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Abstract In this article, the R package LSAfun is presented.
This package enables a variety of functions and compu-
tations based on Vector Semantic Models such as Latent
Semantic Analysis (LSA) Landauer, Foltz and Laham
(Discourse Processes 25:259–284, 1998), which are proce-
dures to obtain a high-dimensional vector representation for
words (and documents) from a text corpus. Such represen-
tations are thought to capture the semantic meaning of a
word (or document) and allow for semantic similarity com-
parisons between words to be calculated as the cosine of
the angle between their associated vectors. LSAfun uses pre-
created LSA spaces and provides functions for (a) Similarity
Computations between words, word lists, and documents;
(b) Neighborhood Computations, such as obtaining a word’s
or document’s most similar words, (c) plotting such a neigh-
borhood, as well as similarity structures for any word lists,
in a two- or three-dimensional approximation using Multi-
dimensional Scaling, (d) Applied Functions, such as com-
puting the coherence of a text, answering multiple choice
questions and producing generic text summaries; and (e)
Composition Methods for obtaining vector representations
for two-word phrases. The purpose of this package is to
allow convenient access to computations based on LSA.
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Introduction

In the last two decades, a class of semantic models emerged
in computational linguistics that conceptualize word mean-
ings as vectors in a high-dimensional semantic space
(Landauer, McNamara, Dennis, & Kintsch, 2007, for exam-
ple). In such a semantic space, words that are similar in
meaning will tend to be in similar areas of the space. Such
models are referred to as Vector Semantic Models or Dis-
tributional Semantic Models. The theoretical foundation for
this approach is the distributional hypothesis (Sahlgren,
2008; Harris, 1954), which states that words with a similar
meaning also tend to occur in a similar context. There exists
a wide range of such models (Jurgens & Stevens, 2010, for
an overview; Jones et al., in press). However, the focus of
this article and the software package presented in it lies on
Latent Semantic Analysis, LSA (Derweester et al., 1991;
Landauer & Dumais, 1997; Landauer et al., 1998).

In LSA, pre-defined documents are used as the word
context. A different approach is taken by moving-window
models such as HAL (Lund & Burgess, 1996), where the
words that occur in a certain window before or after a spe-
cific word define its context. The BEAGLE model (Jones
& Mewhort, 2007) even uses both kinds of information
to establish a semantic space. It has been shown that the
different models succeed in capturing different kinds of sim-
ilarity, depending on which type of information they use
(Jones et al., 2006).

Therefore, the focus on LSA is due to the fact that there
exists a large body of research specifically concerned with
LSA, and that it is probably the most prominent of those
models.
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The LSA algorithm

We will shortly describe the LSA algorithm, followed by
an overview on how LSA has been used in research. The
LSA algorithm is described in detail in Martin and Berry
(2007) and can be sketched as follows: The main source
of information for the LSA algorithm are word occurrences
and co-occurrences in a large collection of text documents, a
corpus. In a first step, a term-by-document frequency matrix
is constructed from such a text corpus. In this matrix, every
row represents a word in the corpus, every column rep-
resents a document, and each cell mij then specifies how
often word i occurs in document j. By applying this proce-
dure, words that often occur together will get assigned very
similar vectors.

In a second step, a weighting scheme such as the log-
entropy weighting (Dumais, 1991; Martin & Berry, 2007)
is applied to this matrix to strengthen the impact of low-
frequency words while weakening the impact of high-
frequency words, since low-frequency words typically have
a narrower, more defined and specific meaning.

In a third step, a singular value decomposition (SVD)
procedure is applied to this weighted matrix. This is a two-
mode generalization of the principal component analysis
(Mardia, Kent, & Bibby, 1979) that also constitutes the basis
of popular factorial analysis. The SVD procedure decom-
poses the m words ×n documents weighted matrix Mw into
three components as follows:

Mw = U�V T , (1)

where U is a m× r orthogonal matrix, V is a n× r orthogo-
nal matrix, and � is a r×r diagonal matrix. The parameter r
hereby describes the rank of the original term-by-document
matrix Mw, which can be seen as the dimensionality of the
LSA space it gives. U contains the word vectors as row
vectors, and V contains the document vectors as row vec-
tors (� contains the singular values as diagonal entries).
Word and document vectors are thereby represented in the
same semantic space. Applying this SVD enables LSA to
capture deeper and more basic semantic dimensions. It is
this step that makes indirect co-occurrences count, that is
co-occurrences with a third word that two words are both
related to. Landauer and Dumais (1997) even state that
about 70 % of a word’s nearest neighbors never co-occur in
the same document.

