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Abstract The existing literature on statistical power analysis
for mediation models often assumes data normality and is
based on a less powerful Sobel test instead of the more
powerful bootstrap test. This study proposes to estimate sta-
tistical power to detect mediation effects on the basis of the
bootstrap method through Monte Carlo simulation.
Nonnormal data with excessive skewness and kurtosis are
allowed in the proposed method. A free R package called
bmem is developed to conduct the power analysis discussed
in this study. Four examples, including a simple mediation
model, a multiple-mediator model with a latent mediator, a
multiple-groupmediationmodel, and a longitudinal mediation
model, are provided to illustrate the proposed method.

Keywords Power analysis . Mediationmodels . Nonnormal
data . Bootstrapping . R package bmem

Introduction

Mediation models are widely used in the social and behavioral
sciences, as demonstrated in recent books by Hayes (2013)
and MacKinnon (2008). Mediation models are useful because
they can be used to investigate the underlying mechanism
related to why an input variable influences an output variable.
In order to avoid underpowered research, statistical power
analysis is always necessary before data collection. We are
aware of only a few studies that have discussed how to
conduct power analysis for mediation models. Most literature
on power analysis for mediation models has focused on a
simple mediation model (Beasley, 2012; Fritz &
MacKinnon, 2007; Vittinghoff, Sen, & McCulloch, 2009;

Wang & Xue, 2012). Software is available in terms of R code
(Kenny & Judd, 2013) and R package (Qiu, 2013) for
conducting power analysis for certain types of mediation
models. Thoemmes, MacKinnon, and Reiser (2010) proposed
a general framework for power analysis for complex media-
tion models using Monte Carlo simulation in Mplus (Muthén
& Muthén, 1998–2011). However, their method assumes that
data are normally distributed and uses the Sobel test, although
it can be extended to nonnormal data analysis.

Practically collected data are often nonnormal. For example,
Micceri (1989) reported that among 440 large-sample achieve-
ment and psychometric measures taken from journal articles,
research projects, and tests, all were significantly nonnormally
distributed. Consequently, statistical tests developed for normal
data often give inaccurate power estimation in the presence of
nonnormal data (e.g., Wang & Zhang, 2011; Zhang & Wang,
2013b; Zu & Yuan, 2010). Mediation analysis adds extra
complexity to power analysis. For example, different methods
are available for testing the mediation effect, and they can have
different power for the same mediation effect (e.g., Cheung,
2007; Fritz & MacKinnon, 2007). Studies have shown that the
bootstrap method achieves the highest power among many
methods developed for detecting mediation in the literature.

This study extends Thoemmes et al. (2010) in several
ways. First, it proposes a general method for conducting
power analysis for mediation models based on the bootstrap
method. The method is still based on Monte Carlo simulation
but uses the bootstrap method to test mediation effects.
Second, the method allows the specification of nonnormal
data in the Monte Carlo simulation and can, thereby, reflect
more closely practical data collection. Third, a free, open-
source R package, bmem, is developed to ease power analysis
for mediation models using the proposed method.

In the following sections, we first present the proposed
method for power analysis of mediation models. Then we
illustrate the use of the R package bmem for conducting power
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analysis. After that, we demonstrate the use of the proposed
method through four examples including a simple mediation
model, a multiple-mediator model with latent variables, a
multiple-groupmediationmodel, and a longitudinal mediation
model. Complete R code for the four examples is provided in
the Appendices.

Monte Carlo based statistical power analysis

In this section, we first present the proposed method. For
better illustration, we focus our discussion on a simple medi-
ation model, even though the method applies to more complex
models, as shown in our examples. Figure 1 displays the path
diagram of the simple mediation model. In the figure, x , m ,
and y represent the independent or input variable, the media-
tion variable, and the dependent or outcome variable, respec-
tively. In this model, the total effect of x on y, c’ + a * b ,
consists of the direct effect c’ and the mediation effect
θ = a * b , the multiplication of the direct effect of x onm and
the direct effect of m on y. The mediation effect is also called
the indirect effect because it is the effect of x on y indirectly
through m .

