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Abstract As commercial technology moves further into
wearable technologies, cognitive and psychological scientists
can capitalize on these devices to facilitate naturalistic re-
search designs while still maintaining strong experimental
control. One such wearable technology is Google Glass (Goo-
gle, Inc.: www.google.com/glass), which can present wearers
with audio and visual stimuli while tracking a host of
multimodal data. In this article, we introduce PsyGlass, a
framework for incorporating Google Glass into experimental
work that is freely available for download and community
improvement over time (www.github.com/a-paxton/
PsyGlass). As a proof of concept, we use this framework to
investigate dual-task pressures on naturalistic interaction. The
preliminary study demonstrates how designs from classic ex-
perimental psychology may be integrated in naturalistic inter-
active designs with emerging technologies. We close with a
series of recommendations for using PsyGlass and a discus-
sion of how wearable technology more broadly may contrib-
ute to new or adapted naturalistic research designs.
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Cognitive and social scientists often efficiently leverage commer-
cial technologies to enhance behavioral measurements in exper-
imental paradigms. For example, the ubiquity of the personal
computer permits easy computer-mouse tracking, allowing re-
searchers to investigate the continuous dynamics of cognition
and decision-making over time by charting mouse-movement
trajectories during computer-based experiments (e.g., Freeman

& Ambady, 2010; Huette & McMurray, 2010; Spivey & Dale,
2006). As video game consoles opened their platforms to devel-
opers, researchers have targeted the NintendoWii and Microsoft
Kinect as opportunities for new behavioral tracking techniques.
The Nintendo Wii became an extension of the mouse-tracking
paradigm, allowing researchers to track free arm movements
during choice selection (e.g., Dale, Roche, Snyder, & McCall,
2008; Duran, Dale, & McNamara, 2010), and the Microsoft
Kinect provided highly affordable motion-tracking of overall
body movements and specific effectors (e.g., Alexiadis et al.,
2011; Clark et al., 2012; Oikonomidis, Kyriazis, & Argyros,
2011). Increasing computer availability and online presence has
brought opportunities for worldwide data collection through ser-
vices such as Amazon Mechanical Turk (e.g., Crump,
McDonnell, & Gureckis, 2013; Paolacci, Chandler, & Ipeirotis,
2010). The recent explosion of open mobile application (Bapp^)
development has provided researchers with the opportunity to
integrate mobile phone technology into studies in and out of
the lab (e.g., Gaggioli et al., 2013; Henze, Pielot, Poppinga,
Schinke, & Boll, 2011; Miller, 2012; Raento, Oulasvirta, &
Eagle, 2009). These are, naturally, just a handful of examples
among many adaptations of technology for research purposes.

Over the past decade, a new breed of technology has
emerged and is poised to generate new experimental and
methodological explorations. Numerous segments of the tech-
nology industry have moved into wearable technologies as a
new avenue for products and services. From smart watches to
fitness trackers, these devices offer a range of services with a
variety of applications and intended audiences that can be
integrated into behavioral applications (e.g., Goodwin,
Velicer, & Intille, 2008; Klonoff, 2014; Picard & Healey,
1997; Starner et al., 1997). One well-known wearable tech-
nology is Google Glass (Google, Inc.), a multipurpose device
worn on the face like glasses (see Fig. 1). Its range of func-
tionalities and its openness to developers make it a potentially
powerful tool for cognitive and social science research, both in
and out of the lab.
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Through research-based apps, Google Glass can provide
researchers with real-time control of even very subtle stimuli
while unobtrusively tracking various behavioral measures.
Glass can present wearers with visual stimuli on a small screen
just over the right eye and with audio stimuli through a bone
conduction transducer or proprietary earbuds. Wearers navi-
gate Glass through voice command and with a small touchpad
over the right temple. The device can capture high-resolution
videos and photos, and researchers can track wearers’ head
movements with on-board three-axis gyroscope and acceler-
ometer sensors. Glass also includes on-boardmemory, wireless
capabilities, and Google’s Android mobile operating system.1

Here, we first briefly review prior work that has used wear-
able technologies broadly and Glass specifically. We then in-
troduce PsyGlass, our open-source platform for incorporating
Glass into behavioral research that taps into some of these
capabilities for naturalistic experimental work. As an example
application for developing experimental paradigms with
PsyGlass, we present a simple behavioral experiment that uses
Glass both to present visual stimuli to participants and track
participants’movements during a naturalistic interaction task.
We end with a list of recommendations for using PsyGlass,
our goals for expanding its capabilities, and a brief discussion
of how wearable technology can contribute to behavioral
research.

