
A comparison of scanpath comparison methods

Nicola C. Anderson & Fraser Anderson & Alan Kingstone &

Walter F. Bischof

Published online: 25 December 2014
# Psychonomic Society, Inc. 2014

Abstract Interest has flourished in studying both the spatial
and temporal aspects of eye movement behavior. This has
sparked the development of a large number of new methods
to compare scanpaths. In the present work, we present a
detailed overview of common scanpath comparison measures.
Each of these measures was developed to solve a specific
problem, but quantifies different aspects of scanpath behavior
and requires different data-processing techniques. To under-
stand these differences, we applied each scanpath comparison
method to data from an encoding and recognition experiment
and compared their ability to reveal scanpath similarities
within and between individuals looking at natural scenes.
Results are discussed in terms of the unique aspects of
scanpath behavior that the different methods quantify. We
conclude by making recommendations for choosing an appro-
priate scanpath comparison measure.
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When we average over eye movement measures such as fixation
counts and durations we ignore that eye movement behavior is a
process that unfolds in a particular sequence over time. This

sequence is a rich source of information. When Noton and
Stark (1971) wrote about their “Scanpath Theory,” they noticed
that there were only two previous reports (Jeannerod, Gerin, &
Perrier, 1968; Yarbus, 1967) that “consider the order in which
features are fixated and which, in particular, mention paths
followed repetitively from feature to feature of a pattern” (p.
929). Since that time, an explosion of interest has emerged in
the particular sequence that the eyes travel over a scene (e.g.,
Anderson, Bischof, Laidlaw, Risko, & Kingstone, 2013; Brandt
& Stark, 1997; Burmester & Mast, 2010; Foulsham et al., 2012;
Foulsham & Underwood, 2008; Johansson, Holsanova, &
Holmqvist, 2006, 2011; Shepherd, Steckenfinger, Hasson, &
Ghazanfar, 2010). Not only has Noton and Stark’s Scanpath
Theory (1971) been explored in more detail (Foulsham et al.,
2012; Foulsham & Underwood, 2008), but sequences of eye
movements have been explored when imagining stimuli
(Johansson et al., 2006, 2011), when comparing speakers’ and
listeners’ eye movements (D. C. Richardson & Dale, 2005), and
when viewing websites repeatedly (Burmester & Mast, 2010).
Noton and Stark (1971) were limited to visual inspection to
determine whether two scanpaths were similar, but along with
the explosion of interest in eye movement sequences came an
explosion of methods to analyze such data (e.g., Cristino,
Mathôt, Theeuwes, & Gilchrist, 2010; Dewhurst et al., 2012;
Henderson, Brockmole, Castelhano, & Mack, 2007).

The purpose of the present work is to bring together the
many scanpath comparison methods to both match and differ-
entiate them on a common paradigm and data set. Our exper-
imental paradigm is based closely on that of Foulsham and
Underwood (2008). In that work, participants viewed a series of
images and were asked to remember them for a later recogni-
tion test. Scanpaths were compared within and between indi-
viduals and images. Noton and Stark’s (1971) Scanpath Theory
suggests that, when looking at an image, individuals store both
the image features and the gaze sequence used to inspect that
image. Thus, the theory predicts that individuals recognizing a
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previously seen image follow a scanpath similar to their initial
viewing of the image. Foulsham and Underwood (2008) tested
this prediction using a computational scanpath comparison
technique and found that indeed, a participant viewing the
same image twice shows a more similar scanpath than a
different participant viewing the same image. Foulsham et al.
(2012) expanded their earlier work to include scanpath mea-
sures that quantified different scanpath aspects, such as their
overall shape or duration similarity. They found that an indi-
vidual’s scanpath was idiosyncratic, that is, more similar within
an individual than between individuals. Scanpath similarity was
also highest when the same person looked at the same image a
second time. Within-participant similarity was highest for the
direction of saccades, the position and duration of fixations, and
the overall shape of the scanpath. We use these findings as a
benchmark with which to evaluate the many available scanpath
techniques. We hope that this work provides an informative
overview of the available methods that will help researchers
select an appropriate measure for use in their own work.

Scanpath comparison methods

We describe the scanpath comparison methods that have been
introduced in the literature. In each case, we give a short
description, and the reader is advised to consult the original
publications for further details. Additional mathematical de-
tails are provided in the Appendix.

Edit distance

One successful way for comparing scanpaths is based on the
string-edit distance (Bunke, 1992; Levenshtein, 1966;Wagner
& Fischer, 1974), which is used tomeasure the dissimilarity of
character strings. In this method, a sequence of transforma-
tions (insertions, deletions, and substitutions), is used to trans-
form one string into the other and their similarity is represent-
ed as the number of transformation steps between the two
strings. This method has been adapted for comparing the
similarity of scanpaths (Brandt & Stark, 1997; Foulsham &
Kingstone, 2013; Foulsham & Underwood, 2008; Harding &
Bloj, 2010; Underwood, Foulsham, & Humphrey, 2009). To
achieve this, a grid is overlaid on an image, and each cell in the
grid is assigned a unique character. Fixation sequences are
then transformed into a sequence of characters by replacing
the fixation with the character corresponding to the grid cell
the fixation falls in. The dissimilarity of two scanpaths can
then be represented by the number of transformations required
to convert the string corresponding to the first scanpath to the
string corresponding to the second scanpath.

The string-edit distance method was very popular in early
scanpath comparison work (e.g., Brandt & Stark, 1997) and
has been used subsequently in a variety of experimental

contexts (e.g., Harding & Bloj, 2010; Underwood et al.,
2009). This is an advantage for researchers wishing to directly
compare results to these earlier studies. But the main advan-
tage of the string-edit measure lies in the fact that it captures
the intuitive notion of scanpath distance in a simple way.
However, several criticisms have been raised against the use
of edit distance for scanpath comparisons. First, the grid is
defined independently of image content andmay be too coarse
in regions of interest while being too fine in other regions.
Second, two fixations may be considered different even when
they are close together, namely if they fall on either side of a
grid line. Variants of the string-edit distance have been devel-
oped to address these problems. For instance, assigning char-
acters to pre-defined areas of interest allows the researcher to
add semantic information to the quantization process
(Josephson & Holmes, 2002; West, Haake, Rozanski, &
Karn, 2006), but the definition of regions of interest can be
time-consuming. In our analysis, we have used a simple grid-
based variant of the edit distance.

The string-edit measure has been used on a similar dataset
previously in Foulsham and Underwood (2008), where simi-
larity was found to be highest for scanpaths generated from
the same person looking at the same image. In addition, in
Foulsham et al. (2012), similarity in shape was highest for the
same person looking at the same image. Given that the string-
edit distance measure is most sensitive to similarities in shape
and sequential information, we expect that string edit similar-
ity scores should be quite high between scanpaths of the same
person looking at the same image for a second time, conver-
gent with these earlier results.