Statistical power analysis for mediation can be viewed as
concerning a test of whether the mediation effect (θ) is sig-
nificantly different from 0. More specifically, we have the null
and alternative hypothesis

H0 : θ ¼ 0 vs: H1 : θ ¼ θ1;

where θ1 represents a given effect size. By its definition, the
statistical power (π ) is

π ¼ Pr reject H0jH1ð Þ: ð1Þ

In addition to the use of null hypothesis testing, the power
can be calculated using the confidence intervals. This is based
on the equivalence of confidence intervals and hypothesis test-
ing (e.g., Hoenig &Heisey, 2001; Meehl, 1997). That is, if a 1 −
α confidence interval does not include the null hypothesis value,
one can infer a statistically significant result at the significant
level α (e.g., Daly, 1991). More specifically, let [l ,u] denote the
confidence interval of the mediation effect θ . The power is then

π ¼ Pr 0∉ l; u½ �jH1ð Þ: ð2Þ

In practice, the power π can be difficult to calculate
analytically, especially for complex mediation models.
However, it can be estimated using the relative frequen-
cy of rejecting the null hypothesis in Monte Carlo
simulation following Algorithm 1. The algorithm has
been widely applied in the literature of statistical power
analysis for both mediation analysis and other analysis
(e.g., Cheung, 2007; Fritz & MacKinnon, 2007; Fritz,
Taylor, & MacKinnon, 2012; Hayes & Scharkow 2013;
MacKinnon, Lockwood, & Williams, 2004; Muthén &
Muthén, 2002; Thoemmes et al., 2010; Zhang & Wang,
2009, 2013b).

Algorithm 1 Monte Carlo simulation algorithm for statistical
power

1. Form a mediation model based on the hypothesized
theory and set up the population parameters for the
mediation model. The parameter values can be de-
cided from previous studies in the literature or a
pilot study.

2. Generate a data set with sample size n based on the model
and its population parameter values.

3. Test the significance of a mediation effect by forming a
confidence interval using the generated data.

4. Repeat steps 2 and 3 for R times, where R is the number
of Monte Carlo replications.

5. Suppose among the R replications, the mediation effect is
significant for r times. Then the power for detecting the
mediation effect given the sample size n is r /R .

A critical component of such a Monte Carlo algorithm is
the choice of the method for constructing the confidence
interval of the mediation effect. In this study, we consider
three types of confidence intervals: the normal confidence
interval, the robust confidence interval, and the bootstrap
confidence interval, although we recommend the use of the
bootstrap confidence interval.

Normal confidence interval

In mediation analysis, model parameters and their covariance
can be estimated using the maximum likelihood method.
Under the normal data assumption, the estimated model pa-
rameters follow a multivariate normal distribution asymptoti-

cally. For example, for the simple mediation model, ba and bb ,
estimates of a and b , have a bivariate normal distribution with

the covariance matrix
bσ2
a bσabbσab bσ2

b

� �
, where bσ2

a , bσ2
b , and bσab

are the estimated variances and covariance of ba and bb . Using
the delta method, bθ ¼ babb is normally distributed with meanFig. 1 Path diagram of a simple mediation model
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θ =ab and variance bb2bσ2
a þ 2babbbσab þ ba2bσ2

b (Sobel, 1982, p.
298). The 1−α confidence interval for ab can be constructed
as

babbþ Φ−1 α=2ð Þ � bse babb� �
;babbþ Φ −1 1−α=2ð Þ � bse babb� �h i

; ð3Þ

where Φ is the standard normal cumulative distribution
function and, therefore, Φ−1(α ) gives the 100α th per-
centile of the standard normal distribution. For exam-
ple, for the 95 % confidence interval, Φ −1(α /2)=
Φ − 1(.05/2) =Φ − 1(.025) ≈ − 1.96 and Φ − 1(1−α /2) =

Φ −1(.975)≈1.96. bse babb� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibb2bσ2
a þ 2babbbσab þ ba2bσ2

b

q
is

the standard error of babb . We refer to this interval as the
normal confidence interval. Note that a power analysis based
on the normal confidence interval is the same as the use of the
Sobel test.