Research opportunities for wearable technologies

Wearable technologies can give researchers the opportunity to
track and quantify behavior in new ways. As technology has
miniaturized while becoming more powerful, cognitive and
social scientists have already begun looking for ways to in-
corporate it into research paradigms (e.g., Goodwin et al.,
2008). Wearable technology is still a relatively underutilized
methodology, but a growing number of researchers have
adopted it in some behavioral and health-related domains.
Although some of the capabilities provided by other wearable
technologies may not be possible to implement with Glass, we
here provide a brief history of wearable technology research,
to establish wearables’ existing foundation in research and to
spark ideas for the kinds of questions to which Glass (and
PsyGlass) could be applied.

Previous research with wearable technology

Interest in wearable technology in research-related settings
has existed for quite some time. However, until recent ad-
vances in developer-friendly commercial technology such as
Google Glass, many researchers have had to engineer their
own wearable solutions. For instance, affective researchers
have been engineering wearable solutions to track and classify
affect for nearly two decades (e.g., Lee & Kwon, 2010; Picard
& Healey, 1997). Since then, wearable technology has spread
to other domains—most notably, to the health sciences (e.g.,
Moens et al., 2014; Moens, van Noorden, & Leman, 2010; for
a review, see Pantelopoulos & Bourbakis, 2008).

One of the most prominent examples of wearable technol-
ogies in the behavioral sciences to date has been the sociomet-
ric badge, developed to provide a host of metrics on individual
and group behaviors (e.g., Lepri et al., 2012; Olguín Olguín,
Gloor, & Pentland, 2009; Olguín Olguín, Waber, et al., 2009;
Pentland, 2010; Waber et al., 2011). The sociometric badge
has been applied most heavily in analyses of workplace be-
havior and interactions (e.g., for describing a research network
in Lepri et al., 2012; or in a hospital in Olguín Olguín, Gloor,
& Pentland, 2009), exploring connections between workplace
activities and social factors in largely observational-style stud-
ies. For more on sociometric badges and related work, see the
review articles by Olguín Olguín, Waber, and colleagues
(2009) and Waber and colleagues (2011).

Existing work utilizing Google Glass

Over the past year, there has been growing excitement about
applying Glass in research, although the majority of published
scientific work to date comprises commentaries. To the au-
thors’ knowledge, Glass has been featured in only one pub-
lished experimental study in the behavioral sciences (Ishimaru

Fig. 1 Photo of Google Glass (Google, Inc.: www.google.com/glass)

1 This information is current as of December 2014 and describes the
Glass Explorer model (version 2). Detailed specifications are freely avail-
able through Google Developer’s Glass resources (http://developers.
google.com/glass).
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et al., 2014). However, interest in Glass has surged in other
research areas, especially the health sciences.

The health sciences are arguably one of the areas most
interested in Glass, particularly as assistive tools. Recent com-
mentaries have touted possible uses for Glass in laboratories
(Chai et al., 2014; Parviz, 2014) or as assistive devices
(Hernandez & Picard, 2014). From surgical assistance
(Armstrong, Rankin, Giovinco, Mills, & Matsuoka, 2014) to
dietary tracking (Mauerhoefer, Kawelke, Poliakov, Olivier, &
Foster, 2014) to perceptions of health-related Glass use
(McNaney et al., 2014), many preliminary integrations of
Glass into the medical and health sciences have capitalized
solely on existing Glass capabilities without additional app
development. Only a handful of researchers have developed
specialized apps with a variety of health science applications,
such as facilitating food shopping (Wall, Ray, Pathak, & Lin,
2014), augmenting conversation for individuals with visual
impairment (Anam, Alam, & Yeasin, 2014a, 2014b), and
assisting biomedical technicians (Feng et al., 2014).

Other research areas have also begun to incorporate Glass,
albeit to a lesser extent than in the health sciences. To the
authors’ knowledge, only Ishimaru and colleagues (2014)
have incorporated Glass into cognitive science,2 investigating
how blink patterns and head movements can be used to cate-
gorize wearers’ everyday activities. In the domain of human–
computer interaction, He, Chaparro, and Haskins (2014) have
developed a Glass app called BUSee^ that can be used to
facilitate usability testing, providing separate components for
participants, researchers, and other observers.

