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Abstract The sensorimotor synchronization paradigm is
used when studying the coordination of rhythmic motor re-
sponses with a pacing stimulus and is an important paradigm
in the study of human timing and time perception. Two mea-
sures of performance frequently calculated using sensorimotor
synchronization data are the average offset and variability of
the stimulus-to-response asynchronies—the offsets between
the stimuli and the motor responses. Here it is shown that
assuming that asynchronies are normally distributed when es-
timating these measures can result in considerable underesti-
mation of both the average offset and variability. This is due to
a tendency for the distribution of the asynchronies to be bi-
modal and left skewed when the interstimulus interval is lon-
ger than 2 s. It is argued that (1) this asymmetry is the result of
the distribution of the asynchronies being a mixture of two
types of responses—predictive and reactive—and (2) themain
interest in a sensorimotor synchronization study is the predic-
tive responses. A Bayesian hierarchical modeling approach is
proposed in which sensorimotor synchronization data are
modeled as coming from a right-censored normal distribution
that effectively separates the predictive responses from the
reactive responses. Evaluation using both simulated data and
experimental data from a study by Repp and Doggett (2007)
showed that the proposed approach produces more precise

estimates of the average offset and variability, with consider-
ably less underestimation.

Keywords Bayesian statistics . Sensorimotor
synchronization . Hierarchical models . Finger tapping

The experimental study of human timing and time perception
has a long history in psychology, with the sensorimotor syn-
chronization (SMS) task being one of the most important ex-
perimental paradigms (Roeckelein, 2008). Following Stevens
(1886), this task requires a participant to produce periodic
movements synchronized to a regular pacing stimulus such
as a metronome (Schulze, 1992). Sensorimotor synchroniza-
tion is often studied in a musical context, because the ability to
engage in SMS is central to musical activities, especially in
ensemble music, in which many musicians are required to
follow the same rhythm and coordinate their movements to-
gether (Repp, 2006). Yet, SMS performance is also a relevant
measure in many other fields. For example, SMS performance
has been shown to correlate with personality traits (Forsman,
Madison, & Ullén, 2009) and measures of intelligence for
both children (Corriveau & Goswami, 2009) and adults
(Madison et al., 2009). It is also correlated with performance
in other experimental paradigms related to timing, such as
simple reaction time (Holm, Ullén, & Madison, 2011) and
eye blink conditioning (Green, Ivry, & Woodruff-Pak, 1999).

What is most often measured in an SMS task is the
stimulus-to-response asynchronies—that is, the offset of a par-
ticipant’s responses from the stimulus onsets, where a nega-
tive asynchrony indicates that a participant’s response preced-
ed the stimulus (Repp, 2005). The two basic parameters esti-
mated in an SMS task are the constant error—the average
deviation from the target stimuli—and the timing variability
of the asynchronies. The most straightforward and common
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way to estimate these parameters is to calculate the sample
mean and the sample standard deviation (SD) of the asyn-
chronies. However, it is shown here that this approach results
in negatively biased estimates of constant error and timing
variability; that is, these parameters are generally
underestimated by the sample mean and sample SD. The con-
cern is with the nonnormal distribution of timing asynchronies
at slow tempi and the failure of moment estimators to incor-
porate task-relevant information.

The present article describes a Bayesian model with which
to estimate the constant error and timing variability in SMS
tasks that do not suffer from the problems associated with
using the sample mean and SD. The text is organized as fol-
lows. First the distribution of SMS data is reviewed, and it is
shown that the distribution is approximately normal when the
tempo of the pacing stimuli is moderate, but that the distribu-
tion becomes increasingly nonnormal when the interstimulus
interval (ISI) exceeds 2 s. It is argued that this is due to a
tendency for participants to react to the stimulus onset and
that, because of this, SMS data are modeled better using a
right-censored normal distribution. A Bayesian model is then
developed that uses a censored normal distribution to
model the distribution of timing asynchronies. The mod-
el is developed in two stages, first as a basic nonhier-
archical model, and then as a fully hierarchical model.
Finally, the model is compared with the traditional
methods of using the sample mean and SD to estimate
constant error and timing variability. This is done using
both simulated data and the experimental data from a
study by Repp and Doggett (2007). It is shown that
using a censored normal distribution to model timing
asynchronies results in considerably less bias than using
traditional methods. Furthermore, using a hierarchical
Bayesian approach outperforms both traditional methods
and a nonhierarchical Bayesian model with regard to
accuracy. This article advances the study of human
timing and time perception by giving researchers a better tool
to measure SMS performance. A further advance is that the
Bayesian methods proposed facilitate analyzing SMS data
when the ISI exceeds 2 s.

The distribution of sensorimotor synchronization
data

In a typical SMS task, a participant is asked to produce re-
sponses in time with a recurring, isochronous (equally spaced
in time) stimulus sequence. The commonly employed stimuli
are sequences of equally spaced auditory tones that the partic-
ipant synchronizes to by tapping a button using the index
finger, although there are many variations of this basic exper-
imental procedure (Repp, 2005). Stimulus-to-response asyn-
chronies, that is, the time offsets between the stimulus onset
and the participant’s timed response, are of primary interest in
SMS tasks (Repp & Su, 2013). Such asynchronies can be
positive or negative, where a negative asynchrony indicates
that the corresponding response preceded the stimulus, and a
positive asynchrony indicates that the corresponding response
followed the stimulus onset.