Robust confidence interval

When data are not normally distributed, the standard
error estimates of the parameter estimates of the medi-
ation models are not consistent. Therefore, the confi-
dence interval in Equation 3 is problematic. However, if
the fourth moments (or kurtosis) of the nonnormal data
still exist, the robust sandwich-type standard errors are
consistent and can be used (Zu & Yuan, 2010).
Therefore, replacing the normal standard error with the
sandwich-type standard error in Equation 3, we obtain a
robust confidence interval for the mediation effect.

Bootstrap confidence interval

Both the normal and robust confidence intervals are based on
asymptotic theory, and they might not perform well in finite
sample experiments (e.g., MacKinnon et al., 2004; Zu &
Yuan, 2010). In the literature, confidence intervals constructed
using the bootstrap method have been shown to perform better
under many studied conditions (e.g., Cheung, 2007; Fritz &
MacKinnon, 2007; Fritz et al., 2012; Hayes & Scharkow,
2013; MacKinnon et al., 2004; Preacher & Hayes, 2004;
Shrout & Bolger, 2002). Algorithm 2 can be followed to
construct a bootstrap confidence interval.

Algorithm 2 Bootstrap confidence interval algorithm

1. Using the original data set (sample size = n ) as a popula-
tion, draw a bootstrap sample of n persons randomly with
replacement.

2. With the bootstrap sample, estimate model parameters
and compute estimated mediation effects.

3. Repeat steps 1 and 2 for a total ofB times.B is the number
of bootstrap samples.

4. The bootstrap confidence intervals of model parameters
and mediation effects are constructed.

Different bootstrap confidence intervals have been used for
the bootstrap method in the literature of mediation analysis
(e.g., Cheung, 2007; Fritz & MacKinnon, 2007; Fritz et al.,
2012; Hayes & Scharkow, 2013; MacKinnon et al., 2004). Let

θ denote a population mediation effect, bθ denote the estimate

of θ from the original data, and bθb; b ¼ 1;…;B denote its
estimate for the b th bootstrap sample. A 100(1−α )% boot-
strap confidence interval is formed in the following ways.
First, the percentile bootstrap confidence interval can be con-

structed by bθ b
α=2ð Þ;bθ b

1−α=2ð Þ
h i

for a parameter with

bθb αð Þ denoting the 100α th percentile of the B bootstrap
estimates. Second, the bias-corrected bootstrap confidence

interval can be constructed as bθ b eαlð Þ;bθ b eαuð Þ
h i

, where eαl

and eαu are used to get the quantiles and are calculated by

eαl ¼ Φ 2z0 þ Φ −1 α=2ð Þ� � ð4Þ

and

eαu ¼ Φ 2z0 þ Φ −1 1−α=2ð Þ� �
; ð5Þ

with

z0 ¼ Φ −1 number of times that bθ b
< bθ

B

2
4

3
5: ð6Þ

Remarks

Choice of confidence intervals

Simulation studies have been conducted to evaluate the
normal, robust, and bootstrap confidence intervals (e.g.,
Cheung, 2007; Fritz et al., 2012; Hayes & Scharkow,
2013; MacKinnon et al., 2004; Zu & Yuan, 2010).
Overall, the bootstrap confidence intervals, including
the percentile and the bias-corrected ones, perform bet-
ter than the nonbootstrap ones. It is found that the
percentile bootstrap confidence interval has greater pow-
er than the normal one and, at the same time, maintains
type I error near its nominal level. The bias-corrected