Despite this rising interest, the programming requirements
for developing Glass apps could pose a significant barrier to
entry for many cognitive and social scientists. Our goal is to
lower this barrier by providing a framework for incorporating
Glass that can be adjusted to individual research needs. By
opening the application to community development, we hope
to promote the important ethos of shared resources and to
encourage others to grow the application with us.

PsyGlass: A framework for Glass in behavioral
research

Google Glass provides behavioral, cognitive, and social sci-
entists with many methodological and measurement possibil-
ities as a research tool. Glass can simultaneously present stim-
uli and track various behavioral metrics, all while remaining
relatively unobtrusive, cost-effective, and portable. However,
developing research apps for Glass currently requires re-
searchers to develop projects entirely on their own.We believe

that a centralized resource with functioning example code and
guidance through the development process could make Glass
more accessible to a wider scientific audience.

To that end, we have created PsyGlass, an open-source
framework for incorporating Google Glass into cognitive
and social science research. All code for the PsyGlass frame-
work is freely available through GitHub (GitHub, Inc.: www.
github.com), allowing the research community to use, expand,
and refine the project. The code is jointly hosted by all three
coauthors and can be found in the PsyGlass repository on
GitHub (http://github.com/a-paxton/PsyGlass).

PsyGlass facilitates data collection and moment-to-
moment experimenter control over stimuli on connected Glass
devices. Currently, PsyGlass supports single-participant or dy-
adic research, although it can be adapted to include additional
participants. The framework (see Fig. 2) includes aWeb-based
experimenter console and specially designedGlassware (i.e., a
Glass app) built using Android Studio (Google, Inc.; http://
developer.android.com/sdk/). PsyGlass currently presents
only visual data and collects only accelerometer data,
although we are working to expand data collection and
stimulus presentation to other modalities, as well (see the
Future Directions section).

PsyGlass experimenter console

The experimenter console is a streamlined Web interface that
allows the experimenter to manipulate connected Glass visual
displays (see Fig. 3). The console provides separate controls
for up to two Glass devices, allowing the experimenter to

2 Some of the cited works from the health sciences have had behavioral
components, but such works are primarily focused on health and/or med-
ical applications.

Fig. 2 PsyGlass framework flow and the programming and/or markup
languages of each component (listed in parentheses). In the experimenter
console’s current form, the researcher can use it to update visual displays
on one or more connected Glass devices while collecting accelerometer
data from each
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update text and the background color displayed to each. With
relatively basic JavaScript capabilities, experimenters may
modify the console as desired to provide more automated
solutions for one or more connected devices (e.g., presenting
colors or words from a list at random).

The console alsomanages the connection between the serv-
er and the Glass. The experimenter can use the console to open
the initial server connection for the Glass. Once all Glass
devices are connected, the experimenter can initiate the data
collection session simultaneously across all devices to ensure
time-locked data collection and stimulus presentation. The
console provides the experimenter with updates about each
server–Glass connection (e.g., latency) while the Glass de-
vices are connected to the server. Once data collection is fin-
ished, the console allows the researcher to end the data collec-
tion session (again, simultaneously across all connected de-
vices) and close the server connection for both Glass devices.

PsyGlass Glassware

The PsyGlass Glassware allows the experimenter to update
the visual display on the basis of stimuli sent from the exper-
imenter console while recording three-dimensional acceler-
ometer data. Once the server connection has been opened
from the console, the wearer (or the experimenter) can initiate
the server-to-Glass connection with the Glassware. After the
console opens the data collection session, the Glassware reg-
ularly checks the server (by default at 4 Hz, or every 250 ms)
to check for visual display updates issued from the console.

Time-stamped x, y, z accelerometer sensor data are logged on a
local text file every 4 ms (250 Hz, by default) until the data
collection session has been ended.

After data collection has finished, the experimenter can
upload the accelerometer data stored locally on the device to
the server. Collecting and storing the data on the Glass helps
prevent overheating of the device and preserves battery life,
but data could be streamed continuously to the server with
some changes to the PsyGlass framework. Data are saved to
the server as a tab-delimited text file. To save space on the
device, the previous session’s data are deleted locally once a
new data collection session is initiated. More information on
the Glassware workflow is included in the Appendix.