Under many circumstances the distribution of the asyn-
chronies is approximately normal (Chen, Ding, & Kelso,
1997; Mates, Müller, Radil, & Pöppel, 1994; Moore &
Chen, 2010), but it is rarely normal when the ISI of the pacing
stimuli is longer than 2 s (cf. Mates et al., 1994, and Miyake,
Onishi, & Pöppel, 2004). An example of timing asynchrony
distributions at different ISIs is shown in Fig. 1 using data
from a study by Bååth and Madison (2012), in which 30
participants were asked to tap with their index finger in syn-
chrony with a pacing tone sequence. In Fig. 1A, the asynchro-
ny distributions for a representative participant are shown; for
ISIs of 600 ms and 1,200 ms, the distributions can be seen to
be heap shaped and symmetric. The central tendencies of the
distributions are not centered around zero (i.e., at the onset of
the pacing tone) but are slightly negative, a well-known phe-
nomenon termed the mean negat ive asynchrony
(Aschersleben, 2002). At ISIs of 1,800 ms and above, a visible
peak from 100 to 200 ms makes the distribution left skewed,
or even bimodal. This peak coincides with where auditory
reaction time responses to the stimulus onset would be likely
to occur (Gottsdanker, 1982). These deviations from normal-
ity not only can be seen by visual inspection, but a Shapiro–
Wilk normality test is also rejected, with p < .01 as the

Fig. 1 Tone-to-response asynchrony distributions (A) for a single participant and (B) for all participants in Bååth and Madison (2012)
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rejection criterion, for ISIs of 1,800 ms (p = .004), 2,400 ms (p
< .001), and 3,000 ms (p < .001), but not for ISIs of 600 ms (p
= .62) and 1,200 ms (p = .90). This was even after using
Tukey’s (1977) boxplot method to label and remove outliers.
A similar pattern can be seen when looking at the distributions
of the asynchronies from all participants. The percentages of
the 30 participants who produced asynchronies at different ISI
levels that resulted in rejection by a Shapiro–Wilk test were
7% (600 ms), 3% (1,200 ms), 7% (1,800 ms), 27% (2,400
ms), and 47% (3,000 ms). This resonates with the finding of
Mates et al. (1994) that asynchronies produced at ISIs above
1,800 ms tend to be increasingly nonnormal.

According to Repp and Doggett (2007), the distribution of
timing asynchronies departs from normality at ISIs longer
than 2s because participants occasionally overshoot the target
stimuli and instead react to them. At moderately fast ISIs,
around 600 ms (see Fig. 1), this rarely happens, because the
asynchronies tend to be within 100 ms of the stimulus onset.
At longer ISIs the variability of the asynchronies increases,
and at an ISI of 2 s many asynchronies are smaller than –
300 ms but rarely exceed 300 ms. This asymmetry results in
a skewed, bimodal asynchrony distribution with a long left tail
and a short right tail at long ISIs.

If Repp and Doggett’s (2007) interpretation is correct, the
observed distribution of timing asynchronies at ISIs greater
than 2 s is then a mixture of predictive asynchronies, which
generally are the responses of interest, and contaminating re-
active asynchronies. The mean and SD of the whole asynchro-
ny distribution is then uninformative, and methods should be
used to separate out these distributions so as to estimate the
mean and SD of the predictive distribution adequately. If this
is not done, different phenomena are measured at long and
short ISIs: At short ISIs, a participant’s ability to synchronize
to a pacing sequence is being measured, whereas at longer
ISIs, a mixture of reaction time and timing ability may be
measured. The data from an SMS task can then be thought
of as being sampled from two different distributions. At short
ISIs, the predictive timing asynchronies can be seen as sam-
ples from a normally distributed random variableXP. At longer
ISIs, at which the timing variability is large enough that par-
ticipants sometimes make reactive responses, the timing asyn-
chronies can be seen as samples from a random variable XA =
min(XP, XR), where the random variable XR is distributed as a
reaction time distribution. There are many proposed models
for the distribution of reaction time responses, all of which are
right skewed and, for practical purposes, left bounded (Ulrich
& Miller, 1994; van Zandt, 2000). For the present purpose of
modeling the predictive responses, the distribution of the re-
active responses could be assumed to be any of those—for
example, the ex-Gaussian distribution.

An illustration of the distribution of XA is shown in Fig. 2.
The rationale for taking theminimum ofXP and XR is that these
two random variables can be thought of as representing two

independent processes that can either trigger a response (e.g.,
a buttonpress or drum stroke), with the response being initiat-
ed by whichever process triggers first. For example, if 300 ms
is an outcome of XP and 200 ms is an outcome of XR, then the
outcome of XA, which represents a participant’s response,
would be min(300 ms, 200 ms) = 200 ms. Because XA is the
minimum of XP and another random variable, XAwill always
have a shorter right tail than XP. Note that there are other
combinations of XP and XR that do not result in this behav-
ior—for example, the average of XP and XR, or a mixture
distribution constructed from XP and XR. The average of XP
and XR would instead result in a distribution with a positively
shifted mean, as compared to XP. This would not be in
agreement with the well-established finding that the
mean asynchrony from timing tasks tends to be slightly
negative (Aschersleben, 2002). The mixture distribution
defined by Xmix = wXP + (1 – w)XR would not resemble
XA in that, depending on the location of XR and the
mixture weightw, the distribution of Xmix could have a longer,
rather than a shorter, right tail than XP.

