both Schrepp’s method and D-SMEP
do provide adequate results in a quite stable way across
different true model and error rates conditions. This consid-
eration seems to be further supported by the low value (i.e.,
always less than 1 item) of the DTS even with high error
rates.

Discussion

In general, the results of the simulations support the good-
ness of the proposed reconstruction procedure, since the
proportion of true and false states in the reconstructed struc-
ture as well as the average DTS are adequate in all the
simulated conditions. The procedure has a better perfor-
mance when the app index is used as a stopping criterion.
Furthermore, as it could have been easily predicted, the pro-
cedure tends to perform better when careless error and lucky
guess probabilities are relatively small. However, this differ-
ence in performance is not dramatic, allowing to trustfully
apply the method even with high error rate.

The results suggest that the AICc criterion works ade-
quately in some situations (namely those with low error
rates), but fails in others, pointing that the app can be a bet-
ter performing stopping criterion. Schrepp’s procedure does
perform very well in all conditions. Finally, the IITA proce-
dure seems to work very well when the underlying model
satisfies both closures, while it under-performs in all other
cases.

With respect to D-SMEP, some criticisms have emerged
around algorithm efficiency. For instance, the time required
to carry out a single replication on rather small structures
was about 500 seconds on a standard machine. This time is
expected to increase very rapidly with the number of items.
This indicates the need to improve the optimization of the
computational steps.

Finally, in comparing D-SMEP with Schrepp’s proce-
dure, it could be useful to consider that they differ by three
factors: (1) the selection method (minimum distance vs.
maximum frequency); (2) closure under intersection vs. no
closure; (3) parameter estimation method used for the com-
putation of the app index (iterative vs. noniterative). This
distinction would lead to a 2 (selection methods) x2 (clo-
sure vs. no closure) x2 (iterative app vs. non iterative app)
factorial design. This would lead to the assessment of the
other six procedures, all different from both D-SMEP and
the Schrepp’s one. Taking into account that differences in
performance between D-SMEP and the Schrepp’s proce-
dure are fairly small in all simulations, it is not sure that
this factorial study would help understanding such small
differences.
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In the next section, two empirical applications on clinical
data are described in order to provide some sort of a tutorial
about how to apply D-SMEP.

Empirical applications

To test how the reconstruction procedure works on real data
sets and how it performs compared to IITA and Schrepp’s
procedures, responses were used from a sample of 4412
individuals (Spoto et al., 2010) to the subscales “Cleaning”
and “Checking” of the Maudsley Obsessive-Compulsive
Questionnaire-R (MOCQ-R; Sanavio & Vidotto, 1985).
Both subscales contain eight dichotomous items investi-
gating respectively cleaning rituals and repeated control
behaviors in patients. The eight items of each scale are dis-
played in Table 5. The reconstruction of a structure out of
these two subscales of the questionnaire might be useful to
both identifying implications among the items composing
each scale, and implementing an adaptive assessment for the
disorder at hand.

These empirical applications have been selected since
KST has recently been applied to clinical assessment
through the Formal Psychological Assessment (FPA;
Bottesi et al., 2014; Spoto, Bottesi, Sanavio, & Vidotto,
2013). In FPA, the main concepts of KST are formulated
according to clinical psychology-specific issues: items are
clinical questions included in surveys, skills are named
attributes and refer to specific symptoms investigated by
each item, careless error and lucky guess are, respec-
tively, false-negative and false-positive rates. What remains
unchanged is the methodology to obtain a structure start-
ing from an attribute assignment through the conjunctive
or disjunctive model and the probabilistic model related to
the structures. One of the crucial issues in FPA is the con-
ceptualization of the skills as the attributes, i.e., the clinical

symptoms, diagnostic criteria, or characteristics that an indi-
vidual has to present in order to affirmatively answer to a
clinical item. In this perspective, the response pattern of a
patient is directly related to the set of clinical symptoms
he/she presents.

Methods

The questionnaires were administered to participants after
they signed the informed consent form. No time limit was
imposed, and participants were asked to answer all items
accurately. After the administration of the tests, data were
collected, and the frequencies of the response patterns were
computed. The data consisted of a set of response patterns
R C Q (where Q is the collection of items), with each
response pattern with its own observed frequency F(R).
The three procedures for structure construction were then
applied. In the proposed procedure, for each iteration, the
app index was computed, and all the BLIM’s parameters
were estimated. The model with the minimum value of the
app index was then selected and, by applying the procedure
described in Section 2, the basis and the corresponding skill
map were obtained. With respect to IITA and Schrepp’s pro-
cedures, they were applied using the same steps described
for the simulation study. Three different structures were
obtained and each of them was fitted to data by an appli-
cation of the BLIM. The three fitted models were then
compared through their Chi-square and AIC values.