1186 Behav Res (2014) 46:1184–1198



bootstrap confidence interval has even greater power
than the percentile bootstrap confidence interval but at
the cost of more liberal type I error. In a recent study,
Hayes and Scharkow (2013) recommended that if power
is at the forefront of concerns, the bias-corrected boot-
strap confidence interval can be used and, in general,
one can use the percentile bootstrap confidence interval
as a good compromise test. In this study, by default, we
adopt the percentile bootstrap confidence interval in our
analysis. Our software allows the use of normal, robust,
percentile bootstrap, and bias-corrected bootstrap confi-
dence intervals.

Nonnormal data in power analysis

Typically, in the Monte Carlo based power analysis,
data are generated from a multivariate normal distribu-
tion assuming that data collected in the future study will
be normally distributed (e.g., Zhang & Wang, 2009). In
order to deal with nonnormal data, one should allow for
a power analysis based on nonnormal data. In this
study, continuous nonnormal data with target skewness
and kurtosis can be used. Specifically, the method de-
veloped by Vale and Maurelli (1983) is used to generate
nonnormal data with the same mean and variance as the
normal data but with target skewness and kurtosis pro-
vided by a user. If the literature shows, or a researcher
has reason to believe, that nonnormality is a concern
after data collection, power analysis should be conduct-
ed with simulated nonnormal data. For nonnormal data
with excessive skewness and kurtosis, power based on
the robust and bootstrap confidence intervals should be
trusted more than the normal confidence interval. For
studies with small sample size, the bootstrap method is
expected to perform best.

Controlling type I error

The literature on mediation analysis has shown that the type I
error for mediation tests is generally not well controlled (e.g.,
Fritz et al., 2012; MacKinnon et al., 2004; Zhang & Wang,
2013b). Through simulation, MacKinnon et al. showed that
the normal method had too conservative empirical type I error
and, on average, the bias-corrected bootstrap method had an
acceptable empirical type I error. Recent studies further found
that the bias-corrected bootstrap method had an inflated
type I error rate when one of the direct effects, a or b ,
was not zero (e.g., Fritz et al., 2012; Hayes &
Scharkow, 2013). The percentile bootstrap method, on the
other hand, was found to have better controlled type I error.

Therefore, if the power is calculated on the basis of the
percentile bootstrap confidence interval, the type I error
should not be a big concern.

If controlling type I error is the foremost concern in
power analysis, we recommend the following strategy.
Our Monte Carlo method can be conducted under the
null hypothesis, where the null values can be used as
the population parameters. In this case, power becomes
type I error. Suppose a researcher wants to control type
I error at .05 level. The researcher can always starts
with a significance level at .05. Then, the empirical type
I error can be obtained. If the empirical type I error rate
is smaller than .05, the researcher can increase the
significance level. Otherwise, the researcher can de-
crease the significance level. By trial and error, the re-
searcher can decide on a significance level to control the type I
error rate at the desired value. Then, in power analysis, the
significance level can be used to construct confidence inter-
vals to test mediation effects.

Relevant statistics from the Monte Carlo method

Using the Monte Carlo method, the statistical power is
estimated by r /R . The standard error of the power can

be estimated by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r 1−rð Þ=R3

p
. Note that with the in-

crease of R , the power estimate becomes more accurate.
In practice, we recommend R ≥ 1,000 because, in the
literature, 1,000 replications are often used in evaluating
power (e.g., Cheung, 2007; Thoemmes et al., 2010;
Zhang & Wang, 2009 ).

In addition to power and its standard error, other sta-
tistics can be calculated. An important one is the empir-
ical coverage probability. The empirical coverage proba-
bility is the rate that the constructed confidence interval
covers the population value. For a well-performed confi-
dence interval, the empirical coverage probability should
be close to the confidence level 1−α . For example, Hayes
and Scharkow (2013) showed that the percentile bootstrap
confidence interval has better coverage than the bias-
corrected one. With the R sets of parameter estimates
and their standard errors, one can also calculate the mean
and standard deviation of the parameter estimates and the
mean of the standard errors.