ScanMatch

Cristino et al. (2010) proposed a generalized scanpath com-
parison method that addresses many of the deficiencies of the
string-edit distance method. Their generalization aligns eye
movement sequences based on the Needleman-Wunsch algo-
rithm, which is used in bioinformatics to compare DNA
sequences. In their method, scanpaths are spatially and tem-
porally binned and then recoded to create a sequence of letters
that retains fixation location, duration, and sequence informa-
tion. The two character sequences are compared by maximiz-
ing the similarity score computed from a substitution matrix,
which in turn provides the score for all letter pair substitutions
and a gap penalty. Critically, the substitution matrix can en-
code information about the relationship between specific re-
gions of interest, thus providing the opportunity to include
semantic information in the similarity measure.

A major advantage of the ScanMatch method is that it can
take into account spatial, temporal, and sequential similarity
between scanpaths. In addition, semantic information can be
easily added using the substitution matrix. One disadvantage
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of this method is that it suffers from the quantization issues
inherent in any measure using regions of interest or grids.

Since ScanMatch quantifies spatial, sequential, and dura-
tion information together, we expect ScanMatch to do well in
revealing within-participant scanpath similarity, and in partic-
ular, the strong similarity between observers viewing the same
image twice (see Foulsham et al., 2012).

Sample-based measures

Shepherd et al. (2010) introduced several measures for
assessing the similarity of two scanpaths. For each of the
measures, the scanpaths are first resampled uniformly in time
(at 60Hz), and truncated to the shorter length. These measures
are sample-based, in that they do not require pre-processing of
eye-tracking data into discrete fixation-saccade sequences via
saccade and velocity thresholds.

Fixation overlap The first measure, fixation overlap, is de-
fined as the proportion of overlapping samples. Two samples
(at time t) overlap if the Euclidean distance between two
samples is less than a predefined threshold.

The overlap between two scanpaths yields a similarity
measure that is sensitive to temporal and spatial differences
between fixation locations. It does not take into account
fixation duration, rather it uses the resampling to capture
aspects of temporal similarity. Thus, this method preserves
temporal ordering but does not account for differences in
fixation times. As a result, two scanpaths could have the same
spatial positions but different fixation durations, and this
method would then evaluate them as not overlapping and
therefore being very different. For example, if one scanpath
lagged behind another by one fixation but was otherwise
spatially overlapped, this method would evaluate the two
sequences as very different. One drawback of this method is
that it uses an arbitrary, pre-defined radius threshold, with
similar disadvantages to the grid-based quantization of
string-edit and ScanMatch.

Fixation overlap is extremely sensitive to differences in
absolute timing between two scanpaths, but is slightly less
sensitive to differences in position (due to the use of the
radius). Given these sensitivities, it is reasonable to expect
this measure to perform similarly to the ScanMatch measure,
which is also sensitive to the spatial and temporal similarities
between two scanpaths.

Temporal correlation Shepherd et al. (2010) also introduced
temporal correlation (see also Hasson, Yang, Vallines,
Heeger & Rubin, 2008) as a measure of the similarity
between scanpaths. For two scanpaths, the temporal correla-
tion is defined as the average of the correlation between their
x-coordinates and y-coordinates, respectively.

This measure is very sensitive to temporal and spatial
differences between the two scanpaths. The sensitivity to
temporal differences can be advantageous when timing is
important, e.g., when the stimuli change over time, such as
in videos. The correlation measure is also sensitive to small
differences in fixation positions, given that there is no spatial
quantization of the fixations. A significant advantage of this
method is its use of the straightforward and readily interpret-
able correlation analysis. This measure is more sensitive to
similarities in position than the fixation overlap method, while
also taking sequential information into account. However, this
strong spatial-temporal sensitivity may be less robust to noisy
data than other measures that employ a grid or radius.

We expect the temporal correlation measure to be particu-
larly useful in situations and paradigms where precise tempo-
ral timing of gaze sequences is crucial.

Gaze shift Shepherd and colleagues’ (2010) gaze-shift mea-
sure assesses how similar the saccade times and amplitudes
are between two scanpaths. Gaze shift is computed as the
correlation between the absolute values of the first derivative
of each scanpath and is computed in the same manner as the
temporal correlation, but using the first derivative instead of
the position.

For smoothing and for computing the derivatives of the
scanpaths, each scanpath is convolved with the derivative of a
Gaussian filter. Gaze shift is sensitive to the amplitude of the
saccade as well as to its temporal location. It reflects how
similar two scanpaths are in terms of the sequence of large and
small saccades. This captures some aspects of a global view-
ing strategy, as subjects who make small saccades within a
localized region would have very different scanpaths than
subjects who make large saccades within the entire visible
area. This is also useful for comparing dynamic stimuli (e.g.,
video) to assess how subjects respond to temporal changes in
the scene.

The gaze-shift measure quantifies similarity in amplitudes,
and might correspond well with the MultiMatch measure that
quantifies similarity in scanpath length. In Foulsham et al.
(2012), similarity in length was only consistent for the within/
between-image comparison. One might expect a similar result
for the gaze-shift measure; however, prediction is difficult
because it simultaneously quantifies, like the other sample-
based measures, temporal similarity.

Linear distance

Mannan, Ruddock, and Wooding (1995) and Mathot,
Cristino, Gilchrist, and Theeuwes (2012) analyzed the overall
similarity between two scanpaths by computing the linear
distances between the fixations in the first scanpath and the
nearest neighbor in the second scanpath, as well as the linear
distances between the fixations in the second scanpath and the
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nearest neighbor in the first scanpath. These distances are
averaged and normalized against randomly generated
scanpath sequences (see Appendix).

The most significant advantage of the linear distance method
is that it does not need to be quantized as in the string-edit
method. It simply compares each fixation in one scanpath with
the fixations in another in terms of their spatial similarity.
However, by comparing only nearest neighbor fixations in
terms of distance, this method ignores sequential information.
To address some of these issues, Mannan et al.’s (1995) method
was modified by Henderson, Brockmole, Castelhano, & Mack
(2007) to enforce a one-to-one mapping between two
scanpaths, provided that they have the same length. The results
for the two methods are very similar (Foulsham&Underwood,
2008), which is likely due to the fact that Mannan et al. average
the distances from the first to the second and from the second to
the first scanpath, hence clusters of fixations in one scanpath are
averaged out. For this reason, we used only Mannan et al.’s
(1995) original method in our analyses. Linear distance is a
measure that specifically quantifies and compares the fixation
positions in two scanpaths, regardless of the order of fixations.
Given that scanpath position comparisons have previously re-
vealed an advantage for within-participant similarity (Foulsham
et al., 2012), we expect this method to perform well in compar-
ing within- and between-participant scanpath similarity.

MultiMatch

Recently, Jarodzka, Holmqvist, and Nyström (2010),
Dewhurst et al. (2012), and Foulsham et al. (2012) introduced
the MultiMatch method for comparing scanpaths. The
MultiMatch methods consists of five separate measures that
capture the similarity between different characteristics of
scanpaths, namely shape, direction, length, position, and dura-
tion. Computation of each MultiMatch measure begins with
scanpath simplification, which involves combining iteratively
successive fixations if they are within a given distance or
within a given directional threshold of each other. This simpli-
fication process aids in reducing the complexity of the
scanpaths while preserving their spatial and temporal structure.