Results

An overview of the main indexes used to compare the per-
formances of the three reconstruction procedures with the
data at hand is displayed in Table 6 for both the subscales.
With respect to the “Checking” sub-scale, for the pro-
posed procedure, the selected structure had 56 states. The

Table 5 The eight items of the “Cleaning” and “Checking” sub-scales of the MOCQ-R

Item  Cleaning Checking

i If I touch an animal, I feel contaminated
i T'use too much soap to wash myself

I frequently have to check things (e.g., gas or water taps, doors, etc.)
In my job I am often late because I spend time to do the same thing over and over again

i3 I'am not excessively concerned about cleanliness I have to check a letter over and over again before post it

iy I'am not unduly concerned about germs
and diseases

is My hands feel dirty after touching money

i Itake rather a long time to complete my
washing in the morning

i7  Tuse a great deal of detergents and antiseptics

ig  Hanging and folding my clothes at night
takes up a long time

One of my major problems is that I pay too much attention to detail
My major problem is repeated checking

I tend to check things more than once
I stick to a very strict routine when doing ordinary things

I spend a lot of time every day checking things over and over again
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Table 6 The performances of the three procedures in reconstructing
the knowledge structure for the “Checking” and “Cleaning” subscales

Checking
N states x2 df Bootstrap p AIC

D-SMEP 56 518.35 184 0.0008 35,675
IITA 7 1098.50 233 < 0.0001 36,049
Schrepp 3 1368.70 237 < 0.0001 36,246
Cleaning

D-SMEP 34 359.48 206 0.7697 36,208
IITA 39 301.54 201 0.9851 36,164
Schrepp 4 497.72 236 0.0045 36,276

Chi-square statistics indicated an unacceptable fit of the
BLIM (x2(184) = 518.35; bootstrap p = .0008; AIC=
35,675). Starting from the reconstructed structure (i.e., a
closure space), through the steps described in Section 2, it
was possible to obtain the dual of the closure space, that is,
a knowledge space. Thus, the following basis was obtained:

Beu = {{i2}, {is}, {i7}, {i2, ig}, {i2, 13, is}, {i1, i2, i},
{i2, i4, 18}, {i2, i5, i6, ig}}

Finally, the conjunctive skill map displayed in Table 7
was produced.

The IITA procedure reconstructed a structure containing
only seven states and the model displayed a worse fit of
the BLIM (x2(233) = 1098.50; bootstrap p =< .0001;
AIC= 36,049). Similar results were obtained by applying
Schrepp’s procedure. The reconstructed model counted only
three states and, obviously, displayed the worst fit of the
BLIM (X2(237) = 1368.70; bootstrap p =< .0001; AIC=
36,246). It has to be stressed that the initial application of
this last procedure did not reconstruct a knowledge struc-
ture, but it selected only two states excluding the total set.

Table 7 Binary representation of the skill map obtained for the
empirical application with respect to the “Checking” sub-scale

Attributes
Items a b c d e f g h
i 0 0 0 0 0 1 0 0
i 0 1 0 1 1 1 1 1
i3 0 0 0 0 1 0 0 0
i4 0 0 0 0 0 0 1 0
is 0 0 1 0 0 0 0 1
is 0 0 0 0 0 0 0 1
i7 1 0 0 0 0 0 0 0
is 0 0 0 1 1 1 1 1

A 1 in the matrix indicates that to affirmatively answer the item in the
corresponding row, the attribute in the corresponding column is needed
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Such a state had to be manually added after the completion
of the reconstruction procedure in order to obtain a knowl-
edge structure. Table 8 displays the error rate estimates for
the three reconstructed models for both the “Checking” and
the “Cleaning” subscales. Some of the parameters are not
identifiable (in the table n.i.) due to the particular form of
the obtained structures (Spoto et al., 2012). Moreover, it can
be observed that some of the probabilities are rather high,
but this is in line with their interpretation in terms of false-
positive and false-negative rates in a clinical questionnaire
(see “Discussion”).

With respect to the “Cleaning” subscale, in running the
reconstruction procedure with the data at hand, the pro-
posed procedure selected a structure with 34 states. The
Chi-square statistics indicated a good fit of the BLIM
(X2(206) = 359.48; bootstrap p = .77; AIC= 36,208).
Starting from the reconstructed closure space, the following
basis was obtained:

Ber = Hiv, iz, i3}, (i1, ia, i7}, {iv, @2, i7, i8), {i1, i2, I6, i7},
{i1, iz, 14, 07}, {i1, i2, 15, i7}}

Finally, the conjunctive skill map displayed in Table 9
was derived.