R package bmem

The proposed method in the above section is imple-
mented in the free, open-source R package bmem (Zhang &
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Wang, 2013a). The package bmem uses the R package
lavaan (Rosseel, 2012) for model estimation. The package
can conduct power analysis based on the normal, robust, and
bootstrap confidence intervals. We now illustrate the use of

the package through a simple mediation model, shown in
Fig. 2. The values in the figure are population param-
eters that can be decided from a pilot study or previous
literature. In this example, we choose the parameter
values to approximate a medium mediation effect.
Some of the values are labeled using a , b , and cp .
For demonstration, suppose we are interested in the
power of the mediation effect ab = a * b and the
total effect abc = a * b + cp .

To use bmem , one needs to specify the mediation model
and the mediation effect. The package uses the lavaan
model specification method, but with some specific require-
ments. For example, for the simple mediation model, it is
specified as follows:

First, the name of the model is demo in R.
Everything about the model is given in a pair of quo-
tation marks. Each path in the model is described using
a line of statement. For example, m ~ a*x +
start(.39)*x means that m regresses on x with
the coefficient .39 as in start(.39) . Because the
coefficient has a label a , it is also specified in the
equation. The statement x ~~ start(1)*x means that
the variance for x is 1. More generally, the regression
relationships are specified using ~ , and variance and
covariance are specified using ~~ . More about model
specification can be found in Rosseel (2012). The use
of bmem does not require knowledge of R beyond what
is discussed in this article. However, users who are

interested in learning R are directed to the webpage at
http://www.r-project.org/doc/bib/R-books.html for a list
of useful references.

With the model, we also need to tell the package the
mediation effect to conduct power analysis on. In this
example, the mediation effect ab and the total effect
abc are of interest to us. They can be specified as

Fig. 2 An example mediation model with population parameters
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The notation := means to calculate the indirect effect ab
as the product of parameter a and b , where the labels on the
right hand of “:=” should be consistent with those used in the
model statement demo . Similarly, the total effect is
calculated.

Only the labels for the parameters that will appear in
the calculation of the mediation effect are necessary to
use in the model specification part. For example, for the

variance parameters, no labels are used. By default, the
variance parameters will be set at 1. Therefore, in this exam-
ple, the specifications of the three variance parameters are not
required.

The package bmem conducts power analysis on the basis
of the percentile bootstrap method through the function
power.boot . The code below presents an example to cal-
culate power for the model in Fig. 2 with a sample size 100:

The function power.boot takes many arguments,
but only the model one is required. A model is provided
using the argument model ; for th is example ,
model=demo . If a mediation effect is of interest, it
should a lso be prov ided , as in th i s example
indirect=mediation . By default, the power is cal-
culated for a sample size of 100, but one can change it by
providing a different number to nobs . One can specify
the number of Monte Carlo simulation replications in the
calculation of power using option nrep= with a default
1,000 and also the number of bootstrap using nboot=
with a default 1,000. To take advantage of the multicore
processors of modern computers, the package allows par-
allel computing by setting parallel=’snow’, which
uses the R package snowfall (Knaus, 2013) for automatic
parallelization. By default, all cores available on a com-
puter are used to speed up calculation. If one suspects the
data will be nonnormal , the skewness and kurtosis for the
observed variables can be provided. When specifying
nonnormal data, the observed variable names (ovnames )
should also be provided to match the order of the skew-
ness and kurtosis statistics.