Potential applications for PsyGlass

Although our initial interest in Glass grew from our studies of
bodily synchrony during face-to-face dyadic interaction
(Paxton & Dale, 2013), it can be easily adapted for other
settings. For example, researchers interested in humans’ ex-
ploration of their environment might track movement while
providing visual cues on the display, whereas a study on lan-
guage production might introduce distractors or incongruent
lexical items on participants’ screens. In dyadic studies, re-
searchers can use Glass to support naive confederate designs:
A lexical cue or prearranged visual signal (e.g., color, shape)
could serve as an instruction to lie to their partner during a
conversation or to act confused while completing a map task.
These are, of course, only a few brief examples, but they
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highlight one of the most compelling features of PsyGlass:
targeted control over a participant’s stimuli on the fly, even
in highly naturalistic settings.

To demonstrate how PsyGlass can be used to facilitate
behavioral research, we present data below from an experi-
ment investigating how individuals compensate for distraction
during conversation.3 This preliminary study demonstrates
how Glass may open opportunities for new experimental de-
signs with distinct theoretical implications. We believe that
Glass presents a unique opportunity for interpersonal behav-
ioral research, given its commercial availability,4 relative af-
fordability, and array of sensing capabilities. The experimental
design, data collection procedures, and data analysis provide a
concrete example of how PsyGlass can be deployed to extend
theory-rich questions into new domains.

Example PsyGlass application: Convergence
during interaction

Interpersonal convergence or synchrony broadly describes
how individuals become increasingly similar over time while
they interact (e.g., Shockley, Richardson, & Dale, 2009). Pre-
vious research suggests that one benefit of convergence may
be to help individuals overcome impoverished communica-
tion signals. For instance, individuals’ head movements syn-
chronize more strongly during conversation with high ambi-
ent noise, as compared with conversation in an otherwise si-
lent room (Boker, Rotondo, Xu, & King, 2002). These find-
ings support the idea that interpersonal convergence may be
vital to comprehension (e.g., Richardson & Dale, 2005;
Shockley et al., 2009), perhaps by serving as a scaffold to
support key aspects of the interaction in a synergistic account
of interpersonal coordination (e.g., Dale, Fusaroli, Duran, &
Richardson, 2014; Fusaroli et al., 2012; Riley, Richardson,
Shockley, & Ramenzoni, 2011).

Building fromBoker and colleagues’ (2002) findings in the
auditory domain, in the present study we tested whether low-
level visual distractors—analogues to auditory distractors—
increase interpersonal movement synchrony during friendly
conversations. We compared participants’ head movements
during conversation (a) combined with a dual-task paradigm
and (b) in the presence of Bvisual noise.^ Using PsyGlass, we
were able to present visual stimuli separately to each partici-
pant while surreptitiously collecting high-resolution head
movement data. We anticipated that dyads would synchronize
more during the Bnoise^ condition (cf. the auditory noise in
Boker et al., 2002). We chose the dual-task condition as a

comparison condition that could decrease interpersonal syn-
chrony, given a constellation of previous findings (e.g., re-
garding working memory and synchrony in Miles, Nind, &
Macrae, 2009; and working memory and dual-task paradigms
in Phillips, Tunstall, & Channon, 2007).

Method

Setting up PsyGlass Once our experiment was designed, we
took a series of steps to set up the technical foundation for
PsyGlass. As a dyadic interaction study, we prepared two
Glass devices, one for each participant. First, the native Java
code for PsyGlass must be compiled onto the Glass devices.
The Java code distributed on GitHub (linked above) can be
compiled in the Glass software development kit environment
(called the BGDK^); Google’s documentation for this process
is quite thorough.5 Second, to accompany PsyGlass on the
Glass devices, we developed JavaScript code that controls
the PsyGlass experimenter console. This JavaScript code (also
included on GitHub) controls the nature and timing of the
stimuli (described below). Third, we installed the PHP code
on a server that coordinates data collection through the exper-
imenter’s browser in order to share the Glass devices’ data
with the server. Importantly, this setup requires that the exper-
imenter’s computer and the two Glass devices be connected to
the Internet during the entire experiment.

Participants In return for course credit, 30 undergraduate
students from the University of California, Merced, participat-
ed as 15 volunteer dyads, none of whom reported knowing
one another. Each dyad was randomly assigned to either the
noise (n = 7) or the dual-task (n = 8) condition. Due to con-
nectivity issues, one dyad’s data (from the noise condition)
were removed from the present analyses, since fewer than
3 min of usable movement data were recorded. (See the
notes about connectivity issues in the General Discussion.)