In an SMS task, the interest is in the distribution of XP, and
whereas XP is possible to measure at short ISIs, at long ISIs XP
can be considered a latent variable. Using the sample mean
and SD to estimate the distribution of XP is then problematic
because reactive responses may confound estimates of con-
stant error and timing variability, resulting in considerable
negative bias. This happens because the distribution of XA

has a shorter right tail than the distribution of XP. Due to the
asymmetry of XA, a sample mean estimate will be biased
toward a negativemean asynchrony, and a sample SD estimate
will be smaller than the actual SD of XP, due to the right tail of
the distribution of XA being less spread out than the distribu-
tion of XP. In other words, using moment estimators will make
it appear that participants are responding earlier and more
accurately than they actually are.

At first, it might seem that the distributions of XP and XR

could be separated using a standard mixture-model approach,
by modeling an outcome as being generated by first selecting
one of the underlying distributions and then using that distri-
bution to generate the outcome. This approach does not con-
sider that the distribution of XA was the result of taking the
minimum of two random variables, and so will not result in a
consistent estimator of the parameters underlying XA. Another

Fig. 2 Theoretical distribution of timing asynchronies (XA, solid line),
modeled as a combination of a distribution of predictive responses (XP,
dashed lines) and reactive responses (XR, dotted line)
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approach would be to implement the fully generative model
shown in Fig. 2. This would, however, require specifying not
only the distribution for XP, but also that for XR. Although
many possible distributions could be assumed for reactive
responses (van Zandt, 2000), it is not known whether these
are applicable for the reactive responses in an SMS task, and
misspecification of this distribution would impact the param-
eter estimates of both XP and XR.

One way of estimating the distribution of XP is by noticing
that the distribution of XR does not depend on the ISI and is
left-bounded by participants’ ability to react to the pacing
tones. Therefore, the distribution of XP can be retrieved by
modeling the asynchronies as coming from a right-censored
normal distribution (see Fig. 3) with the censoring threshold
being selected to exclude reactive taps—for example, set to
100 ms. That is, all asynchronies below 100 ms would be
assumed to be direct observations of XP, whereas asynchronies
above 100mswould also be assumed to be observations of XP,
but the actual asynchrony would be disregarded and the only
information retained would be that the observation fell in the
range (100, ∞) ms. The rest of this article will focus on a
model implementing these assumptions and Bayesian estima-
tion of the parameters of this model.

Bayesian modeling of sensorimotor synchronization
data

Bayesian methods of data analysis are becoming increasingly
popular in psychology and other fields (Andrews & Baguley,
2013; Kruschke, 2011b). The rationale for using Bayesian
modeling is the ease with which nonnormal data can be
modeled, hierarchical dependencies in the data can be speci-
fied, and prior knowledge, such as task-specific constraints,
can be included (Kruschke, 2011a). The model described here
is Bayesian and is implemented using Markov chain Monte
Carlo (MCMC) methods. Both the terminology and the phi-
losophy of Bayesian statistics are different from those of clas-
sical frequentist statistics. The following sections assume
some acquaintance with Bayesian statistics and MCMC
methods, and many good text cover these topics—for exam-
ple, the books by Kruschke (2011a), Lunn, Jackson, Best,
Thomas, and Spiegelhal ter (2012), and Lee and

Wagenmakers (2014). Because the data from an SMS exper-
iment often are hierarchically organized—that is, they consist
of many participants performing multiple trials—the model is
presented in a hierarchical as well as in a nonhierarchical
version. The advantages of hierarchical modeling are de-
scribed well by Gelman and Hill (2006).

A number of Bayesian models are designed to analyze
reaction time data (Craigmile, Peruggia, & van Zandt, 2010;
Farrell & Ludwig, 2008; Rouder, Sun, Speckman, Lu, &
Zhou, 2003), and these models and the model presented in
this article have much in common, in that they are hierarchi-
cal, deal with timing data, and model data as coming from
nonnormal distributions. Differences include the types of dis-
tributions used and what type of task-related information is
incorporated in the model. The present model makes two im-
portant assumptions. First, the asynchronies are treated as in-
dependent observations. This is strictly not true, because asyn-
chronies tend to be autocorrelated when they are considered as
forming a time series (Chen et al., 1997). Estimates of constant
error and timing variability do not, then, constitute an exhaus-
tive description of the underlying data. Still, these measures
are two of the most common in the literature (Mates et al.,
1994), and together they form a useful summary of timing
performance. Second, the asynchronies are assumed to be
from trials with the same ISI. In an experimental setup in
which many ISI levels are used, the constant error and timing
variability have to be estimated separately for each ISI level.

Below, the nonhierarchical version of the model is first
described, which is then extended into a fully hierarchical
model. The model uses priors that are vague and
noninformative, except with regard to certain task-specific
constraints that are used to inform the priors. How to extend
the model in order to use more informative priors and how to
model interresponse intervals instead of asynchronies is de-
scribed in the supplementary text, and software implementing
the model is freely available at https://github.com/rasmusab/
bayes_timing. The software is implemented using the R
statistical environment (R Development Core Team, 2012)
and the JAGS framework (Plummer, 2003). The JAGS frame-
work takes a model definition and automatically generates a
sampling scheme using Gibbs sampling. Because the techni-
cal details regarding sampling schemes are handled by JAGS,
it is relatively straightforward to extend and modify the
models given below—for example, by changing the priors
or the distributional assumptions.