From the table it emerges that items i1 and iy have the
same set of attributes, thus they are equally informative,
i.e., they are systematically present in the same states of the
structure. Table 8 displays the error rate estimates. As in the
previous application, some of the parameters are not iden-
tifiable. In this application, the best performing procedure
happened to be the IITA that reconstructed a structure con-
taining 39 states with a better fit of the BLIM ( x2(201) =
301.54; bootstrap p = .99; AIC= 36,164). Notice that even
in this case, D-SMEP did not greatly differed from the best
performing one. Once again, the Schrepp’s procedure recon-
structed a model containing only four states and with an
inadequate fit to the BLIM (X2(236) = 497.72; bootstrap
p = .005; AIC= 36,276).

Discussion

The results of the empirical applications of the procedure
show both the applicability of the methodology and its good
performance compared to the already-existing methodolo-
gies to reconstruct a knowledge structure starting from a
set of data. The applications provide also some information
about the possibility of interpreting the derived skill map
in clinical context. More specifically, the application to the
“Checking” sub-scale presents some interesting aspects that
are noteworthy. First, the obtained structure counts only 56
out of the 256 potential response patterns (i.e., the power-
set on the set of eight items). Furthermore, a remark has to
be referred to the fact that the reconstructed skill map has
as many skills as the number of items, although this does



Behav Res (2016) 48:729-741

739

Table 8 Estimated BLIM’s parameters 8 and 7 for each item of the “Checking” and “Cleaning” subscales of the MOCQ-R (n.i. means that the

parameter was not identifiable)

Structures

obtained by i i i3 i4 is ig i7 ig
Checking

D-SMEP n.i. 0.057 n.i. n.i. 0.027 n.i. n.i. 0.013
n IITA 0.183 0.052 n.i. n.i. n.i. n.i. 0.053 n.i.

Schrepp 0.187 0.051 n.i. 0.284 0.051 0.354 0.277 0.006

D-SMEP 0.258 n.i. 0.346 0.184 n.i. 0.050 n.i. 0.381
B IITA n.i. 0.638 0.356 0.226 0.138 0.044 n.i. 0.398

Schrepp 0.304 0.757 0.465 0.219 0.141 0.036 0.198 0.630
Cleaning

D-SMEP 0.065 0.025 0.010 n.i. n.i. n.i. 0.009 n.i.
n IITA 0.037 0.028 0.139 0 0.081 0 n.i. 0.064

Schrepp 0.054 0.020 0.055 0 0.258 0.132 n.i. 0.347

D-SMEP 0.719 0.525 0.233 0.449 0.335 0.315 0.568 0.331
B IITA 0.514 0.518 0.250 0.409 0.316 0.284 0.191 0.345

Schrepp 0.764 0.666 0.254 0.453 0.324 0.349 0.689 0.312

The parameters are displayed separately for each reconstructed knowledge structure to which the BLIM was applied

not mean that items are independent. For instance, if items
i5 and ig are considered, it can be argued that if no error
is taken into account, an affirmative response to the for-
mer implies an affirmative answer to the latter since the set
of attributes referred to ig is strictly included in the set of
attributes of is.

The application to the “Cleaning” subscale, on the other
hand, depicts a case in which the number of attributes is less
than the number of items. Moreover, the proposed proce-
dure identifies two items that need the same set of attributes.
The critical aspect about this application is referred to the
high values of the error rate estimates obtained with all three

Table 9 Binary representation of the skill map obtained for the
empirical application with respect to the “Cleaning” sub-scale

Attributes

Items a b c d e f
i 1 1 1 1 1 1
i 1 1 1 1 1 1
i3 1 0 0 0 0 0
i4 0 0 0 0 1 0
is 0 0 0 0 0 1
is 0 0 0 1 0 0
i7 0 1 1 1 1 1
is 0 0 1 0 0 0

reconstruction procedures. Response errors might have a
quite different interpretation in a clinical questionnaire.
They may reflect the tendency to simulate or dissimulate a
symptom, depending on social desirability or other similar
issues. This can lead to substantially greater error probabil-
ities. It is noteworthy how Schrepp’s procedure fails even
in this application, while the IITA reconstructs a model that
better fits the BLIM. These results seem to be in contradic-
tion with those obtained in the simulation study. A possible
issue could be the characteristics of the simulated models.
To verify this, 100 data sets were simulated by the BLIM,
using as “true states” the knowledge structure reconstructed
by IITA and as “true parameters” those estimated by fitting
the BLIM to data with the knowledge structure obtained by
IITA. Schrepp’s procedure was then applied to each of the
100 data sets and the DTS, TPR, and FPR statistics were
computed. The mean DTS was 1.11, the mean TPR was
.079, the mean FPR was 0, the mean number of states in the
reconstructed structure was 3.07. These results (especially
the TPR and the number of reconstructed states) show that
the apparent contradiction between simulations and empir-
ical application depend in all probability on the specific
choice that was made in the simulation study, concerning
structures and parameter values. A choice that could have
facilitated, somehow Schrepp’s procedure.