The results of the power analysis can be summarized into a
table using the function summary(power.result) . The
results table (Output 1) shows several columns. First,
the column True lists the population parameter values.
Second, the column Estimate presents the average
parameter estimates across all replications. Third, the
column MSE is the average bootstrap standard error,
and the column SD is the standard deviation of the
parameter estimates across all replications. Fourth, the
column Power gives the power to detect whether a
parameter is significant, and the column Power.se
provides the standard error of the estimated statistical
power. Finally, the column Coverage presents the
empirical coverage probability of the bias-corrected
bootstrap confidence interval. The power for the medi-
ation effect is listed at the end of the table entitled
“Indirect/Mediation Effects.” The power to detect the
mediation effect with a sample size 100 is about .935
using the percentile bootstrap confidence interval for the
present example. During the phase of sample size plan-
ning, if a researcher targets a power of .8, he/she can
reduce the current sample size for another calculation.
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Output 1 Output of bmem

In addition to the power for the mediation effect and the
total effect, the results also include power for all parameters in
the model. For variance parameters, since they are always
larger than 0, its power is obtained on the basis of the boot-
strap standard error instead of the percentile confidence inter-
val. Furthermore, if one adds the argument ci=”BC” in the
power.boot function, the power based on the bias-
corrected confidence interval can be obtained. Although the
purpose of this study focuses on the power using the bootstrap
method, the package bmem also provides a function
power.basic to conduct power analysis for mediation
models using the normal and robust confidence intervals.

In estimating the power for the mediation effect and the
total effect, we assume that the type I error is well controlled.

If a researcher is concerned about the type I error, he/she can
investigate it using bmem. For example, the code below
specifies a possible model under the null hypothesis that
assumes that a =b =0. Replacing the model demo using
demo.alpha , we get the empirical type I error .003 for the
mediation effect and .064 for the total effect. Furthermore,
through trial and error, one can find that at the significance
level .3, the empirical standard error is approximately 0.05 for
a =b =0, and at the same time, the power for a =b =0.39
boosts to .996. However, Fritz et al. (2012) showed that the
type I error is related to the magnitude of a and b under null
(see also Example 1). Therefore, a more serious investigation
would evaluate the type I error according to the combination
of different values of a and b .
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Examples

In this section, we present four examples to demonstrate
how the proposed method can be applied in different
scenarios. The first example is about a simple mediation
analysis. The second example is on a multiple-mediator
mediation model with a latent mediator. The third ex-
ample involves mediation analysis in a multiple-group
analysis setting. The fourth example shows the power
analysis for longitudinal mediation models.

Example 1: Simple mediation analysis

In this example, the model with its population parameter
values in Fig. 2 is used to explore whether the relation-
ship between mothers’ education (ME) and children’s
mathematical achievement (math) is mediated by home
environment (HE; Zhang & Wang, 2013b). Through this
example, we demonstrate the difference in power for
normal and nonnormal data. In generating the
nonnormal data, the skewness is set at −0.3, −0.7, and
1.3, and the kurtosis is set at 1.5, 0, and 5 for ME, HE,
and math, respectively. The skewness and kurtosis sta-
tistics are determined according to real data used in
Zhang and Wang (2013b). The sample size of 50 and
100 is investigated. The focus is the mediation effect
ab . Complete R code for the analysis can be found in
Appendix 1.

The statistical power for detecting the mediation ef-
fect at the significance level α = .05 in this example is
given in Table 1. Like a typical power analysis, power
increased with sample size regardless of the normality
of the data. It should be noted that nonnormality may
not necessarily reduce the power to detect significance
of mediation effect. In this example, when data are
nonnormal, the power actually increased. The results
are consistent with the previous literature on nonnormal
data with excessive kurtosis (e.g., Yuan, Bentler, &
Zhang, 2005).

Type I error is also investigated in this example.
Because ab =0 has different indications on the value of
a and b , we evaluate the influence of different combi-
nations of them. The results shows that when the mag-
nitude of a or b is small—for example, < .14—the
empirical type I error is smaller than .05. On the other
hand, when either a or b is large, the method based on
the percentile bootstrap confidence interval tends to re-
ject the null hypothesis more. The results here are con-
sistent with those in Fritz et al. (2012).