The nonhierarchical model

The timing asynchronies (Y) are modeled as coming from a
normal distribution in which asynchronies exceeding a thresh-
old c are assumed to be right censored. Strictly, it is the values
that are censored, and not the actual distribution, but the pro-
cedure of first censoring values above a threshold and then

Fig. 3 Schematic diagram of the fit of a right-censored normal distribu-
tion to the theoretical distribution of timing asynchronies shown in Fig. 2
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modeling them as being normally distributed could be seen as
defining a right-censored normal distribution with three pa-
rameters: μ, σ, and c. In the present model, the threshold c is
fixed at a value that is assumed to censor asynchronies that
could be the results of reactive responses. A conservative val-
ue for c would be, for example, 100 ms, which is a reasonable
tradeoff between censoring reactive responses and maintain-
ing predictive responses.

The prior distributions for both μ and σ use noninformative
Jeffreys (1946) priors, but with additional constraints imposed
by the SMS task. In an SMS task, a single asynchrony cannot
be farther away from a stimulus onset time than half the ISI.
For example, if the ISI is 600 ms and a response is registered
250 ms before a stimulus onset, this will be encoded as a –
250-ms asynchrony, but if that response was registered 375ms
before the same stimulus onset, it would instead be encoded as
a 225-ms asynchrony with respect to the preceding stimulus
onset. If asynchronies are bounded by the interval [–ISI/2, ISI/
2] ms, then μ is also bounded by this interval. The Jeffreys
prior on μ is an unbounded uniform distribution (Lunn et al.,
2012), but when using the task-specific information, the prior
becomes a uniform distribution bounded on the interval [–ISI/
2, ISI/2] ms. Given that the difference between any two asyn-
chronies can be at most the length of the ISI, σ can be at most
ISI/2 ms.1 The Jeffreys prior on σ is an unbounded uniform
distribution on log(σ) (Lunn et al., 2012), but using the present
task-specific constraints bounds the distribution on the inter-
val [log(1), log(ISI/2)] ms. The lower bound on log(σ) is set to
log(1) because the probability that the SD of a participant’s
asynchronies would be close to 1 ms is negligible. The full
specification of the nonhierarchical model is then:

Yi ~ Right-Censored-Normal(μ, σ, c),
μ ~ Uniform(–ISI/2, ISI/2),
log(σ) ~ Uniform[log(1), log(ISI/2)],

where Yi is the ith asynchrony.
Point estimates of the parameters μ and σ can be calculated

by taking the mean or the median of their respective posterior
distributions (Robert, 2007). These estimates can then be used
as a Bdrop-in^ replacement for the sample mean and SD esti-
mates of constant error and timing variability. This approach is
useful in the case in which a researcher wants to avoid the bias
associated with using the sample mean and SD but prefers a
classical analysis of the point estimates rather than a fully
Bayesian analysis.

It should be noted that a point estimate generated using the
Bayesian model above and a maximum likelihood approach
would be very similar. This is because the maximum a
posteriori estimate from a Bayesian model with flat priors

and a maximum likelihood estimate are identical (Hastie,
Tibshirani, & Friedman, 2009). When only a point estimate
is required, it can therefore be convenient to use a maximum
likelihood method, which is computationally more efficient
and, perhaps, a better-known method than Bayesian estima-
tion. Ulrich and Miller (1994) have described a maximum
likelihood approach for fitting a right-truncated normal distri-
bution that is applicable in this case. This method has also
been implemented and is available at https://github.com/
rasmusab/bayes_timing.

The hierarchical model

Hierarchical modeling is an elegant solution to the problem of
analyzing a data set with repeated measurements (Kruschke,
2011a). It is an increasingly used technique in psychological
research and is variously known as hierarchical modeling,
multilevel modeling, or mixed modeling (Baayen, Davidson,
& Bates, 2008). One of the reasons to use a hierarchical model
is to better describe data that have a multilevel structure
(Gelman & Hill, 2006), and the typical SMS experiment is
inherently multileveled. Timing responses can be assumed to
be related within a trial, between trials, within a participant,
and between participants. Furthermore, it is reasonable to as-
sume that relations exist between the timing responses at dif-
ferent tempi; for example, a participant who produces highly
variable asynchronies at an ISI of 500 ms will probably pro-
duce highly variable asynchronies at longer ISIs. The hierar-
chical model described below does not take all of the possible
multilevel relations into account. Asynchronies from different
trials produced by the same participant are assumed to have
the same distribution; that is, no training or exhaustion effect
is assumed to exist. Although it is well known that timing
variability increases as the tempo gets slower, this relation
does not seem to be linear (Grondin, 2012; Repp & Su,
2013), and it is not known whether it follows any simple
function. Therefore, the relationship between the asynchronies
produced at different tempi is not part of the model.