Finally, it has to be stressed that all the obtained models
present some identification problems. Such problems, as
demonstrated in recent literature (Spoto et al., 2012, 2013),
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can be detected a priori from the obtained skill maps (when
the proposed procedure is applied), or from the recon-
structed structure.

With respect to the interpretability of the obtained skill
maps, it emerged that two items investigates the same set
of attributes, thus they can be considered as equivalent
in conveying diagnostic information about cleaning rituals.
Furthermore, a number of items investigate only one clinical
attribute indicating that their information represents a spe-
cific element useful for a precise case formulation. Finally,
item 7 provides information about a number of attributes
that are investigated also by other items. This last issue
could be fruitfully implemented into an automatic adap-
tive procedure that could allow for a reduction of the time
needed to administer the scale.

General discussion

In this article, a procedure to construct a skill map start-
ing from a data set has been described. This procedure
is mainly based on the possibility of deriving a conjunc-
tive skill map from a closure space or a disjunctive skill
map from a knowledge space. The procedure begins, in the
former case, with the minimal closure space (i.e., the one
including only the empty set and the total set) and iteratively
tries to improve such structure by minimizing the distance
between the reconstructed closure space and the observed
data. One of the most critical aspects of the procedure is the
stopping criterion. In the present paper, the use of AICc has
been tested and compared to the use of the app criterion
developed by Schrepp for his procedure (Schrepp, 1999a)
through a number of simulation studies. The results high-
lighted a better performance of this last index. In general,
the procedure accurately reproduces the structure even when
the error rate of the data (measured by parameters 1 and )
are relatively high (i.e., up to 0.30).

In order to test the applicability of the procedure in a
real setting, two empirical studies were conducted on clini-
cal data. These studies suggested the procedure is concretely
applicable and that the obtained results are interpretable.
It must be stressed that in this article, the procedure has
been tested on relatively small structures. This was due
to the high time consumption of the procedure to carry
out the reconstruction on rather small domains. In order
to apply the procedure to larger structures, the algorithm
must be improved, since, in the present version, it appears
to be too computationally expensive. Nevertheless, both the
basic ideas and the method proposed in this study look very
promising for a new way to build structures and skill maps
starting from filled questionnaires.
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The proposed procedure applies to conjunctive skill maps
but can be trivially adapted to the disjunctive model. In that
case, each structure in the chain will be closed under union,
and the disjunctive skill map will simply correspond to the
basis of the obtained space.

Lastly, the empirical application shows that the skills in
the conjunctive skill map extracted from the data may then
be interpreted by some experts in the field. This suggests
the possibility of constructing hybrid procedures that rely
on both the expert’s opinion about the relationships between
items and skills and the information contained in a data set.
For instance, the expert may provide a rough initial skill
map that is then further improved by an extraction method
like the one presented in this article.

To summarize, the D-SMEP procedure presents a number
of pros and some cons to be taken into account. The main
cons are referred to the rather poor efficiency of the pro-
cedure in terms of computational time and to the stopping
criterion. With respect to the former, it has to be stressed
how a major improvement could be obtained by remov-
ing the closure constrain. In fact, if no closure is required,
then the procedure may improve much in efficiency. Con-
cerning the latter, further studies are needed. On the other
hand, D-SMEP successfully copes with some of the main
limitations of the already-existing procedures. First, the pro-
posed procedure allows building an either conjunctive or
disjunctive skill map starting from a set of observed data.
D-SMEP could be modulated in order to obtain either a
knowledge space or a closure space, or a quasi-ordinal
knowledge space. Second, differently form Schrepp’s pro-
cedure, it allows reconstructing states that are not observed
in the sample at hand, provided that they are the intersection
(or union) of observed states. Moreover, again in contrast
with Schrepp’s procedure, D-SMEP does not assume any
equality constraints neither on the state probabilities nor on
the n and B parameters. Finally, it proved to be robust even
with high error rates.
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