Materials and procedure After completing several question-
naires (not analyzed here), the participants were seated facing
one another in two stationary chairs approximately 3 feet 2 in.
away from one another in a semi-enclosed space within a
private room. Both chairs were seated in profile to a small
table with an iMac 27-in. (Apple, Inc.) computer several yards
away, from which the experimenter would run the PsyGlass
experimenter console in the following experiment. Partici-
pants were then given 3 min to get acquainted without the
experimenter present.

Once the experimenter returned, each participant was given
a Google Glass with the PsyGlass Glassware and went
through a brief setup process to become familiar with the3 These data are part of a larger ongoing research project investigating

how interaction is affected by various contextual pressures.
4 The protocol for purchasing Google Glass has changed. Further infor-
mation is provided in the General Discussion.

5 For a quick demonstration, see https://developers.google.com/glass/
develop/gdk/quick-start.
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device. The experimenter first described the Glass to the par-
ticipants (i.e., explaining what the display and touchscreen
were) and helped the participants properly fit the Glass to their
faces. The experimenter then verbally guided participants
through initializing the PsyGlass Glassware, providing the
participants some experiencewith the device before beginning
the experiment. The experimenter tested participants’ ability
to fully see the Glass by ostensibly checking its connection,
using the PsyGlass experimenter console to present partici-
pants with either one word (i.e., BGlass^ or Btest^) or color
(i.e., red code #FF0000 or blue code #0000FF) and asking
them to report what change they saw on their screen.

Crucially, all dyads were then told that their Glass display
would switch between blue and red during the experiment. To
implement this, we created a version of the PsyGlass experi-
menter console that updated the screen color once per second
(1 Hz), with a .9 probability of a blue screen and a .1 proba-
bility of a red screen.6 Dyads assigned to the dual-task condi-
tion were told to remember each time the screen turned red
and that they would be asked to write down that number at the
end of the conversation. This condition is akin to a dual-task
oddball paradigm (Squires, Squires, & Hillyard, 1975). Dyads
assigned to the noise condition were told that these switching
colors were due to a bug in the programming and that they
could ignore the changing screen during their conversation.

All dyads were then asked to hold an 8-min conversation
with one another about popular media and entertainment
(mean length = 8.12 min). After the remainder of the experi-
ment,7 participants were thanked and debriefed.

Analyses Data were trimmed to exclude the calibration and
instruction periods, retaining only the conversational data.
The mean length of recorded movement data was 7.7 min
(range = 4.17–8.86 min), largely due to connectivity errors
in two of the included dyads. We converted the x, y, z accel-
erometer data for each participant into Euclidean distances to
create a single metric of head movement over time, and then
applied a second-order Butterworth filter to smooth the data.
Cross-correlation coefficients (r) served as our metric of inter-
personal synchrony, since they have been a fairly common
metric for synchrony in previous research (e.g., Richardson,
Dale, & Tomlinson, 2009). Cross-correlation provides a mea-
sure of the influence between individuals across windows of
time: By correlating individuals’ time series at varying lags,
we could measure the degree to which individuals were af-
fecting one another more broadly. Following from previous
research (Ramseyer & Tschacher, 2014), we calculated cross-
correlation rs within a ±2,000-ms window.

Results

The data were analyzed primarily using a linear mixed-effects
model. The random-effects structure (using random slopes
and intercepts) was kept as maximal as possible (Baayen,
Davidson, & Bates, 2008; Barr, Levy, Scheepers, & Tily,
2013). Dyad membership was included as the sole ran-
dom effect. The condition was dummy-coded prior to
inclusion (0 = noise, 1 = dual-task). All other vari-
ables—including interaction terms—were centered and
standardized (Baayen et al., 2008) prior to being entered
into the model.

This model served two purposes: (a) to replicate previous
findings of time-locked synchrony of head movements during
conversation (Ramseyer & Tschacher, 2014) and (b) to ex-
plore whether low-level visual distractors would negatively
impact that synchrony relative to increased working memory
load. The model predicted r—our measure of interpersonal
synchrony or convergence—with lag (±2,000 ms) and condi-
tion (dual-task = 1) as independent variables.