In a fourth and last step, a dimensionality reduction is
applied, so that U and V are reduced from r to k dimensions
(whereas k ≤ r). Typically, k is chosen to be a number of
about 300 dimensions (Landauer & Dumais, 1997). Such
a dimensionality reduction is applied to remove noise and
uninformative dimensions from the LSA space.

LSA also allows the computation of a vector representa-
tion of a sentence or text document consisting of multiple

words. The standard procedure here is to sum up all the
word vectors in the sentence. Although this mechanism does
not capture syntax or word order information, it does indeed
seem able to capture the semantics and topic of a document
(Landauer, 2007). (In fact, Landauer argues in this article
that, in most situations, word order information does not
even play an important role.)

Finally, representing words and documents by means of
vectors in a semantic space allows for the computation of
word and document similarities, which probably is the most
useful feature of LSA. The most commonly used method for
computing the similarity between two words or documents
is using the cosine of the angle between two vectors. This
cosine value ranges from -1 to +1. A cosine value of 0 indi-
cates orthogonal vectors, i.e. unrelated words or documents,
while a value of 1 indicates identical vectors. The higher
the cosine between two words (or documents) is, the higher
is their semantic similarity. However, it is also possible to
obtain negative cosine values between -1 and 0 in LSA. One
possible procedure to deal with such negative cosine values
is to set them to 0, since negative cosine values cannot be
reliably interpreted.

Nearly all of the functions included in the package LSA-
fun (Günther, 2014) for R (R Core Team, 2013), which will
be presented in the remainder of this manuscript, rely on the
cosine similarity as a measure of semantic similarity.

Applications of LSA

There is a large body of research on what LSA is able to per-
form. In a variety of studies, LSA cosine similarities have
been found to predict lexical priming effects (Landauer &
Dumais, 1997; Landauer et al., 1998; Jones et al., 2006). In
a typical priming study, participants respond to a word (the
target) after being shortly presented with another word (the
prime), for instance in a lexical decision task. It is a common
finding that reaction times are faster the more similar the
prime is to the target. In an extensive study, Jones, Kintsch,
and Mewhort (2006) re-analyzed several experiments that
observed priming effects of this type. They found that word
pairs in high-similarity groups often had significantly higher
LSA cosines than word pairs in low-similarity groups, and
that these differences predicted priming effects.1

LSA has also been used to automatically answer multiple
choice tests such as the synonym test of the TOEFL (Test of
English as a foreign language) (Landauer & Dumais, 1997).
This has been achieved by computing the cosine similarities
between the word in question and each of the answer alter-
natives. Then, the alternative with the highest cosine to the

1These authors make a distinction between associative and semantic
priming, which is beyond the scope of this article. They find that LSA
best predicts associative priming effects, while HAL and BEAGLE,
better predict semantic priming effects or even both effects.
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word in question was chosen as an answer. With this pro-
cedure, LSA reached a score of 51.5 % correct. This was
practically identical to the average performance of human
learners with English as a foreign language (52.5 % correct),
and sufficiently high to pass this test.

In a broad overview, Landauer, Foltz, and Laham (1998)
give many further examples on the performance of LSA:
For example, LSA is able to automatically assign review-
ers to articles to be reviewed, based on samples of their
own papers (Dumais & Nielsen, 1992), and can provide
learners with new informational texts, based on the texts
they have already read (Wolfe et al., 1998). Landauer, Foltz
and Laham also demonstrate that LSA similarities corre-
late with human judgments on the similarity of word pairs.
This correlation was stronger the more information LSA
had available (i.e. the more documents the LSA algorithm
was based on). The correspondence of LSA cosine similar-
ities and human word associations was also demonstrated
by Wandmacher et al. (2008). In the domain of univer-
sity exams, Landauer, Foltz and Laham demonstrate that
LSA managed to pass multiple choice test on introduc-
tory psychology courses (even though it scored lower than
the average human student). On the other hand, Lenhard,
Baier, Hoffmann, and Schneider (2007) demonstrated that
LSA was able to automatically evaluate open answer stu-
dent exams by comparing the students’ answers to stan-
dard solutions. The difference between LSA and a human
scorer was not greater than the difference between different
human scorers.