Following this simplification, scanpaths are aligned based
on their shape using a dynamic programming approach. The
alignment is computed by optimizing the vector difference
between the scanpaths (note, however, that scanpaths may be
aligned on any number of dimensions in MultiMatch). This
alignment reduces the comparison’s sensitivity to small tem-
poral or spatial temporal variations, and allows the algorithm
to find the best possible match between the pair of scanpaths.
All subsequent similarity measures are computed on these
simplified, aligned scanpaths. The MultiMatch similarity
computations presented here follow the implementation de-
scribed in Dewhurst et al. (2012).

MultiMatch (MM) vector Vector similarity is computed as the
vector difference between aligned saccade pairs, normalized
by the screen diagonal and averaged over scanpaths. This
measure is sensitive to spatial differences in fixation positions
without relying on pre-defined quantization. It is a measure of
the overall similarity in shape between two fixation-saccade
sequences.

MM length Length similarity is computed as the absolute
difference in the amplitude of aligned saccade vectors, nor-
malized by the screen diagonal and averaged over scanpaths.
This measure is sensitive to saccade amplitude only, not to the
direction, location, or the duration of the fixations.

MM direction Direction similarity is computed as the angular
difference between aligned saccades, normalized by π and
averaged over scanpaths. This measure is sensitive to saccade
direction only, but not to amplitude or absolute fixation
location.

MM position Position similarity is computed as the Euclidean
distances between aligned fixations, normalized by the screen
diagonal, and averaged over scanpaths. This measure is sen-
sitive to both saccade amplitudes and directions.

MM duration Duration similarity is computed as the absolute
difference in fixation durations of aligned fixations, normal-
ized by the maximum duration and averaged over scanpaths.
This measure is insensitive to fixation position or saccade
amplitude.

The main advantage of the MultiMatch method is that it
provides several measures to choose from for assessing
scanpath similarity, and each measure on its own captures a
unique component of scanpath similarity. Given the multiplic-
ity of measures, it remains, however, difficult to assess which
measure, or which set of measures, is most applicable in a
given scenario. Furthermore, because each scanpath is initially
simplified it is also not clear how robust each measure is to
scanpath variations.

Given that the MultiMatch measures have already been
evaluated with a dataset similar to the one generated for the
present work, we expect to essentially replicate those earlier
results, where saccade direction, fixation position, fixation du-
ration, and shape similarity were found to be higher for within-
participant compared to between-participant comparisons.

Cross-recurrence quantification analysis

Recurrence analysis has been used successfully as a tool for
describing complex dynamic systems, e.g., for electrocardio-
grams (Webber Jr & Zbilut, 2005) that are difficult to charac-
terize using standard methods in time-series analysis (e.g.,
Box, Jenkins, & Reinsel, 2013). It has also been used for
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describing the interplay between dynamic systems in cross-
recurrence analysis, e.g., for analyzing the postural synchro-
nization of two persons (Shockley, Baker, Richardson, &
Fowler, 2007; Shockley, Santana, & Fowler, 2003; Shockley
& Turvey, 2005). Richardson, Dale and colleagues have gen-
eralized recurrence analysis to categorical data and have used
it for analyzing the coordination of gaze patterns between
individuals (e.g., Cherubini, Nüssli, & Dillenbourg, 2010;
Dale, Kirkham, & Richardson, 2011a; Dale, Warlaumont, &
Richardson, 2011b; Richardson & Dale, 2005; Richardson,
Dale, & Tomlinson, 2009; Shockley, Richardson, & Dale,
2009). For example, Richardson and Dale (2005) quantified
the coordination between a speaker and a listener’s eye move-
ments as they viewed actors on a screen. This form of cross-
recurrence analysis can provide an overall measure of simi-
larity across two eye movement sequences.

To characterize cross-recurrence patterns, we have devel-
oped several measures that are based on the recurrence quan-
tification analysis (RQA) for characterizing gaze patterns of a
single observer (Anderson et al., 2013). These measures are
introduced briefly below and described in detail in the
Appendix.

Consider two fixation sequences f and g that have the same
lengths. For sequences of unequal length, the longer sequence
is truncated. Within these sequences, any two fixations fi and
gj are cross-recurrent if they match or are close together, i.e., if
their distance is below a given threshold. In the following, we
introduce several measures that we have found useful for
characterizing cross-recurrent patterns.

Cross-recurrence The cross-recurrence measure of two fixa-
tion sequences represents the percentage of cross-recurrent
fixations, i.e., the percentage of fixations that match between
the two fixation sequences. Cross-recurrence is higher the
more spatially similar two fixation sequences are and quan-
tifies their similarity in shape. It is invariant to differences in
fixation sequence order as fixations are considered recurrent
only if they overlap in position. Given that cross-recurrence
quantifies similarity in position, results should be most in line
with the linear distance measure and the MultiMatch position
measure.

Determinism The determinism measure represents the per-
centage of cross-recurrent points that form diagonal lines in
a recurrence plot and represents the percentage of fixation
trajectories common to both fixation sequences. That is, it
quantifies the overlap of a specific sequence of fixations,
preserving their sequential information (see Fig. 5). An ad-
vantage of this measure is that it provides unique information
about the type of similarity between two scanpaths. Although
two scanpaths may be quite dissimilar in their overall shape or
fixation positions, this measure may show whether certain
smaller sequences of those scanpaths may be shared.

Laminarity Laminarity is a measure of repeated fixations on a
particular region that are common to both scanpaths.
Laminarity is closely related to determinism. If both
laminarity and determinism are high, then in both scanpaths
fixations tend to cluster on one or a few particular locations
and remain there across several fixations. If laminarity is high,
but determinism is low, then it quantifies the number of
locations that were fixated in detail in one of the fixation
sequences, but only fixated briefly in the other fixation se-
quence. It is a measure of the clustering of fixations across two
sequences.

Center of recurrence mass Finally, the center of recurrence
mass (CORM) is defined as the distance of the center of
gravity of recurrences from the main diagonal in a recurrence
plot (see Dale et al., 2011b for another method to quantify
leading and following in cross-recurrence). The CORM mea-
sure indicates the dominant lag of cross-recurrences. Small
CORM values indicate that the same fixations in both fixation
sequences tend to occur close in time, whereas large CORM
values indicate that cross-recurrences tend to occur with either
a large positive or negative lag. This is a measure of whether
one scanpath may lead (positive lag) or follow (negative lag)
its paired scanpath. Their overall similarity in shape or posi-
tion may be different, but offset, such that one sequence
proceeds in a particular trajectory, and the other follows the
same trajectory only later on in time (e.g., a few fixations
later). In the present work, we use the absolute value of
CORM rather than averaging over positive and negative
values as we do not have any specific predictions about
whether leading or following is more likely to happen in one
particular condition or another. Overall, we might predict low
corm values for within-image, within-participant comparisons
if participants consistently lead or follow a similar scanpath
closely (i.e., with a low positive or negative lag) on a later
viewing of the same image.