As anticipated, increases in lag significantly predicted de-
creases in r, providing evidence for in-phase interpersonal
synchrony of head movements during conversation
(ß = –.50, p < .0001). The main effect of lag indicated that
partners’ head movements were most strongly correlated at
lag 0—that is, in moment-to-moment comparisons. The cor-
relation decreased as the time series were compared at increas-
ingly disparate points.

However, contrary to our hypothesis, we found no signifi-
cant difference between the noise and dual-task conditions
(ß = .19, p > .30), nor a significant effect of the interaction
term (ß = –.03, p > .60). In fact, the trend suggests that the
oppositemight be the case, with the dual-task condition being
associated with higher cross-correlation coefficients (see
Fig. 4). A two-sample t-test of the centered and standardized
cross-correlation coefficients only at lag 0 showed a margin-
ally significant increase in interpersonal synchrony during the
dual-task condition, t(13) = –2.1, p < .06.

Discussion

In the present study, we explored how interpersonal dynamics
during naturalistic conversation are affected by environmental
factors. Inspired by previous work in the auditory domain
(Boker et al., 2002), we investigated how visual distractors
and increased working memory load differentially affect inter-
personal synchrony by using PsyGlass to quantify headmove-
ments. Although we replicated previous findings of head
movement synchrony generally (Ramseyer & Tschacher,
2014), we found conflicting evidence for the impact of these
conditions on synchrony.

Although the longer-range convergence was not significantly
different between the two conditions, moment-to-moment (i.e.,

6 If the updated color was the same as the current color, the screen did not
appear to change or flicker.
7 Which included subsequent conditions not analyzed here, beyond the
scope of the current demonstration.
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in-phase) synchronywasmarginally higher in the dual-task con-
dition, contrary to our expectations. These unexpected results
could have several implications for this literature, to be
disentangled with follow-up work. First, the results could sug-
gest that—although higher working memory load may increase
lag-0 synchrony—convergence unfolds similarly over a longer
timescale, regardless of the nature of the external visual stimuli.

Second, these findings could suggest a reframing of the
conditions in the present study as compared with those used
by Boker and colleagues (2002). Rather than interpreting the
auditory noise as a distractor, it might in fact have been more
similar to the dual-task condition than the visual-noise condi-
tion: Both ambient noise and the dual task may be more task-
relevant and less easily ignored during conversation than the
irregular blue-to-red screen switches. Perhaps the key element
is that distractors should in some way be unavoidable during
interaction.

Using PsyGlass: Recommendations and limitations

Below we compile a number of recommendations and limita-
tions to consider when using Google Glass with PsyGlass.
These items to consider should be useful for practical concerns
about experimental design and data analysis with PsyGlass.

No prior Android experience is required, although it can be
helpful. Prior experience with programming of some kind can
be incredibly beneficial, especially in Java. However, re-
sources for Glass, Android, Java, and JavaScript programming
are widely available online through various online tutorials and
forums. Note that compiling PsyGlass will require following
the basic GDK instructions (see the Method section above).

Troubleshooting modifications to PsyGlass can take time,
especially for those new to Android and Glass development.
Those new to Android coding should first familiarize them-
selves with the basic PsyGlass program and start with incre-
mental changes to the code, building to larger extensions.
Numerous developer resources for Android and Glass are
available through third-party sources (e.g., programming fo-
rums, tutorial websites) and Google Developers (Google, Inc.:
https://developers.google.com/).

In its current form, PsyGlass is very battery-intensive. Re-
searchers may consider reducing the computational strain (e.g.,
by reducing the sampling rate) if using the application for ex-
tended periods of time, to preserve battery life. In our example
experiment, PsyGlass actively ran for amaximum of 20min per
data collection session.8 By charging the Glass devices for up
to 20 min between data collection sessions, we were able to
run up to four back-to-back data collection sessions without
battery problems. We imagine that this pattern could continue
for longer but cannot say so from experience.

The on-board computer for Glass (which sits alongside the
wearer’s right temple) can become quite warm to the touch
after extended intensive use or charging. Although a very
small number of participants commented on this warmth, no
participants reported it as being uncomfortable, even when the
Glass had been in use or charging for up to 3 h before their
data collection session.