As a last example, LSA has been combined with Multidi-
mensional Scaling (MDS) and Principal Component Anal-
ysis (PCA) to successfully perform categorization tasks.
This has lead to impressive and very interesting results
(Louwerse, 2011). For example, Louwerse and Zwaan
(2009) applied an MDS to a matrix containing the pair-
wise LSA similarities for US city names to obtain a two-
dimensional solution. These authors were able to show that
the MDS coordinates of the cities correlated with the actual
geographical position of those cities. It has also been shown
(Laham, 1997; Louwerse, 2011; Jones & Mewhort, 2007)
that combining MDS or PCA with semantic space similari-
ties allows to categorize words semantically.

Software implementing vector semantic models

A very useful package with a huge variety of algorithms
for creating semantic spaces (amongst which LSA, HAL
and BEAGLE are only some) from corpora is the S-Space
package (Jurgens & Stevens, 2010), which is written in
Java. This package even allows the user to implement his
or her own algorithms to create semantic spaces. Further-
more, it includes functions to compute word similarities

such as cosine similarities, and to access the neighbors of
words. The Semantic Vectors package (Widdows & Ferraro,
2008; Widdows & Cohen, 2010), which is also designed
for creating semantic spaces from corpora and written in
Java, primarily uses Random Projection to build seman-
tic spaces (Bingham & Mannila, 2001; Kanerva, 1988),
but also implements the LSA algorithm. This package also
allows includes functions for neighborhood computations
and basic similarity computations.

The toolkit DISSECT (Dinu, Pham, & Baroni, 2013) is
written in Python and allows users to build semantic spaces
with a special focus on compositional semantics (i.e. the
meaning of phrases and sentences as well as words). How-
ever, in order to build a semantic space, this toolkit already
needs co-occurrence matrices, not just text corpora. It also
includes functions for similarity and neighborhood compu-
tations, as well as a wide range of composition methods.
Also written in Python is the gensim software framework
(Řehu̇řek & Sojka, 2010), which has an emphasis on scal-
ability and is specialized in processing very large corpora.
This framework also comes with an LSA implementa-
tion, amongst other algorithms. It further provides functions
for similarity computations, including similarities between
documents.

In R, the package lsa (Wild, 2011) can be used to create
semantic spaces spaces based on the LSA algorithm. This
package also includes basic functionalities for similarity and
neighborhood computations.

Another software implementing Vector Semantic Models
is the package Word-2-Word (Kievit-Kylar & Jones, 2012).
The focus of this package especially lies on visualizing
word similarity structures (as can be obtained from seman-
tic spaces). It also comes with implementations of different
algorithms to create semantic spaces (such as LSA, HAL
and BEAGLE) that can then be visually explored.

Outlines for this package

The R package LSAfun presented here allows for vari-
ous computations based on LSA. Its functionality will be
explained and demonstrated in the remainder of this article.
LSAfun is not designed for actually creating LSA spaces,
because this is already established in R by means of the
package lsa (Wild, 2011), as well as in the software men-
tioned above. However, LSA spaces that were created using
the lsa package (or other software) can be used and investi-
gated by the functions delivered with LSAfun. Thus, LSAfun
allows a user to work with his own as well as pre-created
LSA spaces available from a repository, and provides a
range of useful higher-level functions. There are at least
four advantages LSAfun adds to the existing software for
semantic spaces:
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First, LSAfun combines and extends the high-level func-
tions provided by the existing software. For instance, all
of the software implementations described above imple-
ment neighborhood computations and allow for simple
similarity computations. However, as will be shown in
this article, LSAfun includes a collection of additional
functions (such as MDS for word lists, neighborhood
plots, automatic summaries, a function for solving multi-
ple choice tests and composition methods) that are only
partially included in the existing software. Furthermore,
it can serve as an interface between the different existing
software applications: For example, composition methods
(as implemented in DISSECT) can be applied to LSA spaces
built with the S-Space package, which does not include
those functions. In this case, LSAfun additionally imple-
ments the composition model by Kintsch (2001), which is
not part of the DISSECT toolkit.