Example 2: Mediation analysis with a latent mediator
(power curve)

A power curve is useful to graphically display how
power changes with sample size (e.g., Zhang & Wang,
2009). Using the model shown in Fig. 3, we show how
to generate a power curve. The substantive idea of the
model in Fig. 3 is that the relationship between age and

Table 1 Power (a =b=.39) and type I error (ab=0) in detecting the
mediation effect in Example 1

a b N = 50 N = 100

Normal
Data

Nonnormal
Data

Normal
Data

Nonnormal
Data

.39 .39 .509 .574 .928 .954

0 0 .001 .002 0 .003

0 .14 .004 .01 .011 .016

0 .39 .036 .05 .061 .055

0 .59 .07 .074 .063 .062

.14 0 .004 .007 .01 .01

.39 0 .037 .054 .059 .062

.59 0 .061 .073 .06 .056

Note . The empirical type I error is different for different combination of a
and b

Fig. 3 A multiple-mediator mediation model with population parameter
values used in Example 2

Behav Res (2014) 46:1184–1198 1191



education and performance on the everyday problem
solving test (ept) is mediated by the memory ability
measured by the Hopkins Verbal Learning Test (hvltt)
and the reasoning ability measured by three reasoning
tests, including word series (ws), letter sets (lt), and
letter series (ls) tests (see Zhang & Wang, 2013b).
The population model parameters are also displayed in
the figure. The R code in Appendix 2 generates the
power curve in Fig. 4. The power curve displays the
power in detecting the effect of age and education on
ept that is mediated by hvltt (a * b + c * b ) for
sample size from 100 to 1,900 with an interval of 200.
The plot shows that to get a power of .8, a sample size
of about 1,500 is needed. Note that a power curve can
be used to obtain power for a given sample size through
interpolation, although the results might not be as
accurate.

Example 3: Multiple-group mediation analysis (moderated
mediation)

Thoemmes et al. (2010) considered a multiple-group
mediation model shown in Fig. 5. Different from the
simple mediation model in Fig. 2, the mediator m is
measured as a latent variable by three observed variables,
m1, m2, and m3. Furthermore, two groups are consid-
ered with varying mediation effects. Specifically, the
mediation effect for the first group is a1*b1 = 0.26
and, for the second group, is a2*b2 = 0.10 . This

implies a moderated mediation, because the mediation
effects are different for the two groups. The moderated
mediation can be evaluated using a1*b1 - a2*b2 . The
sample size for the first group is 400 and, for the second
group, 200. The R code for this analysis is given in
Appendix 3.

Power for this example is given in Table 2.
Comparing the power from Thoemmes et al. (2010),
the power for med2 = a2*b2 increased while the
power for diffmed = a1*b1 - a2*b2 decreased.
The following reasons might explain the difference.
First, x is binary in Thommes et al. but is continuous
in the present study. Second, a close look at the boot-
strap distributions revealed that the bootstrap distribu-
tion of med2 was right-skewed and the bootstrap dis-
tribution of diffmed was left-skewed. Thommes et al.
used the Sobel test that assumed that the distribution of
the indirect effects is normal, while the bootstrap meth-
od does not require such an assumption.

Fig. 5 The path diagram of a multiple group mediation model with
population parameter values

500 1000 1500

0.
2

0.
4

0.
6

0.
8

Fig. 4 Power curve for testing the mediation effect in Example 2. To get
a power of .8, a sample size of around 1,500 is needed based on the power
curve

Table 2 Power from Thoemmes, MacKinnon, and Reiser (2010) and the
present analysis

med1 =
a1*b1

med2 =
a2*b2

Diffmed = a1*b1 −
a2*b2

Thoemmes et al.
2010

.99 .37 .53

Percentile bootstrap 1 .411 .475

Note . med1 and med2 are mediation effects of the first and second group,
respectively. diffmed is the difference in the mediation effects of the two
groups
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Example 4: A longitudinal mediation model