Summary of measurements

All measures presented above are summarized in Table 1
with a list of generalized characteristics. In some methods,
e.g., Fixation Overlap, scanpaths are first resampled uni-
formly in time, for example at 60 Hz. Quantization refers
to the way fixations are treated in the different methods: in
grid quantization, fixations are discretized on a fixed grid
overlaid on the stimuli; in radius quantization, the distance
between fixations is thresholded to assess whether two fix-
ations are considered the same or different; and in the direct
method, the exact fixation coordinates are used. The
MultiMatch measures are used with simplified scanpaths;
the other measures use the raw scanpaths. Some methods
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require that the two scanpaths to be compared have the same
lengths, hence the length of the longer scanpath is truncated
to the length of the shorter scanpath. Some measures pre-
serve and use the temporal order of fixations; others do not.
Finally, the measures differ with respect to the major char-
acteristic they capture, including, for example, scanpath
shape, fixation position and duration, saccade amplitude,
and direction.

The present investigation

In the present work, we compared the ability of the scanpath
measures reviewed above to reveal scanpath similarities
within and between individuals looking at natural scenes. In
a paradigm adopted from Foulsham and Underwood (2008)
and Foulsham et al. (2012), participants performed a scene
encoding and subsequent recognition task. This ensured that
participants saw each image in the encoding phase for a
second time during recognition, allowing for a comparison
of scanpath similarity both within and between subjects and
within and between images. The main prediction of these
comparisons is that scanpaths are more similar for the same
person viewing the same image, than for different people
viewing different images. This observation has been verified
by a handful of scanpath comparison techniques (see
Foulsham & Underwood, 2008; Foulsham et al., 2012). We
use it here in order to evaluate the ability of each scanpath
comparison method to reveal the uniquely high similarity in
the scanpath of the same observer viewing the same image
twice, and its ability to capture any singular similarities be-
tween observers and images.

Methods

Participants

Twenty-seven participants with normal or corrected-to-normal
vision were recruited from the University of British Columbia,
and participated for course credit or $5 (Canadian).

Apparatus

Stimuli were presented full-screen on a 19-in monitor operat-
ing at a 60-Hz refresh rate. Participants sat 60 cm from the
screen with their head restrained in a chin rest. Thus the screen
subtended approximately 32.7° × 25.7° of visual angle. Eye
movements were recorded using the Eyelink 1000 eyetracker
(SR-Research) and participants used a standard keyboard
when responses were required.

Stimuli

A total of 36 images at a resolution of 1024 × 768 pixels were
selected from a dataset created by Foulsham and Underwood
(2008). The images were pictures of buildings, interiors, and
landscapes (see Foulsham & Underwood, 2008 for more
information). Half of these images were shown during both
the encoding and recognition phases of the experiment, while
the other half were shown only during the recognition phase to
act as “new” images.

Procedure

Participants were seated comfortably with their chin in the
chin rest and completed a 9-point eye-tracker calibration

Table 1 Overview of scanpath comparison measure properties

Measure Resampling Quantization Simplified? Truncated? Preserves temporal ordering? Target scanpath variable

String edit No Grid No No Yes Position, Sequence

ScanMatch Yes Grid No No Yes Position, Duration, Sequence

Overlap Yes Radius No Yes No Sequence, Position

Correlate Yes Direct No Yes Yes Position, Sequence

Gaze shift Yes Direct No Yes Yes Amplitude, Sequence

Linear distance No Direct No No No Position

MM vector No Direct Yes No Yes Shape

MM direction No Direct Yes No Yes Saccade Direction

MM length No Direct Yes No Yes Saccade Length

MM position No Direct Yes No Yes Position

MM duration No Direct Yes No Yes Duration

Recurrence No Radius No Yes No Position

Determinism No Radius No Yes No Fixation Trajectories

Laminarity No Radius No Yes No Fixation Persistence

Corm No Radius No Yes Yes Leading/Following
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procedure before beginning the experiment. At the start of the
experiment, participants were asked to look at the images in
preparation for a later memory test. Participants were then
given a short break and re-calibrated before they began the
recognition phase. In the recognition phase, participants were
asked to respond during image presentation with the ‘z’ key if
they had seen the image before and the ‘/’ key if they had not,
and the image remained on screen even after response. In both
the encoding and recognition phase, images were presented
for 10 s and in random order.

Analysis

The data were analyzed using the 15 scanpath similarity
measures described in the Introduction. For each measure,
we used the parameters recommended by the authors. The
relevant parameters are given below.

For the sample-based methods, signals were re-sampled at
60 Hz. For the overlap method, two fixations were considered
overlapping if their distance was less than 3.5° visual angle.
For the gaze-shift measure, a temporal Gaussian filter with σ =
100 ms was used. For the string-edit distance, fixations were
discretized on an 8 × 6 grid (approximately 4º × 4° per grid
cell). For the ScanMatch measure, the substitution matrix was
used to define similarity in distance between grid locations (as
was done in the original manuscript). For the MultiMatch
measure, scanpaths were simplified by combining fixations
that were closer than 3.5° visual angle or by combining
successive saccades whose direction differed by less than
45°. For the recurrence-based measures, two fixations were
considered cross-recurrent if their distance was less than 1.9°
visual angle. For the determinism and laminarity measures, a
minimum line length of 2 was used.

In the scanpath analyses, we were interested in how the two
dimensions, participant and image, affected scanpath similarity.
Within-participant similarity suggests that the individual creat-
ing the scanpath is a factor in scanpath similarity.Within-image
similarity suggests that the image itself impacts similarity
between scanpaths. The comparisons were made between the
same observer viewing the same image (within-participant,
within-image similarity); the same observer viewing different
images (within-participant, between–image similarity); differ-
ent observers viewing the same image (between-participant,
within-image similarity), and different observers viewing dif-
ferent images (between-participant, between-image similarity).
This leads to a 2 (participant; within-participant vs. between-
participant) by 2 (image; within-image vs. between-image)
repeated measures analysis of variance for each scanpath mea-
sure. Comparisons were made such that all possible
participant-scanpath pairs were included. In the within-image
conditions, encoding scanpaths were compared to recognition
scanpaths, and in the between-image conditions, encoding
scanpaths were compared to other encoding scanpaths. Note

that in the recognition phase, participants responded during
image presentation and were subsequently obliged to freely
view the image for the entire 10s presentation. It is unknown
whether participants employed any sort of unique viewing
strategy during this time after response and so we chose not
to analyze whether scanpath comparisons resulted from
encoding-recognition or encoding-encoding pairs.