Second, in LSAfun there is no need to create a seman-
tic space for working with the provided functions. Instead,
users can freely download a semantic space from our repos-
itory, as will be explained later in this article. Hence, neither
a text corpus nor software expertise are needed to work
with this package. This can be considered an advantage of
LSAfun especially for novices in the field.

Third, LSAfun is implemented as a standard package in R,
which can be considered a lingua franca in statistical com-
puting for psychology and cognitive sciences. This again
seems particularly relevant for users who are not familiar
with other programming languages, such as Java or Python.

Fourth, by being implemented in R, LSAfun allows users
to directly integrate results obtained from semantic space
analyses into their data analysis, without any copying or
converting. This makes LSAfun a user-friendly and efficient
tool for researchers. Examples for such an integration are
given at the end of this article.

Getting started

LSAfun is available at CRAN (http://CRAN.R-project.org/
package=LSAfun) and can be installed using the following
command in the R console:

The package can then be loaded by using

To get an overview over the functions provided by this
package while using R, use the command

Getting an LSA space

Almost every function implemented in LSAfun relies on
an LSA space in which the computations can be per-
formed. In the R workspace, such an LSA space has to
be a matrix object in which each row represents a word
vector of the space, with row names specifying these words
as character strings. This implies that all word vectors have
the same dimensionality. In principle, any rectangular table
can be loaded into the R workspace as a matrix, as long
as it is stored in a format that is readable for R (such as
.txt or .csv, for example). Concretely, there are several ways
of loading such a semantic space into R, which will be
presented here:

The first option is to create your own LSA space directly
in R, using the package lsa. The basis for this is a collection
of text documents one wants to create a LSA space from.
This package requires only a few steps to build the LSA
space:

1. Setting the working directory to the directory where the
documents are stored

2. Creating a term-by-document frequency matrix with
textmatrix()

3. Optionally applying a weighting scheme with
weightings()

4. Conducting the SVD and performing a dimensionality
reduction with lsa()

This procedure gives the LSA space as a named matrix,
which is exactly the format required by the LSAfun func-
tions. However, since the package lsa implements a full
SVD instead of a sparse SVD, the size of the corpus that can
be processed is limited to a few thousand documents.

The second option is to create your own LSA space using
other specialized software, as described in the section on
related work and software. The S-Space package (Jurgens
& Stevens, 2010) exports semantic spaces in the .sspace
data format. The S-Space homepage gives detailed instruc-
tions on how this data format can be converted to a matrix
object as used by LSAfun (https://github.com/fozziethebeat/
S-Space/wiki/FrequentlyAskedQuestions). The DISSECT
toolkit, as well as the gensim framework, already store the
semantic spaces they build as matrix objects (numpy or
scipy matrices in Python). These can be converted to R-
readable matrix objects in a few steps; one possible option
is to save such matrices as .gzip files, which R can open
with the load() command. The Semantic Vectors pack-
age includes the option to generate the LSA space as a
plain text file, representing each vector in a single line
in the format name |a1 |... |an (Widdows & Ferraro,
2008). Such a file can be imported into R as a data frame
using read.table() (with setting sep="|"), which can
then be converted into the required matrix format using
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as.matrix(). If you want to use LSAfun with an LSA
space created from your own corpus, using SemanticVec-
tors is probably the best option to create this LSA space,
since it is very easy to use and its output file can be directly
imported in R.

The third option is to directly download one of our
pre-created LSA spaces provided at http://www.lingexp.
uni-tuebingen.de/z2/LSAspaces. This website contains,
amongst others, LSA spaces built from collections of blog
entries in German, English and Dutch. It also provides an
LSA space created from the TASA (Touchstone Applied
Science Associates, Inc.) corpus, which consists of 37,651
different documents covering a broad variety of different
topics (such as Literature, Arts, Science, Economics and
Social Studies). This LSA space contains 92,393 differ-
ent terms. This TASA LSA space will be used for code
examples in the remainder of this article.