What this model adds over the nonhierarchical version is
that the relation between participants’ timing performance is
modeled, allowing measurements made on all participants to
inform the parameter estimates of single participants. The hi-
erarchical formulation also facilitates investigating individual
differences as constant error and timing variability are estimat-
ed at both the individual and group levels. The mean of the
censored normal distribution of the jth participant, μj, is
modeled as coming from a normal distribution with mean μμ
and SD σμ. The subscript μ is used to indicate that μμ and σμ
are hyperparameters of the prior distribution on μj. The SD of
the censored normal distribution, σj, is modeled as coming
from a log-normal distribution with the parameters μσ and
σσ (as was proposed by Lunn et al., 2012). Note that these
parameters are not the mean and SD of the log-normal

1 This maximum SD would occur in the unlikely event that half of the
asynchronies were –ISI/2 ms and half were ISI/2 ms.
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distribution. Through reparameterization, this distribution can
be described by its mean, mσ, and SD, sσ (Limpert, Stahel, &
Abbt, 2001). The rationale for using the log-normal distribution
is that it allows for modeling participants’ timing variability on
the same scale as σj, which makes the hyperparameters mσ and
sσ easy to interpret; the posterior distributions of mσ and sσ can
be directly used to estimate the population’s mean timing var-
iability and the SD of the population’s mean timing variability.
A popular choice for the prior distribution on a variability pa-
rameter is otherwise 1/σ2 ~ Gamma(., .) (Gelman, 2006), but
the problem with using this prior is that it is not defined on the
scale of the SD of the asynchronies, which makes it hard to
interpret the posterior distributions of its parameters. This is
fine in the case in which the constant error is the main interest
and the SD of the asynchronies is considered a nuisance param-
eter. When analyzing SMS data, however, it is often the case
that timing variability is the main interest (Repp, 2005).

The prior distributions on μμ and mσ are the same as those
used for the parameters μ and σ in the nonhierarchical model.
The prior distributions for the SD parameters σμ and sσ are
uniform distributions (as was proposed by Gelman, 2006)
with their left boundaries at 0, and with task-related con-
straints defining the right boundaries as for μ and σ in the
nonhierarchical model. The left boundary for σμ is set to ISI/
2 because this is the largest possible between-participants
mean asynchrony SD, since all μjs are bounded within the
interval [–ISI/2, ISI/2]. The largest possible within-
participants asynchrony SD is ISI/2, which implies that the
largest possible value of σσ, the between-participants SD of
the asynchrony SD, is ISI/4. The full specification of the hier-
archical model is then

Yij ~ Right-Censored-Normal(μj, σj, cj),
μj ~ Normal(μμ, σμ),
σj ~ Log-Normal(μσ, σσ),
μμ ~ Uniform(–ISI/2, ISI/2),
σμ ~ Uniform(0, ISI/2),
μσ ~ log(mσ) – σσ

2/2,
σσ ~ √log(sσ2/mσ

2 + 1),
log(mσ) ~ Uniform[log(1), log(ISI/2)],
sσ ~ Uniform(0, ISI/4),

where Yij is the ith asynchrony of the jth participant. After
Kruschke (2011a), a graphical model diagram of this model is
shown in Fig. 4.

An example using the hierarchical model

The data fromBååth andMadison (2012) were analyzed using
the hierarchical model. The study included responses from 30
participants who synchronized finger taps to isochronous tone
sequences with five different ISIs: 600, 1,200, 1,800, 2,400,

and 3,000 ms. Because the data include repeated measure-
ments, with each participant producing many asynchronies
at each ISI level, the hierarchical model was fitted to the data
separately for each ISI level.

After a Bayesian model has been fitted, the estimated pa-
rameters can be investigated in many ways. Depending on
where the interest lies, the parameters can be examined at the
participant level (σj and μj) or the group level (mσ and μμ). If
individual differences are of interest, the variance components
sσ and σμ can be inspected, because they index the degree to
which the participant-level parameters differ. Because the mod-
el is fully Bayesian, estimates for all of the parameters are
readily available after the model has been fitted, including reli-
ability measures in the form of credible intervals.

Because tapping variability is often of interest in SMS
studies (Repp, 2005), the group-level timing variability and
the variability on the participant level were investigated fur-
ther. Figure 5 shows the point estimates and 95% credible
intervals, extracted from the model, of the group mean asyn-
chrony SD (the mσ parameter in the model) and the
participant-level asynchrony SDs for three participants (σ1,
σ2, and σ3) at the five ISI levels. The group mean SD increases
almost linearly as a function of ISI, but we also see that there
are large differences between the three participants. Using the
posterior distribution of the fitted model, it was now possible
to investigate any relation between the parameters. For exam-
ple, there was an 89% probability that Participant 1 had a
lower timing variability than Participant 2 at an ISI of 1,800
ms, and there was a 99% probability that the increase in timing
variability between the ISIs of 1,800 and 2,400 ms was larger
for Participant 1 that for Participant 2. A script that fully rep-
licates these calculations and the fitting of the model can be
found at https://github.com/rasmusab/bayes_timing, together
with the full data set from Bååth and Madison (2012).

Fig. 4 Model diagram showing the specification of the fully hierarchical
model. Here, Yij is the ith asynchrony of the jth participant
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Evaluation of the model

In order to evaluate the model, it was applied to both simulated
data and the experimental data from a study by Repp and
Doggett (2007). The estimates generated by the model were
compared with the common estimates of constant error and
timing variability, the sample mean, and the sample SD. These
estimators will be referred to as the moment estimators. The
Bayesian model can be used to generate point estimates of the
constant error and timing variability for further analysis, or the
hyperparameters of the model can be used directly to draw in-
ferences. In order to be able to compare the Bayesianmodel with
the moment estimators, evaluations were made using the first
approach of analyzing estimated point values. There are differ-
ent methods for calculating point values from the marginal pos-
terior distributions of a Bayesianmodel (see Robert, 2007). Here
the median of the marginal posterior distribution of the param-
eter of interest was taken as the point estimator. When fitting the
Bayesian models, the censoring limit c was fixed to 100 ms.