Because the Glass display does not have an opaque
backing, nearby parties may be able to see some of the
stimuli presented on the Glass display. Bright colors are
the most easily noticeable, being recognizable from

8 Due to additional conditions outside of the scope of the present article.

Fig. 4 Interaction plot of the linear mixed-effects model for our sample application, predicting interpersonal synchrony (r: y-axis) as a function of
condition (blue = noise, orange = dual task) across lags of ±2,000 ms (x-axis)
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farther away than 45 feet.9 Although the presence of most
text or shapes is perceivable from approximately 90 in., large
text and shapes are somewhat identifiable as close as 21 in.
and are distinctly readable by around 14 in. away. Small text,
however, is unreadable even at 6 in. Researchers should take
this into account and perform preliminary tests to ensure that it
will not impinge on the experimental goals (e.g., during
deception-based tasks). However, we have heard reports of
others attaching lightweight backings to the Glass, which
may serve as a solution in these cases.

Although Google Glass is designed to be worn over regular
glasses, it can be somewhat difficult for some wearers to com-
fortably wear Glass while being able to easily see the entire
screen. In some cases—like our color-based example study—
being able to see most of the screen clearly should suffice.
However, this may be an issue for experimental designs rely-
ing on text-based prompts or stimuli. Researchers may con-
sider altering their experimental design or restricting partici-
pant eligibility in such cases.

Many participants will likely have had little to no prior
experience using Google Glass. Anecdotally, many of our
participants commented on how Bexciting^ or Bweird^ Glass
was. We recommend that researchers at least briefly introduce
Glass to participants before beginning the experiment. An
introduction to Glass minimizes participants’ awkwardness
with the device and reduces the chance that participants will
interfere with key Glass capabilities during the experiment
(e.g., by brushing the touchpad). Researchers may use our
protocol—reported in the Materials and Procedure section—
as a guide.

The framework is currently designed to protect data transfer
between the server and connected Glass devices. Therefore,
problems with wireless Internet connections can cause
PsyGlass to terminate the data collection session or disconnect
the Glass from the server entirely. All data prior to termination
are still saved locally on the device. By prioritizing connectiv-
ity, PsyGlass is able to ensure that all commands are executed
as intended, but this may be an issue for individuals who have
unreliable or difficult wireless networks. This can currently be
changed by reprogramming PsyGlass, and we hope to release
an alternate version that is more forgiving in this area.

Researchers may consider applying down-sampling proce-
dures, band-pass filters, or moving averages for their data
analysis, depending on project needs and the standard prac-
tices of relevant target research area(s). The high-resolution
movement data provide high statistical power for time series
analyses, but this power may not always be needed. An ex-
ample of data manipulation and filtering has been provided
above in the Analyses section.

General discussion

Wearable technology can provide researchers with opportunities
to explore naturalistic behavior dynamics both in and out of the
lab. PsyGlass capitalizes on Google Glass to give researchers a
stimulus presentation and data collection tool in an easily cus-
tomizable, open-source framework.We have provided an exam-
ple application of PsyGlass to dyadic interaction research, but
the paradigm is open to single- and multiparticipant studies. We
welcome other researchers to join us in using or expanding
PsyGlass on GitHub (www.github.com/a-paxton/PsyGlass).
The openness of the Google Glass developer community
stands as a resource for researchers interested in tapping into
other dimensions of the Google Glass, from audio stimulus
presentation to eye-camera recording.

Update regarding purchasing Google Glass

Google has recently shifted the Glass program to focus more
on developers and enterprise needs through its BGlass at
Work^ program (https://developers.google.com/glass/
distribute/glass-at-work). At the time of writing, those
interested in purchasing Glass for research or educational
needs may contact the Glass at Work program at glass-edu@
google.com. Any changes or additional relevant information
will be included on the readme file at the PsyGlass repository
(http://github.com/a-paxton/PsyGlass).

Future directions for PsyGlass and wearable technology

Wearable solutions like PsyGlass and other tools (e.g., Olguín
Olguín et al., 2009a) are helping researchers increase external
validity and target the real-world behaviors that they are inter-
ested in exploring. Especially for complex behaviors like in-
teraction, researchers must balance experimental controls with
experimental designs targeting naturalistic behaviors. By pro-
viding wireless, portable, minimalistic behavior tracking,
wearable technology can unobtrusively quantify behavioral
metrics and give moment-to-moment control over stimulus
presentation. These represent an addition to our tools for cre-
ating naturalistic, externally valid experiments that tap into the
real-world behaviors we seek to capture. With PsyGlass, we
hope to lower the barriers to entry for other researchers who
are interested in capitalizing on these new opportunities.