Rather than simply compare measures in terms of their
ability to detect the main effects and interaction of the analysis
of variance, we chose to use effect sizes for making compar-
isons across measures. For example, if the recurrence measure
has a high effect size for the main effect of image, then this
measure is sensitive to this factor in the similarity of
scanpaths. We used generalized eta squared (η2G ) for the
comparisons (Bakeman, 2005; Olejnik & Algina, 2003; J. T.
Richardson, 2011). In repeated-measures designs, η2G is com-
parable across different within-participant and between-
participant variables (see J. T. Richardson, 2011, p. 142), but
the same is not true for the partial eta squared (η2p ). Thus η

2
G

allows for a direct comparison of the effects of participant and
image. Bakeman (2005) suggests that similar guidelines
should be used for assessing the size of the effect with η2G
as is the case for η2p , i.e., an effect size of 0.02 is considered as

small, 0.13 as medium, and 0.26 as a large effect size.

Results

For each scanpath measure, the F-ratio and p-values for the
main effect of participant, the main effect of image, and the
participant-by-image interaction are presented in Table 2 and
mean scanpath similarity for each measure across the four
conditions is presented in Table 3. The remainder of the results
will focus on the resulting η2G obtained for each term in the

analysis of variance. The η2G values for the main effect of
participant is shown in Fig. 1, for the main effect of image in
Fig. 2, and for the participant-by-image interaction in Fig. 3.
The means of the significant participant-by-image interactions
are shown in Fig. 4, and the corresponding post-hoc compari-
sons are reported in the participant-by-image paragraph below.

Main effect of participant

Previous work using the same paradigm (Foulsham &
Underwood, 2008; Foulsham et al., 2012) has typically re-
vealed that scanpaths are generally more similar if they are
from the same individual than if they are from different
individuals. In the following, where a main effect of partici-
pant was revealed, within-participant similarity was higher
than between-participant similarity. In the interest of space,
we do not report the similarity means within the text. Of the
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sample-based methods, only the overlap measure reveals the
main effect of participant, with a particularly high effect size
(η2G = 0.23). Note that the overlap method employed a
relatively large radius (3.5° visual angle), therefore it is pos-
sible that this large effect size is spuriously due to the generous
radius size. The correlate and gaze-shift measures do not. Both
grid-based measures reveal a significant main effect of

participant with ScanMatch showing the highest effect size,
(η2G = 0.32) and string edit showing a very low effect size (η2G
= 0.04). All of the direct measures revealed a significant effect
of participant with a relatively high effect size for linear
distance particularly, (η2G = 0.17), with the MultiMatch mea-
sures showing rather modest effect sizes. Of the recurrence-
based measures, recurrence (η2G = 0.14), determinism (η2G =

Table 2 F-ratio and p values for each scanpath comparison measure

Group Measure Participant Image Participant x image

F p F p F p

Grid-based String edit 12.55 0.002 364.84 < .001 11.43 0.002

ScanMatch 53.63 < .001 286.80 < .001 26.33 < .001

Sample-based Overlap 56.47 < .001 236.15 < .001 29.80 < .001

Correlate 2.27 0.144 14.71 0.001 1.12 0.300

Gaze shift 0.00 0.953 22.29 < .001 1.22 0.279

Direct measures Linear distance 32.95 < .001 201.81 < .001 10.99 0.003

MM Vector 14.25 0.001 79.84 < .001 1.90 0.180

MM direction 13.17 0.001 38.94 < .001 2.81 0.106

MM length 2.83 0.105 25.43 < .001 0.68 0.418

MM position 17.34 < .001 150.92 < .001 0.70 0.410

MM duration 12.53 0.002 0.31 0.585 0.53 0.472

Recurrence-based Recurrence 22.20 < .001 251.52 < .001 22.22 < .001

Determinism 67.99 < .001 146.30 < .001 35.87 < .001

Laminarity 1.87 0.183 22.98 < .001 0.90 0.352

Corm 0.13 0.718 2.51 0.125 0.31 0.585

Note: Bold values indicate significance

Table 3 Mean scanpath similarity value (with standard deviations in parenthesis) across each condition

Group Measure Within participant Between participant

Within image Between image Within image Between image

Grid-based String edit 28.41 (4.29) 30.16 (4.21) 29.95 (2.62) 31.29 (2.60)

ScanMatch 0.40 (0.04) 0.33 (0.03) 0.35 (0.02) 0.31 (0.02)

Sample-based Overlap 0.11 (0.02) 0.07 (0.01) 0.09 (0.01) 0.06 (0.005)

Correlate 0.03 (0.05) 0.01 (0.01) 0.02 (0.02) 0.005 (0.005)

Gaze shift 0.46 (0.08) 0.45 (0.07) 0.46 (0.04) 0.44 (0.04)

Direct measures Linear distance 55.72 (7.71) 42.31 (5.22) 49.13 (3.76) 39.51 (3.68)

MM vector 0.89 (0.01) 0.88 (0.01) 0.89 (0.01) 0.88 (0.005)

MM direction 0.78 (0.02) 0.76 (0.02) 0.77 (0.01) 0.76 (0.01)

MM length 0.91 (0.01) 0.90 (0.01) 0.90 (0.01) 0.90 (0.01)

MM position 0.82 (0.02) 0.80 (0.02) 0.81 (0.01) 0.79 (0.01)

MM duration 0.66 (0.05) 0.66 (0.04) 0.64 (0.03 0.64 (0.03)

Recurrence-based Recurrence 6.24 (2.02) 3.27 (0.71) 4.95 (1.04) 2.82 (0.40)

Determinism 26.56 (3.92) 17.62 (3.61) 20.69 (1.97) 16.69 (1.21)

Laminarity 34.76 (7.21) 30.05 (7.65) 32.33 (1.18) 29.10 (0.84)

Corm 2.04 (3.12) 2.56 (5.09) 1.48 (2.60) 2.66 (2.95)
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0.26) and the corm measure (cell means computed using the
absolute value of corm, rather than an average; η2G = 0.05)
revealed a main effect of participant, but not laminarity.

Main effect of image

Almost all of the scanpath comparison techniques show a
significant main effect of image, with very high effect sizes
(see Fig. 2). One notable exception is the MultiMatch
duration measure. interestingly, gaze shift, string edit,
MultiMatch direction and length, as well as the
recurrence-based laminarity and CORM measures show a
significant effect of image, but a below-medium effect size.

Participant by image interaction

The interaction between participant and image usually
indicates that the similarity between the scanpaths of the
same viewer viewing the same image is particularly
high relative to the other comparisons (see Table 3
and Fig. 4). Generally η2G is relatively low for all of
the measures, with the exception of the determinism
measure (η2G = 0.16) and the overlap measure (η2G =
0.11).

Post-hoc paired comparisons were performed for all sig-
nificant interactions, i.e., for overlap, string edit, linear dis-
tance, ScanMatch, recurrence and determinism. Cohen’s d
values are reported for all comparisons.