All the LSA spaces from http://www.lingexp.
uni-tuebingen.de/z2/LSAspaces can be loaded in the R
workspace as matrix objects via the following commands:

Computing similarities

A very basic feature of LSA is that it allows for com-
putations of similarities of different words as well as dif-
ferent documents. A comparison of words and documents
is also possible, because LSA represents both in a single
semantic space. The LSA homepage (http://lsa.colorado.
edu/) allows for comparisons between one or multiple words
in the Matrix Comparison, One-To-Many Comparison and
Pairwise Comparison applications. It also allows for the
comparison of documents and/ or sentences in the Sen-
tence Comparison application. For information on the LSA
homepage, see Dennis (2007).

LSAfun provides four specialized functions for different
basic similarity computations:

• Cosine() computes the cosine similarity between
two single words

• multicos() computes all pairwise word similarities
for two lists of words

• costring() computes the similarity between two
documents consisting of multiple words

• multicostring() computes the similarities
between a document and a list of single words

As stated above, the vector representation for a document is
computed by summing up all the vectors for all the words

in the document. The similarity functions for documents
then use this vector representation to compute similarities.
Table 1 gives examples of how these function are actually
used in R. These examples also demonstrate that combining
LSAfun with the TASA LSA space gives adequate results.

The functionalities presented in this section can also be
obtained by working with the query() and cosine()
commands implemented in the lsa package by Wild (2011).
However, while these require some additional program-
ming, the functions in LSAfun are designed to directly
provide those functionalities without programming require-
ments.

Neighborhood computations

The LSA homepage also provides an application called
Near Neighbors. This application takes single words or
documents as input and computes their nearest neigh-
bors, i.e. the words with the largest LSA cosine to this
input. In LSAfun, this functionality is implemented in
the function neighbors. A more generalized version of
the neighbors() function is the choose.target()
function. This provides the possibility to not just compute
the nearest words to a given input, but to randomly sam-
ple words within any given range of similarity to the input.
Both functions take single words as well as documents as
an input. Table 2 shows how the neighborhood functions
are used. A similar functionality is implemented in the lsa
package with the function associate(), which gives all
words to a given word with a similarity above a certain
threshold.

Plots and multidimensional scaling

An additional feature of LSAfun is the possibility to gen-
erate plots that allow one to actually have a look on
one’s semantic space. Note that the Word-2-Word package
(Kievit-Kylar & Jones, 2012) is a specialized software for
exactly this purpose and implements, amongst others, the
features presented here.

Since semantic spaces are typically high-dimensional,
they usually cannot be plotted as a whole. Instead, the func-
tions plot neighbors() and plot wordlist()
plot subsets of the semantic space: Either the neighborhood
of a given word (or document), or the similarity structure
for a given list of words. This is achieved by means of four
steps:

1. The nearest n words to the given input are computed
(for plot neighbors() only)
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Table 1 Code examples for similarity functions

2. All cosine values between all of these n neighbors
plus the original input are computed and stored in a
(n + 1) × (n + 1) matrix (for plot neighbors());
if the function plot wordlist() is used,
all pairwise similarities between the given words in the
list are computed and stored in a cosine matrix)

3. Either a principal component analysis (PCA) (Mardia,
Kent, & Bibby, 1979), or a multidimensional sclaing
(MDS) is applied to this cosine matrix

4. The resulting matrix is truncated to two or three dimen-
sions, so a two- or three-dimensional vector is assigned
to each of the n neighbors and the input

The two- or three-dimensional vectors are then
plotted in either a two-dimensional plot, or in a
dynamic three-dimensional plot using the R-package rgl
(Adler et al., 2014). However, when using these functions a
user should always be aware of the fact that what is plotted
is just a subset of the actual semantic space. Furthermore,
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Table 2 Code examples for the neighborhood, plot, and MDS functions

it is only a low-dimensional approximation to this high-
dimensional subset. Table 2 shows how the plot and MDS
functions are used in R, and Fig. 1 gives an impression of the
results of plot neighbors(). Figure 2 gives the results
of a two-dimensional MDS that was applied to a list con-
taining words from four different semantic categories (cats,
food, university, and vehicles),using plot wordlist().

In a three-dimensional plot, the argument
connect.lines controls the number c of connect-
ing lines that are to be drawn from every single word.