In that vein, we intend to continue to expand PsyGlass as a
methodological tool that can contribute to theoretical inquiry.
Our basic goals include tapping additional Glass capabilities
for data collection (e.g., gyroscope, eye-camera capture) and
stimulus presentation (e.g., audio) to give researchers more
experimental design andmultimodal options.We have already
created optional modules to implement lexical decision tasks
on PsyGlass, available on GitHub. We hope to provide a suite
of collection and presentation options that others can use to

0 Due to additional conditions outside of the scope of the present article.
9 Measured from the nose of wearer to the nose of viewer in a well-lit
room, with the viewer having normal, uncorrected vision.
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cobble together versions of PsyGlass that fit their needs. Our
first goal for major expansion is to create a way for partners’
Glass devices to be interactively updated by each another—
for instance, by having the amplitude of movement of one
Glass (measured by the accelerometer) update the visual stim-
uli of a second, connected Glass. In doing so, PsyGlass can
subtly prompt interaction dynamics and alter interpersonal
behaviors on the basis of prespecified events. By putting the
code onto an open community for programmers, we hope to
encourage others to join us in our expansion and refinement of
the PsyGlass tool.

Author note We thank UC Merced undergraduate research assistants
Keith Willson, Krina Patel, and Kyle Carey for their assistance in data
collection for the example PsyGlass application.

Appendix

Accessing PsyGlass Glassware (see Fig. A1)

Fig. A1 PsyGlass Glassware flow for navigating to the data collection study (BMain Activity^). The Main Activity can be accessed in two ways:
navigating with the touchpad (Path A) or through voice commands (Path B)
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Through the touchpad Navigate to the Home card. Tap once
to view a list of commands. Navigate to BShow Demo^ and
tap once. If you are not immediately taken to the PsyGlass
immersion, navigate to BSample Experiment^ and tap once.

Through voice commands Say Bok glass.^ A menu with a
list of voice commands will pop up. Say BShow me a demo
with.^ If you are not immediately taken to the PsyGlass im-
mersion, say BSample Experiment.^

PsyGlass Glassware data collection flow (see Fig. A2)

Main activity This is the first activity with which the user is
presented. The user sees the title card and is prompted to tap
the device for options. Tapping the device brings up an op-
tions menu with two items: BStart^ and BSettings.^ Selecting

the first option takes the user to the Game Activity, and
selecting the second takes the user to the Settings Activity.
Swiping down on the device will return the user to the Google
Glass timeline.
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Fig. A2 PsyGlass Glassware flow for initializing and terminating data collection (left; BGameActivity^) and for uploading the session data to the server
(right; BSettings Activity^ leading to BUpload Activity^)



Game activity This is the activity in which the actual exper-
iment and data collection take place. First, the device attempts
to connect to the server, which must first be initiated from the
experimenter console. Once connected, it will continuously
poll the server for updates, and the server guides the device
through the data collection session. During the session, the
server dictates when the device should start collecting data,
when it should change the display of the device, and when to
stop collecting data. Data collection involves writing acceler-
ometer sensor readings to a text file on a local device. Tapping
the device brings up the options menu with the BFinish^ item.
Selecting this item forces the device to close its connection to
the server, close the sensor, finish writing to the text file, and
return the user to Main Activity.

Settings activity This activity presents the Data card, which
contains four fields with information. The first field shows the
device ID, given to the device by the server at the start of the
most recent experiment; device ID numbers begin at 0 and are
assigned sequentially according to server connection order.
The second and third fields show the date and time of when
the session of the experiment was conducted. The fourth field
shows the duration of the session of the experiment conduct-
ed. These fields on the card will be empty if no experiment has
been conducted on the device. Tapping on the device with this
card active will bring up an options menu with the BUpload
Data^ item, which allows the user to upload the data collected
from the latest experiment. Selecting the item takes the user to
the Upload Activity. Swiping down on the device will return
the user to Main Activity.

Upload activity This is the activity in which the application
uploads data to the server. The application prepares the inter-
nal text file containing experimental data and streams the con-
tent to the server. Tapping on the device brings up the options
menu with the BCancel Upload^ item. Selecting this item will
close the text file, close the connection to the server, and return
the user to Settings Activity.
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