Fig. 1 ηG
2 values for detecting the main effect of participant for each of the scanpath comparison measures

Fig. 2 ηG
2 values for detecting the main effect of image for each of the scanpath comparison measures
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Overlap Within-participant, within-image similarity (M = 0.11)
was significantly higher than between-participant, within-image
similarity (M = 0.09), t(26) = 7.00, p < .001, d = 1.37, within-
participant, between-image similarity (M = 0.07), t(26) = 11.45,
p < .001, d = 2.50, and between-participant, between-image
similarity (M = 0.06), t(26) = 12.47, p < .001, d = 3.02.

String edit distance Within-participant, within-image similar-
ity (M = 28.41, note that in string-edit distance, smaller

numbers mean higher similarity) was significantly higher than
between-participant, within-image similarity (M = 29.95),
t(26) = 3.96, p < .001, d = 0.43, within-participant, between-
image similarity (M = 30.16), t(26) = 13.10, p < .001, d = 0.41,
and between-participant, between-image similarity (M =
31.29), t(26) = 7.18, p < .001, d = 0.81.

Linear distance Within-participant, within-image similarity
(M = 55.72) was significantly higher than between-

Fig. 3 ηG
2 values for detecting the interaction between participant and image for each of the scanpath comparison measures

Fig. 4 Interaction between participant and image for the six measures
with a significant interaction. Within-image, within-participant similarity
is generally higher than all other comparison means. Note that string edit

uses a reversed scale compared to the other measures (lower numbers
indicate higher similarity)
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participant, within-image similarity (M = 49.13), t(26) = 5.57,
p < .001, d = 1.09, within-participant, between-image similar-
ity (M = 42.31), t(26) = 9.97, p < .001, d = 2.04, and between-
participant, between-image similarity (M = 39.51), t(26) =
12.33, p < .001, d = 2.68.

ScanMatch Within-participant, within-image similarity (M =
0.39) was significantly higher than between-participant, within-
image similarity (M = 0.35), t(26) = 7.92, p < .001, d = 1.63,
within-participant, between-image similarity (M = 0.33), t(26)
= 11.95, p < .001, d = 1.96, and between-participant, between-
image similarity (M = 0.31), t(26) = 13.60, p < .001, d = 2.96.

Recurrence Within-participant, within-image similarity (M =
6.42 %) was significantly higher than between-participant,
within-image similarity (M = 4.95 %), t(26) = 5.08,
p < .001, d = 0.97, within-participant, between-image similar-
ity (M = 3.27 %), t(26) = 11.69, p < .001, d = 1.96, and
between-participant, between-image similarity (M = 2.82 %),
t(26) = 10.71, p < .001, d = 2.47.

Determinism Within-participant, within-image similarity
(M = 26.56 %) was significantly higher than between-
participant, within-image similarity (M = 20.69 %), t(26) =
10.21, p < .001, d = 1.89, within-participant, between-image
similarity (M = 17.62 %), t(26) = 9.85, p < .001, d = 2.37, and
between-participant, between-image similarity (M =
16.69 %), t(26) = 14.43, p < .001, d = 3.40.

Corm Within-participant similarity (M = 9.87) is significantly
lower than between-participant, within-image similarity (M =
11.82), t(26) = 4.88, p < .001, d = 1.05, within-participant,
between-image similarity (M = 14.52), t(26) = 6.74, p < .001,
d = 1.53, and between-participant, between-image similarity
(M = 14.64), t(26) = 10.30, p < .001, d = 2.35.

Discussion

In the present work, we performed multiple types of scanpath
comparisons on the scanpaths generated from a foundational
encoding and recognition experiment. Specifically, we com-
pared sample-based measures (Shepherd et al., 2010), grid-
based measures (Bunke, 1992; Cristino et al., 2010;
Levenshtein, 1966; Wagner & Fischer, 1974), the direct linear
distance measure (Mannan et al., 1995), the measures com-
puted from the MultiMatch algorithms (Dewhurst et al.,
2012), and recurrence-based measures (D. C. Richardson &
Dale, 2005). This design allowed for the comparison of
scanpath similarity across images and participants, focusing
on the relative contribution of the individual generating the
scanpath and the influence of the stimulus itself on resulting

similarities. In addition, this study was designed for the more
general comparison of the methods used to compute scanpath
similarity, which we compared by computing generalized eta
squared. In the following, we review the contributions of each
measure to the understanding of scanpath similarity in terms
of participant and image similarities and then discuss the
performance of each group of measures, with particular em-
phasis on the type of information they quantify.

Our results support previous work using a similar paradigm
where the same person looking at the same image is more
likely to have a more similar scanpath (Foulsham &
Underwood, 2008; Foulsham et al., 2012). This was borne
out in the number of measures that revealed a significant
interaction between participant and image, where the within-
image, within-participant comparison had the highest similar-
ity scores (see Fig. 4 and Foulsham et al., 2012, Fig. 2).
Interestingly, because each scanpath comparison technique
differs in the characteristics that it captures, the different
scanpath comparison measures may be revealing in terms of
the aspects of scanpath similarity that result from within-
participant or within-image similarity.

The quantification methods that were most notable in re-
vealing within-participant idiosyncrasies were those that
quantified similarity in shape and position: overlap, linear
distance, ScanMatch and recurrence. Interestingly, and similar
to previous work (Foulsham et al., 2012), measures that also
quantified some aspect of sequential order such as ScanMatch
and determinism were particularly discriminatory. Beyond the
overall similarity in shape and sequential order, the determin-
ism measure revealed that scanpaths are repeated by particular
individuals on a more local level, where a person may have an
idiosyncratic strategy of repeating particular short sequences
of scanpaths in a consistent manner, regardless of the image
they are viewing. Taken together, individual differences in
scanning behavior reveal themselves in terms of overall
scanpath shape and to some extent, the order in which this
shape unfolds.

The image had a very strong influence on the similarity of
scanpaths. Most measures were able to detect a main effect of
image and the resulting η2G values were quite high. Most
notably, those measures that quantify shape, position and
sequential order were again very discriminatory: overlap,
linear distance, ScanMatch, recurrence, and determinism.
Interestingly, most of the measures that performed well on
the main effect of image were those with configurable grid or
radius sizes. Although we used author-recommended or pre-
viously used radius/grid sizes, an interesting avenue of future
research would be to examine to what extent the present
results may vary with respect to the radius/grid size chosen.

Within-image, within-participant similarity is the special
case where the similarity arises from scanpaths created by the
same individual looking at the same image. The overlap and
determinism measures showed the highest η2G values for
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detecting the interaction between image and participant.
Follow-up contrasts indeed revealed that this arose from
the within-image, within-participant scanpaths being more
similar than the other comparisons. Overlap quantifies both
the spatial and temporal overlap between fixation sequences
that have been resampled to 60Hz. This means that
scanpaths were quite similar in both where they landed
and how long they stayed there, with particular sensitivity
to the duration in which the eyes were at any given position.
Determinism quantifies the repetition of small segments of
fixation trajectories that occur in a particular order. This
means that individuals, when viewing the same image again,
reinstate local patterns of their scanpath behavior. For exam-
ple, if a participant looked at a book, then at a vase on a
shelf, upon viewing that image again, that short book-to-
vase sequence was likely to be repeated. An example of this
behavior in the present work is shown in Fig. 5. The
significant interaction in the CORM measure is interesting,
because it indicates that when participants view the same
image for the second time, their pattern of cross-recurrences
occurs close in timing to the earlier viewing. This provides
converging evidence that both spatial and sequential aspects
of the scanpath are preserved upon a second viewing.