Such lines connect each word to its c nearest neigh-
bors in the plot (connect.lines="all" draws
all pairwise connecting lines). Setting the arguments
alpha="shade" or col="rainbow" will adjust
the luminance or the color of these lines, so that they
indicate the cosine similarities between the connected
words. Using these options generates plots that deliver
a good insight into the similarity structure of the
plotted words (an example for alpha="shade"
can be seen in Fig. 1).
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Fig. 1 (left panel) A plot of the ten nearest neighbors to the word lions, using plot neighbors() with an PCA (screenshot of the three-
dimensional plot). (right panel) A plot of the twelve nearest neighbors to the word music, using plot neighbors with a two-dimensional
MDS

Applied functions

LSAfun includes higher-level functions that implement
several computations based on LSA. Landauer and
Dumais (1997) proposed a method of determining the
coherence of a text consisting of multiple sentences.
Coherence is thereby defined as the conceptual overlap
between the individual sentences of a text: In a coher-
ent text, the understanding of a new sentence is facilitated
because most concepts used in this sentence are already
part of the preceedings discourse. The method for coherence
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Fig. 2 The results of a two-dimensional MDS on words from four dif-
ferent semantic categories (cats, food, university, vehicles). This plot
was generated using the function plot wordlist()

computation proposed by Landauer and Dumais (1997)
works as follows:

1. The local coherence between two adjacent sentences is
defined as the cosine between those sentences.

2. The global coherence of a text is the mean local coher-
ence of the sentences in this text.

In LSAfun, this mechanism is implemented in the func-
tion coherence(), which basically applies the function
costring() to a whole text. The coherence() func-
tion can be useful in examining the effects of coherence
for text comprehension, for example by selecting coherent
and incoherent text material for an experiment. On the other
hand, it allows determining the coherence of a text produced
by learners or students.

The function MultipleChoice() is a modification
of multicostring() that selects the closest element of
a set of possible options to a given text (or single word)
input. This function first computes the vector for the ques-
tion, and then computes the cosine similarities between
the question and the possible answers. It then chooses the
answer that has the highest similarity with the question.

We tested the accuracy of the MultipleChoice()
function on the TOEFL synonym test (Landauer &
Dumais, 1997). This test contains 80 target words
(the questions) with four different answer alternatives
per question. The task in this test is to find thesyn-
onym to the target word among the answer alterna-
tives. Of the 79 questions where the correct target
word was present in the TASA LSA space, the func-
tion MultipleChoice() solved 45 correctly (56.25 %).
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In comparison, Landauer and Dumais report that the model
answered 51.5 % of the questions correctly.

Table 3 contains code examples for the coherence com-
putations and the automatic multiple choice answers.

The function genericSummary() applies a method
for a generic and automatic text summary proposed by Gong
and Liu (2001). This method is designed for summarizing a
text by its k most important sentences:

1. Decompose the text into its sentences
2. Construct a term-by-sentence frequency matrix
3. Perform a SVD to obtain a singular value matrix � and

a right singular vector matrix V t . Each column vector
of V t then represents a sentence of the original text.

4. Select the k’th right singular vector from this matrix.
5. Select the sentence which has the largest index value

with this k’th right singular vector, which is then
included in the summary. Given the assumption that
each row vector represents a topic of the text, this is
exactly the sentence that scores the highest value on this
topic, compared to the other sentences.

6. Repeat until k reaches a predefined number

This mechanism relies on the assumption that the SVD
identifies the most important topics of the text and includes
these as dimensions of the semantic space. In the end, the
sentences best corresponding to these topics are included in
the summary. Note that there is no need to specify a seman-
tic space in which the computations can be performed for
this function; this is because the semantic space is directly
created from the text input. Table 4 contains code examples
for this generic summary function.

Composition methods

As mentioned above, the standard LSA approach for com-
puting the vector representation of a complex expression
(an expression consisting of more than one word) is to
compute the vector sum for all words that are part of this
sentence/ document. However, this is not the only pos-
sibility for obtaining vector representations for complex
expressions.

Mitchell and Lapata (2008) proposed various methods
for computing vector representations for two-word-phrases.
In four of these models, an explicit formula is given for com-
puting the i-th element of the expression vector p from the
two word vectors u and v:

1. Additive Model: pi = ui + vi

2. Weighted Additive Model: pi = a ∗ ui + b ∗ vi

3. Multiplicative Model: pi = ui ∗ vi

4. Combined Model: pi = a ∗ ui + b ∗ vi + c ∗ ui ∗ vi,

with a, b and c being constant numeric values.