Evaluation using a simulated data set

The point with a simulation study is to simulate data using a
distribution in which the parameters are known, since com-
parisons can then be made as to how well different estimators
retrieve the true parameters using the simulated data. This
makes it possible to compare different estimators and to gauge
the magnitude of estimation error when the models are applied
to real data.

Simulation of timing asynchronies In order to simulate
timing asynchronies, a number of assumptions have to be
made. As was argued earlier, the timing responses will be
assumed to come from two sources: Either a response is pre-
dictive, resulting from a prediction of the timing of the target
stimulus, or a response is reactive, resulting from a reaction to
the target stimulus. Furthermore, as is shown in Fig. 2, the
distribution of predictive responses is assumed to be a normal
distribution with a mean and SD that are dependent on the ISI.
The reactive responses are assumed to be distributed as an

exponentially modified Gaussian (ex-Gaussian) distribu-
tion—a right-skewed distribution that has been used to de-
scribe the distribution of reaction time responses (Hohle,
1965; Palmer, Horowitz, Torralba, & Wolfe, 2011). The dis-
tribution of the reactive responses is assumed to be indepen-
dent of the ISI. If the predictive and reactive responses are
represented by the random variables XP and XR, the actual
timing responses are distributed as min(XP, XR). This assumes
that a timing response is initiated by whichever of the reactive
and predictive responses is triggered first, and also that partic-
ipants tend not to respond twice to target stimuli.

The distribution of the timing responses has five parame-
ters; μP and σP of the normal distribution for the predictive
responses, and μR, σR, and λR of the ex-Gaussian distribution
for the reactive responses. In order to simulate the timing
responses at different ISIs, these parameters needed to be
assigned reasonable values. For μP and σP, such values were
generated by taking the sample mean and SD of the asyn-
chronies at different ISIs using the finger-tapping data from
the group of musicians in the study by Repp and Doggett
(2007) (see Table 1). Although it has been argued in the pres-
ent article that there are better ways to estimate these param-
eters than using the sample mean and SD, the performance of

Fig. 5 Point estimates with 95% credible intervals of the group timing variability (measured as the asynchrony SDs) and the participant timing
variability for three participants from the hierarchical model, fitted to the data from Bååth and Madison (2012)

Table 1 Values of μP and σP that were used when simulating the timing
asynchronies at different interstimulus intervals (ISIs)

ISI μP σP

1,000 ms –19 ms 28 ms

1,250 ms –23 ms 37 ms

1,500 ms –30 ms 49 ms

1,750 ms –30 ms 61 ms

2,000 ms –17 ms 81 ms

2,250 ms –22 ms 91 ms

2,500 ms –12 ms 106 ms

2,750 ms –20 ms 123 ms

3,000 ms –9 ms 155 ms

3,250 ms –41 ms 157 ms

3,500 ms –24 ms 209 ms
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the estimators used in this specific case were not of great
importance; what mattered was that the values of μP and σP
should be likely values of the constant error and timing vari-
ability. Reasonable values for μR, σR, and λR were generated
by fitting an ex-Gaussian distribution to the simple auditory
reaction time data from a study by Löwgren, Bååth, Lindgren,
Sahlén, and Hesslow (2014). The parameter values used for
the ex-Gaussian distribution were μR = 157ms, σR = 12.5, and
λR = 0.031 ms, which are in agreement with response distri-
butions found in the literature (e.g., Ulrich & Stapf, 1984).
Distributions of the simulated data using these parameter
values are shown in Fig. 6 (cf. the actual asynchrony distribu-
tions from Repp & Doggett, 2007, in Fig. 8 below). For each
of the 11 ISI levels, 500 batches of 90 timing responses each
were simulated.

Comparison with the moment estimators Because the sim-
ulated data were not hierarchical, all data points from the same
ISI level shared the same true parameter values, and only the
nonhierarchical model and the moment estimators were com-
pared. For each of the in total 500 × 11 = 5,500 batches, the
Bayesian model was fit with the JAGS framework (Plummer,
2003), using 1,000 burn-in steps followed by 5,000 MCMC
samples, and the resulting fits were used to calculate point
estimates for μP and σP. Similarly, the moment estimators were
also used to calculate point estimates for μP and σP. Figure 7
shows the mean differences between the estimated parameters
and the true parameters, with a relative parameter estimate of 0

indicating no difference between the true parameter and the
mean of the estimated parameters. Up to an ISI of 2,000 ms,
both the Bayesian model and the moment estimators per-
formed similarly, but from an ISI of 2,000 ms the moment
estimators increasingly underestimated the true values of μ
and σ. At an ISI of 3,500 ms, the mean differences between
the Bayesian estimates and the true parameter values were
1.6 ms for both μ and σ, but for the moment estimators the
mean differences were 16.6 ms for μ and 27.8 ms for σ.

Reanalyzing the data of Repp and Doggett (2007)

In a study by Repp and Doggett (2007), finger-tapping data
were collected from eight musicians and 12 nonmusicians
synchronizing to isochronous sound sequences, using ISI
levels ranging from 1,000 to 3,500 ms.2 The distributions of
timing asynchronies for a subset of those ISI levels are shown
in Fig. 8. Notice that the distributions of asynchronies for the
long ISI levels exhibit the same pattern shown in Fig. 1; that is,
large numbers of responses occur around 200 ms after the
stimulus onset.