Relation to previous work

In the present work we broadly replicated Foulsham and
Underwood (2008), where scanpaths were compared using

the string-edit distance algorithm. That data was also re-
cently used in the evaluation of the MultiMatch methods
(Foulsham et al., 2012). Scanpath similarity was generally
highest for the same participant looking at the same image
again (arising from the significant interaction between im-
age and participant) than for different participants looking at
the same image. We did not fully replicate these findings in
our experiment when using the MultiMatch measures. For
example, we did not observe a main effect of image for the
duration measure nor an interaction between image and
participant for the vector, direction and position measures.
One reason for these differences may be the difference in
viewing time. We used a viewing time of 10 s for both
encoding and recognition trials compared to the 3 s used in
Foulsham and Underwood (2008). To better understand the
difference, we re-analyzed our MultiMatch data using the
first 3 s of viewing time. Now only the interaction between
image and participant for the direction measure was signif-
icant, F(1, 26) = 6.36, MSE = .001, p < .05, suggesting that
viewing strategies change over time as scene information is
acquired. Importantly, when looking at the paired-samples t-
tests between conditions for the MultiMatch measures in
our data, the particular comparison between the same per-
son looking at the same image, and different participants
looking at the same image mirrored the paired comparisons
of Foulsham et al., (2012) for this contrast except for the
length measure (vector, direction, position, and duration
t’s(26) > 2.9, p’s < .01).

Fig. 5 Left panel: A sequence of eye movements from a subset of
fixations in an encoding and recognition trial. The sequences of
fixations in the shaded area A in the left panel create patterns of
determinism (diagonal lines) in the cross-recurrence plot. Right panel:
A cross-recurrence plot of the fixations in an encoding and recognition
trial from the same participant (within-image, within-participant
scanpaths). The red dots represent recurrences, where fixation locations
between the scanpaths fall within 1.9 degrees visual angle of each other.

The grey shaded area is the section of the plot that is created from the
subset of fixations shown in the left panel, the blue shaded region is an
example of a diagonal line of recurrences that create a deterministic
sequence. It is the result of the sequence of fixations 3 and 4 in the
encoding scanpath being repeated at fixations 7 and 8 of the recognition
scanpath. The percentage of recurrent points in the cross-recurrence plot
that forms these diagonal lines is the Determinism measure used in the
present work
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Choice of radius/grid size

In the present work, we were concerned with how the
measures compared when they were computed using
author-recommended or previously-used parameters.
However, the choice of radius size or granularity of grid is
extremely important. As radius size increases, so does the
chance that spatially sensitive scanpath measures are consid-
ered similar. As radius is reduced, the chances of an overlap
are reduced. The Overlap method was an extremely success-
ful scanpath comparer in this dataset, but uses a much larger
radius compared to the recurrence-based measures, which
also performed quite well. This could reflect the fact that the
Overlap measure is reflecting some overlap in time that the
recurrence-based measures are not, but it could also mean
that the radius was simply bigger and therefore, overlaps in
space were more likely to be found. It is our speculation that
there may be a fine line between real scanpath similarity and
spurious similarity due to radius size. One interesting avenue
for future investigation would be to run scanpath compari-
sons on multiple radius and grid sizes and compare the
results along with effect sizes. The general recommendation,
based on previous work (Anderson et al., 2013; Dewhurst
et al., 2012) is to choose a sensible radius size that reflects
roughly the size of region of foveal or parafoveal vision.
However, how the choice of radius and grid size impacts
scanpath quantification and comparison is another fruitful
avenue of future research.

Choice of scanpath measure

The findings of the present investigation reveal that there
are several issues to keep in mind when choosing a partic-
ular scanpath measure. First, the choice must be hypothesis-
driven. If, for example, the aim of an experiment is to
determine whether two scanpaths are similar in terms of
their duration, then the sample-based methods may be pre-
ferred; however if sequential order is not important, then a
good choice would be to use the MultiMatch duration
measure. If fixation sequence is paramount, good options
are the ScanMatch, correlate and determinism methods that
quantify differences in sequence. The reason why the
sample-based methods were appropriate in their original
context (Shepherd et al., 2010) was partially because the
participants were watching movies. In this scenario, eye
movements may be much more strongly driven by the
stimulus (and therefore scanpaths will be more similar both
within and between participants; Dorr, Martinetz,
Gegenfurtner, and Barth, 2010), requiring the employment
of more sensitive measures. In addition, spatial similarity at
different time points is actually less informative because the
interesting points in the video are more likely to move or
change. One important characteristic of the ScanMatch

method is that it is possible to specify particular relation-
ships between areas of interest in a scene, such that over-
laps between these regions are given a stronger weight. In
this manner, it is possible to test a prediction that relates
specific scene items to scanpath sequences. For example, in
a social attention experiment, one might predict that ob-
servers will move their eyes between the people in an
image in a specific sequence, or between the eyes and
mouth in a picture of a face. Using ScanMatch, it is
possible to test this prediction directly using areas of inter-
est. For a detailed discussion of hypothesis-driven tech-
niques for selecting a scanpath measure, see Dewhurst
et al. (2012).

Second, it is important to keep in mind the various
requirements of each method. For example, some methods,
such as the recurrence-based measures, require that the
scanpaths be trimmed to the shorter of the two scanpath
lengths. This may result in a loss of some data. Certain
methods, such as the sample-based methods and ScanMatch
may require the data to be resampled. Thus, fixations and
saccades are no longer relevant units. For example, the
sample-based methods work directly on the sample-level
data from the eye-tracker which are then re-sampled to
60 Hz. In comparing the resulting scanpaths, the specifics
of fixations and saccades are lost. Some methods encourage
the simplification of data, although this is not a require-
ment. For example, in our implementation of MultiMatch,
angular differences between saccades smaller than 45° were
collapsed. Simplification is typically performed in order to
increase processing speed. This may be desirable when
many comparisons need to be computed (especially for
the computation-intensive scanpath comparison measures),
but is by no means absolutely necessary. Investigating the
effect of simplification on subsequent scanpath comparisons
is a fruitful avenue of future research.