The latter three composition models pose an interesting
alternative to the standard approach of summing up word
vectors: A Weighted Additive Model allows one word to
have more impact on the meaning of a complex expres-
sion than another word. In an adjective-noun phrase such as
brown cow, one could assume that the noun plays a more
important role for the meaning of the phrase than the adjec-
tive that just modifies the noun. Furthermore, such a model
allows including word order information, for example by
assigning a higher weight to the first or the last word in a
complex expression.

A Multiplicative Model also has interesting features: In
Vector Semantic Models, one assumes that each entry of a
word vector represents one semantic dimension of the word.
By applying an element-wise multiplication for a two-word
phrase, only the semantic dimensions both words have high
values on (i.e. the dimensions both share) will have high val-
ues in the resulting vector for the expression. The remaining
dimensions will end up with relatively low values (in the
most interesting case where one vector has an entry of 0, the
vector for the expression will also have an entry 0 on this
dimension, regardless of the other vector).

As indicated by its name, the Combined Model combines
the features of the Weighted Additive Model and the Mul-
tiplicative Model. Mitchell and Lapata (2008) also mention
the Predication Model by Kintsch (2001) in their article.
This is a model for computing the vector representation of
expressions consisting of an argument (describing an object,
or more generally an entity) and a predicate (describing a
property of this entity), and works as follows:

1. Select the m nearest words to the predicate
2. Of this set of m words, select the k nearest words to the

argument
3. Compute the expression vector as the vector sum of

predicate, argument and these k words.

This Predication Model considers syntax information,
in that it emphasizes the different roles of arguments and
predicates. Furthermore, it considers contextual informa-
tion: Different neighbors of runs will be part of the expres-
sion vector for horse runs than for time runs. The Predi-
cation Model is also implemented in a computer program
described by Lemaire et al. (2006). This program sim-
ulates text comprehension by combining LSA with the
Construction-Integration Model (Kintsch, 1998), which is
the theoretical foundation for the Predication Model.

In their article, Mitchell and Lapata (2008) examined
these methods by setting up an experiment in which partic-
ipants were presented with short sentences consisting of a
noun and an intransitive verb (e.g. The fire glowed). These
were followed by a second sentence, containing the same
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Table 3 Code examples for coherence() and MultipleChoice()

noun and either a highly related word (e.g. The fire burned)
or a lowly related word (e.g. The fire beamed). The partici-
pants were then asked to judge how similar the two phrases
were. The phrase vectors were computed according to the
five models presented here. Mitchell and Lapata (2008)
showed that the similarity between the phrase vectors pre-
dicted the human similarity judgements best when they were
calculated with the Multiplicative or the Combined Model,
as compared to the other models.

In a more recent study, Mitchell and Lapata (2010)
further examine these models using human similarity judg-
ments for different types of phrases (adjective-noun, noun-
noun, and verb-object phrases), in which they also found
that the Multiplicative Model predicted the human judg-
ments best.

In LSAfun, these five methods presented by Mitchell
and Lapata (2008) are implemented in the function
compose(). The output of this function is a vector

with the same dimensionality as the semantic space used
in the computations and can be used as an argument
in other functions such as neighbors(). The function
Predication() gives a more detailed output if the pred-
ication method is applied, it for example specifies which k
words are included in the expression vector. Code examples
for compose() are also included in Table 4.

Data analysis examples

As mentioned before, a main advantage of the imple-
mentation of LSAfun in R is that it can be used directly
for data analyses. To demonstrate this, we included three
data sets in the package: The data set priming contains
simulated reaction time data for a semantic priming experi-
ment with related and unrelated pairs. The item material is
taken from Hutchison et al. (2008). The data set syntest
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Table 4 Code examples for genericSummary() and compose()

contains a short synonym/ antonym multiple choice test, and
oldbooks contains a list of five complete classical books.

Tables 5 and 6 contain the R code for these analyses.
In the first analysis of priming, a correlation between
LSA cosine similarities and reaction times is computed,
as well as differences in the LSA cosine similarities for
the related and unrelated prime-target pairs (whether a pair
is classified as related or unrelated was determined by
Hutchison et al. (2008)). In the second analysis of
syntest, the multiple choice questions are automatically
answered, and the percentage of correct answers is com-
puted. In the third analysis of oldbooks, we want to
recommend another classical book to a reader who just read
Bram Stoker’s Dracula on the basis of its similarity to this
book. All example computations will be performed with the

TASA LSA space, which can be loaded into R as explained
above.