The data of Repp and Doggett (2007) were reanalyzed by
calculating point estimates of the constant error and timing
variability for all participants and ISI levels, using both the
moment estimators, as in the original article, and the hierarchi-
cal Bayesian model. This model was fit separately to the data
from the musicians and the data from the nonmusicians with
the JAGS framework, using 1,000 burn-in steps followed by
15,000 MCMC samples. The differences between the moment
and Bayesian estimates are shown in Figs. 9 and 10. On the
basis of the simulation study, the moment estimates should
have a tendency to underestimate the constant error and timing
variability, and the results of the present analysis support this
notion, because the estimates of the Bayesian model are higher
than the moment estimates at the long ISI levels. At short ISI
levels, this underestimation will be negligible, but at longer ISI
levels it will have more of an impact. Whether an analysis
would benefit from avoiding underestimation, then, would de-
pend on the ISI range of the study and whether underestimation
would impact the conclusions of the study. The Bayesianmodel
estimates and the moment estimates start to diverge when the

Fig. 6 Distribution of the simulated timing asynchronies for a subset of the ISI levels, generated according to the procedure described in the Simulation
of Timing Asynchronies section

Fig. 7 Mean errors of the moment estimates and the Bayesian estimates
compared to the actual parameter values. The error bars show the SDs of
the estimates

2 Due to a technical error, the timing asynchronies are shifted +15 ms in
the original data (Repp, 2008). In the subsequent analysis, this shift has
been corrected.
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ISI is longer than 2,500 ms, both for the simulated data and for
the data from Repp and Doggett. Thus, one might want to
consider using a method that avoids underestimation when an-
alyzing a data set that includes ISIs slower than 2,500 ms.

Except for resulting in better parameter estimates, how
does the interpretation of Repp and Doggett’s (2007) data
change when Bayesian estimates are used rather than the mo-
ment estimates? One example of what the Bayesian estimates
change, relative to the moment estimates, is the interpretation
of the source of the reactive responses. Mates et al. (1994)
argued that the reason that reactive responses start occurring
at long ISIs is a qualitative change in participants’ response
strategy, due to participants trying to minimize synchroniza-
tion error. When the ISIs are long enough that predictive re-
sponses result in a large expected synchronization error, a
better strategy might be to react to the stimulus tone, since this
would result in an expected synchronization error smaller than
around 200 ms, the average auditory reaction time.
Alternatively, Repp and Doggett (2007) argued that reactive
responses are not due to a change in response strategy, but
rather to participants tending to produce reactive responses
when failing to produce a predictive response long enough
after the stimulus tone that a reactive response is possible.
To evaluate this possible explanation, they used each partici-
pant’s estimated constant error and timing variability to pre-
dict the percentage of reactive responses, under the

assumption that the predictive responses would be normally
distributed. The percentages of predicted reactive responses
were then compared with the actual percentages of reactive
responses at the different ISI levels, labeling all responses later
than 100 ms as reactive. The predicted percentage of reactive
responses was found to be similar to the actual percentage, and
Repp and Doggett concluded that Bno special strategy of
reacting to the tones needs to be assumed^ (p. 371). The pre-
dicted percentage was, however, slightly lower than the actual
percentage, and this difference could still be explained by, for
example, a change in response strategy.

A reason for the slightly lower estimates of the percentage
of reactive responses might be that the constant error and
timing variability were underestimated due to the use of the
moment estimators. Using the Bayesian estimates to predict
the number of reactive responses yielded a much closer cor-
respondence with the actual percentage of reactive responses,
especially at slow ISIs, as is shown in Fig. 11. Consequently,
the Bayesian estimates change the interpretation of the data to
more strongly support Repp and Doggett’s (2007) explanation
than their original analysis based on moment estimates.

The power of a hierarchical model

In order to investigate the utility of a hierarchical model, the
data from the musicians in Repp and Doggett (2007) were

Fig. 10 Grand means of the sample SD estimates and the Bayesian
estimates of asynchrony SDs for the musicians and nonmusicians in
Repp and Doggett (2007)

Fig. 9 Grand means of the sample mean estimates and the Bayesian
estimates of the mean asynchronies for the musicians and nonmusicians
in Repp and Doggett (2007)

Fig. 8 Distribution of the timing asynchronies from Repp and Doggett (2007) for a subset of the ISI levels
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used. Four partitions of the data set were formed, such that
each of the four tapping trials at each ISI level for each par-
ticipant was randomly assigned to a partition. For each parti-
tion, the constant error and tapping variability were estimated
using the moment estimators, the nonhierarchical model, and
the hierarchical model. The Bayesian models were fit with the
JAGS framework, using 1,000 burn-in steps followed by 15,
000 MCMC samples. For each estimation method, this
yielded 4 (number of partitions) × 8 (number of participants)
× 11 (number of ISI levels) = 352 estimates of constant error
and tapping variability. In the simulation study, it was possible
to compare the estimated parameter values with the actual
parameter values, but here there were no Btrue^ parameter
values. An alternative would be to compare the parameter
estimates from the partitions, which are estimated using only
one fourth of the available data, with estimates that used the
whole data set. The estimates calculated using the whole data
set are assumed to be closer to the true parameters, and by
comparing these with the estimates calculated using the
partitioned data, it was possible to evaluate how well the three
estimation methods retrieve the whole-data estimates. The
whole-data estimates were estimated using the nonhierarchi-
cal Bayesian model.