Finally, a very important consideration in choosing a
scanpath comparison measure is the form of quantization
the method requires. Some of the methods, such as string
edit and ScanMatch require the dividing of the image into
grids. This can potentially be a problem because nearby
fixations may be classified into different grid cells.
However, there are situations where this may be desirable.
Grid-based quantization allows for pre-specifying interest
areas. For example, in ScanMatch, as mentioned previously,
it is possible to define and quantify specific relationships
between these areas of interest. The overlap method and
recurrence-based methods require the specification of a ra-
dius (although recent work with the recurrence measures is
aimed toward direct comparisons). When quantization is
direct (i.e., without using a radius or grid), eye movement
behaviors are directly compared across scanpaths. This is a
significant advantage of the MultiMatch and sample-based
methods.
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Although, as outlined above, the choice of scanpath mea-
sure is highly dependent on the research question, we have a
few general recommendations. Scanpath comparison has
evolved over many decades of research in eye movement
behavior, but perhaps the most striking improvements have
occurred most recently. ScanMatch is a remarkable improve-
ment on more simple methods such as string-edit and linear
distance and, as mentioned previously, is one of the few
methods that naturally includes semantic information as part
of the scanpath similarity score. MultiMatch is an excellent
example of a method that is robust, easy to use, highly
intuitive and freely available. Although cross-recurrence has
only recently been developed for eye movements, we feel that
it provides exciting opportunities to understand eyemovement
behavior beyond a single similarity score. The results from
many of the cross-recurrence measures, such as determinism,
for example, are simple percentages of fixations that overlap
in a trial and are thus directly interpretable. These most recent
contributions represent, in our opinion, the state-of-the-art in
scanpath comparison techniques. However, these and many
other scanpath comparison techniques are still under active
development.

Resources

One impressive aspect of the methods considered in the pres-
ent work is that they are freely available, either upon request
from the authors or directly online. Some measures are even
accompanied by excellent user interfaces along with tutorials
for their use (most notably, ScanMatch and MultiMatch),
reducing the barrier to using these methods. Below is a list
of URL’s where, as of this writing, those methods that are
available online can be found.

& String edit: A general version has been implemented in
many programming languages at Rosetta code: http://
rosettacode.org/wiki/Levenshtein_distance

& ScanMatch: Matlab code can be found here: http://seis.
bris.ac.uk/~psidg/ScanMatch/ and a version is already
implemented as part of a more general eye movement
analysis package, GazeParser (Soho, 2013): http://
gazeparser.sourceforge.net/index.html

& Linear distance: An updated version of this analysis writ-
ten in Python by Mathot, Cristino, Gilchrist, and
Theeuwes (2012), can be downloaded here: http://www.
cogsci.nl/eyenalysis.html

& MultiMatch: Matlab code for MultiMatch can be found
here: http://wiki.humlab.lu.se/dokuwiki/doku.php?id=
public:useful_links#scanpath_comparison

& Cross-recurrence analysis: Tutorials and code for cross-
recurrence and other analysis techniques can be found
here: http://ecem2013.eye-movements.org/workshops/
eye-movements-space-and-time

Conclusion

In the present work, we compared some commonly available
scanpath comparison measures by providing an overview of the
each measure and then applying it to a single data set. We
compared the measures based on the aspects of scanpaths that
they quantify and on how well they performed in revealing
differences in scanning behavior across participants and images.
This analysis provides a frameworkwithwhich other researchers
can use to determine themost suitable comparison technique that
is most appropriate for their application. We hope that this
overview and these results will help those interested in studying
both the spatial and sequential aspects of eye movement behav-
ior navigate the myriad of scanpath comparison measures.

Appendix

Temporal correlation

Shepherd et al. (2010) introduced temporal correlation as a
scanpath similarity measure. The scanpaths are first resampled
uniformly in time, e.g., at 60 Hz, and truncated to the shorter
of the two paths. The temporal correlation is defined as the
average Tc of the correlation between the x-coordinates and
between the y-coordinates of two scanpaths f and g:

Tc ¼ corr f x; gxð Þ þ corr f y; gy
� �� �

=2

Gaze shift

Shepherd et al.'s (2010) gaze shift measure is computed as the
correlation between the absolute values of the first derivative of
each scanpath. The first derivative is computed by convolving
each scanpath with the derivative of a Gaussian filter. Gaze shift
is then computed in the same manner as the temporal correla-
tion, but using the first derivative instead of the position.

G ¼ corr j f ′xj; jg′xjð Þ þ corr j f ′yj; jg′yj
� �� �

=2

Linear distance

Given two scanpaths f and gwith n1 and n2 fixations,Mannan,
Ruddock, and Wooding (1996), compute the distance d1i
between the ith fixation fi and its nearest neighbor fixation in
g and the distance d2j between the jth fixation gj with its
nearest neighbor fixation in f. Then the similarity S of the
scanpaths f and g is defined as

S ¼ 100 1−
D

Dr

� �
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With

D2 ¼ n1 ∑
n2

j¼1
d22 j þ n2 ∑

n1

i¼1
d21i

 !
= 2n1n2 w2 þ h2

� �� �

andw and h the width and height of the images.Dr is the same
as D but with randomly generated scanpaths.

Cross-recurrence analysis

Consider two fixation sequences fi, i = 1,…,N, with fi = <xi,yi >
and gi, i = 1,…,N, with gi = <xi,yi>. For fixation sequences of
unequal length, the long sequence is truncated. Two fixations fi
and gj are cross-recurrent if they are close together, i.e., we
define the cross-recurrence of two fixations cij as

ci j ¼ 1; d f i; g j

� �
≤ρ

0; otherwise

(

where d is the Euclidian distance, and ρ is a given threshold.
Several measures can be used for characterizing cross-

recurrence patterns. The measures are extensions of the recur-
rence measures introduced byAnderson et al. (2013). Let C be

the sum of recurrences, i.e., C ¼ ∑N
i¼1∑

N
j¼1ci j . Further, letDL

be the set of diagonal, HL the set of horizontal, and VL the set
of vertical lines in the cross-recurrence matrix, all with a
length of at least L, and let |· | denote cardinality.

Cross-recurrence The cross-recurrence measure of two fixa-
tion sequences is defined as

REC ¼ 100 ⋅
C

N 2

It represents the percentage of cross-recurrent fixations,
i.e., the percentage of fixations that match (are close) between
the two fixation sequences.

Determinism The determinism measure is defined as

DET ¼ 100 ⋅
DLj j
C

It measures the percentage of cross-recurrent points that
form diagonal lines and represents the percentage of fixation
trajectories common to both fixation sequences. That is, it
quantifies the overlap of a specific sequence of fixations,
preserving the sequential information. The minimum line
length of diagonal line elements was set to L = 2.

Laminarity The laminarity measure is defined as

LAM ¼ 100 ⋅
HLj j þ VLj j

2C

Laminarity represents locations that were fixated in detail
in one of the fixation sequences, but only fixated briefly in the
other fixation sequence. Again, we set the minimum line
lengths of vertical and horizontal lines to L = 2.

Center of recurrence mass Finally, the center of recurrence
mass (CORM) is defined as the distance of the center of
gravity from the main diagonal, normalized such that the
maximum possible value is 100.

CORM ¼ 100

XN

i¼1

XN

j¼1
j−ið Þci j

N−1ð ÞC

The CORM measure indicates the dominant lag of cross-
recurrences. Small CORM values indicate that the same fixa-
tions in both fixation sequences tend to occur close in time,
whereas large CORM values indicate that cross-recurrences
tend to occur with either a large positive or negative lag.
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