Validation

To validate the results LSAfun gives, we compared them
to those results given by other software implementing
LSA.

We used the TASA corpus described above to create an
LSA space with the SemanticVectors package (Widdows &
Ferraro, 2008). With this space, we computed the pairwise
similarities for 2,000 randomly selected word pairs (4,000
words were sampled randomly with replacement from all
the words present in the LSA space, and randomly assigned
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Table 5 Data analysis for the priming data

to pairs). For those pairs,we computed the pairwise sim-
ilarities with the CompareTerms class provided there.
We also exported the LSA space to LSAfun and computed
the pairwise similarities using the Cosine() function.
We obtained a perfect correspondence between the two
packages, all the cosine values were exactly the same.

We also repeated this analysis with pairs consist-
ing of two-word phrases to test for the validity of the
costring() function (i.e. we sampled 8,000 words and
assigned them to two-word pairs). Note that almost all
of these phrases did not make any sense, but this is not

relevant for this validation. Comparing the results from
CompareTerms in SemanticVectors and costring() in
LSAfun also resulted in a perfect correspondence.

For further validation, we tried to replicate a 5000 words
× 5000 words pairwise similarity matrix that was com-
puted from an LSA space build from the CHILDES corpus
(MacWhinney, 2000). This corpus consists of transcriptions
of child-directed speech. We obtained the LSA space as
well as the similarity matrix from the Cognitive Computing
Laboratory, Indiana University, Bloomington. Both the LSA
space and the similarity matrix were created using Python.
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When using this CHILDES LSA space, the multicos()
function of LSAfun did perfectly replicate the similarity
matrix.

Scalability and run times

For scalability and run time analyses, we used a test laptop
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with a 2.70 GHz processor, a 32-bit Windows OS, and 4
GB RAM. Loading an LSA space into the R workspace
takes a short amount of time, depending on how big this
LSA space is (and, of course, on the computer that is
used). For most of the LSA spaces provided at http://www.
lingexp.uni-tuebingen.de/z2/LSAspaces, which mostly con-
tain about 100,000 different 300-dimensional term vectors,
this takes about 2.5 seconds on our test laptop. A LSA space
with 200,000 of such term vectors would take about 4 sec-
onds to load. The size of LSA spaces that can be used with
LSAfun is restricted only by the working memory of the
computer one works with. Our test laptop failed to load LSA
spaces with more than 85,500,500 entries from .rda files
(this equals a matrix with 285,000 rows and 300 columns).
Note, however, that most LSA spaces will not contain such
a large amount of different terms.

The run times of simple similarity compu-
tations (such as Cosine(), costring(),
multicos(), multicostring(), coherence()
and MultipleChoice()) is very fast (less than 100
ms) and do not noticeably scale with the size of the LSA
space used or any other input parameters. The run times
for functions that depend on neighborhood computa-
tions (such as neighbors(), plot neighbors(),
choose.target() and Predication()) on the
other hand scale with the size of the LSA space (but not
with any other input parameters). These take about 2.5
seconds for an LSA space containing about 100,000 300-
dimensional term vectors, and scale linearly with the size
of the LSA space (a LSA space containing twice as many
vectors will take about 5 seconds, for example). The run
times for those neighborhood-based function also increase
approximately linearly with the dimensionality of the LSA
space used for computations. While computing the nearest
neighbors to a word in a 300-dimensional LSA spaces
containing 100,000 terms takes about 2.5 seconds, it takes
about 3.2 seconds for a 600-dimensional space, and 4.3
seconds for a 900-dimensional space.

Conclusions

The package LSAfun presented here makes a range of LSA-
based computations available on an open source basis in R.
It allows the user to include her or his own LSA spaces as
well as the pre-created LSA spaces available at http://www.
lingexp.uni-tuebingen.de/z2/LSAspaces.

The input format for the functions was designed to be as
convenient and intuitive as possible. Hopefully, this pack-
age makes research based on Vector Semantic Models better
available for a larger audience of researchers and teaching
staff. Its main purpose is to break down the barriers that the
quite extensive computational processes involved in Vector

Semantic Models pose especially for people that are new to
this research field.
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