Figure 12 shows the mean absolute errors of the three esti-
mation methods applied to the partitioned data, as compared
to the estimates based on the whole data. The mean errors of
the hierarchical estimates are consistently lower than the er-
rors of the two other estimation methods. Averaged over the
ISI levels, the medians3 of the absolute errors of the hierarchi-
cal Bayesian estimates were 12% less than for both the

nonhierarchical Bayesian and the moment estimates.
Because a hierarchical model benefits from there being many
participants in the data set, this better performance of the hi-
erarchical model occurred in spite of only eight participants
being included in the analysis. For a data set with even fewer
participants, or for participants that perform very differently
from each other, a hierarchical model is not likely to improve
the estimates much over a nonhierarchical model. However,
for the common case in which many participants have com-
parable performance, using a hierarchical model will likely
result in better estimates.

Discussion

In studies dealing with sensorimotor synchronization (SMS)
and rhythm production, two of the main parameters of interest
are constant error and timing variability. It is common to esti-
mate these parameters by calculating the sample mean and
SD, but using these moment estimators is problematic in two
respects. First, the moment estimators tend to underestimate
the constant error and timing variability at long ISIs. This is
due to a tendency of participants to overshoot the target inter-
val and instead to react to the target stimulus, resulting in a
left-skewed and bimodal distribution for both the stimulus-to-
response asynchronies and interresponse intervals. Second,
when a data set includes many participants, moment estima-
tors fail to model the hierarchical structure of the data, and as a
result all available data are not used when estimating the
parameters.

Fig. 12 Mean absolute errors of the three estimators applied to the
partitioned data from Repp and Doggett (2007), as compared to the
estimates using the full data set. The errors of the hierarchical Bayesian
estimates are consistently lower than the errors of the moment estimates
and of the nonhierarchical Bayesian estimates

3 The median was used here as the measure of central tendency because
the distributions of relative errors were heavily right skewed.

Fig. 11 Actual numbers of reactive responses for the musicians and
nonmusicians in Repp and Doggett (2007), compared to the predicted
numbers of reactive responses using the moment estimates and the
Bayesian estimates
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The Bayesian model presented in this article addressed the
first problem by treating the predictive timing responses as a
partially latent variable and by modeling the timing asyn-
chronies using a right-censored normal distribution. The sec-
ond problem was addressed by modeling the hierarchical
structure of the data. The model was compared with the mo-
ment estimators and was shown to be less biased toward low
estimates of constant error and timing variability and to yield
more accurate estimates when applied to a hierarchical data set
with multiple participants. It was also shown that the Bayesian
estimates changed the interpretation of the data from a study
by Repp and Doggett (2007).

The focus of the evaluation of the Bayesian model was on
contrasting it with the moment estimators. This choice was
made because moment estimators are arguably the most com-
mon estimators of constant error and timing variability in the
literature. The case made against using these estimators when
dealing with SMS data could also be made against other
methods that do not consider the skewness and hierarchical
structure of such data. Some methods other than Bayesian
modeling could also address these two issues. A right-
truncated normal distribution could, for example, be fit to
the data from an SMS task using the approach described by
Ulrich andMiller (1994), or the hierarchical structure could be
modeled using mixed-effects modeling (Baayen et al., 2008).
The combination of these two approaches is, however, more
straightforward in a Bayesian framework.

All comparisons between the Bayesian model and the mo-
ment estimators were made using point estimates generated by
the Bayesian model. This was done to facilitate the compari-
son with the moment estimators. Although it is certainly pos-
sible to use the Bayesian model in this way, it disregards the
much more useful approach of using the posterior probability
distributions of the parameters for inference. In many cases,
the latter approach would make more sense. Why go through
the trouble of estimating point values and analyzing them
when it is possible to directly analyze the distributions of the
hyperparameters already specified in the model? Using the
hierarchical version of the model, it is also possible to make
inferences regarding the population timing variability by
using the posterior probability distribution for the mσ param-
eter, and regarding the population constant error by using the
posterior probability distribution of the μμ parameter. In order
to compare two groups of participants, the data of each group
could be fit separately using the hierarchical Bayesian model,
and then the credible differences between the group parame-
ters could be investigated. One of the main advantages of
doing a full Bayesian analysis is that all model parameters
are estimated, including measures of uncertainty, so that com-
parisons and inferences can readily be made regarding any
parameter or generated quantities.

Because the model is implemented in the flexible modeling
language JAGS, it will be straightforward to extend it. A

possible extension would be to include additional predictor
variables in the model, allowing the timing variability and
constant error to vary not only by ISI, but also by, for example,
participant group or task condition. Another extension would
be to introduce a functional dependency on the timing vari-
ability or constant error between ISI levels. For example, one
could assume that the scalar property (Gibbon, Church, &
Meck, 1984) holds for timing variability by adding the as-
sumption that the asynchrony SD increases linearly as a func-
tion ISI. The supplementary text describes how one could add
such an assumption to the hierarchical model. That text also
describes how one could model a correlation in a participant’s
timing performance between ISI levels. The purpose of the
model presented here was to model the distributional proper-
ties of SMS data. In doing that, it did not consider the time
series properties of the data, such as the serial dependency of
the responses. A further extension of the model would be to
combine it with a time series model of SMS, such as the one
developed by Vorberg and Wing (1996). Because that model
does not separate predictive responses from reactive re-
sponses, it should, like the moment estimators, be biased to-
ward low estimates of timing variability when the timing re-
sponses include reactive responses.
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