Maxwell and Cole (2007) have recommended the use of
longitudinal mediation models in mediation analysis because
of the involvement of causal process in mediation. Figure 6 is
a longitudinal mediation model derived from Fig. 3 of
Maxwell and Cole, with population parameter values
calculated from Table 2 of Maxwell and Cole. In this
example, each variable in the mediation model is mea-
sured three times repeatedly. The idea of longitudinal
mediation is that the input variable at time 1 influences
the mediator at time 2, which, in turn, affects the
outcome variable at time 3. The mediation effect is then
measured by a*b as in the cross-sectional mediation
models. The power for the mediation effect a*b is
calculated with the code in Appendix 4. The power is
.860 when the bootstrap method is utilized for a sample
size of 50.

Discussion

In this study, we proposed to conduct power analysis
for mediation models based on the bootstrap method.
Specifically, the significance of the mediation effect is
evaluated using the percentile bootstrap confidence in-
terval. The proposed method is implemented in the free,
open-source R package bmem . The use of the method is
illustrated through four examples that cover a large
variety of mediation models. The bootstrap method is

recommended for use especially when data are not
normally distributed—for example, with excessive skew-
ness and kurtosis.

The proposed method is computationally intensive
because of the involvement of the Monte Carlo simula-
tion and bootstrap. For example, for a power analysis
with 1,000 replications of Monte Carlo simulation and
1,000 times of bootstrap, a total of one million models
have to be estimated and evaluated. In order to take
advantage of modern hardware such as multicore pro-
cessors, the package bmem implements automatic
parallelization algorithms. Figure 7 displays the comput-
ing time along with the number of cores used on our
desktop. Clearly, the computing time can be significant-
ly reduced when multiple cores are used. Furthermore,
the parallel method is very efficient, because the com-
puting time reduces almost linearly with the increase of
the number of cores.

The bootstrap method requires about B times com-
puting time of the normal or robust method, where B is
the number of bootstraps. Furthermore, with the same
sample size, the bootstrap method often has greater
power. Therefore, in practice, one can first calculate
power using the normal method to determine a rough
sample size. Then the bootstrap method can be carried

Fig. 7 Computing time along with the number of CPU cores utilized for
the mediation model in Example 1

Fig. 6 Path diagram for a longitudinal mediation model with population
parameter values
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out with a smaller sample size than the normal method.
In this way, one can save a significant amount of
computing time.

Although we have focused our discussion on the
mediation models, the method and software in this
study can be used to conduct power analysis for struc-
tural equation models as well. The calculation of the
power using the Monte Carlo method needs the estima-
tion of a mediation model. Therefore, after data collec-
tion, the same model can be estimated in R without the
need of additional statistical software.

In the future, we will improve our method and soft-
ware in the following ways. First, a better model esti-
mation algorithm will be utilized to save computing
time. For example, von Oertzen and Brick (2013) de-
veloped an efficient method that can significantly reduce
the time of power analysis proposed in this study.
Second, missing data are always a problem in practical

power analysis (Zhang & Wang, 2009). The current
method assumes the data collected will be complete.
In the future, we will incorporate missing data in power
calculation. Third, the algorithm for generating non-
normal data will be improved. One limitation of the
method developed by Vale and Maurelli (1983) is that
it cannot generate non-normal data with all possible
combinations of skewness and kurtosis. Fourth, the cur-
rent study focuses on one type of non-normal data,
namely, continuous data with excessive skewness and
kurtosis. In the future, other types of non-normal data,
for example, categorical data, count data, and survival
data will be investigated.

Author Note We thank Scott Maxwell and Ke-Hai Yuan for
helpful discussions and David Kenny and one anonymous reviewer
for constructive suggestions that have significantly improved this
research. Path diagrams used in the article were generated using
WebSEM (https://websem.psychstat.org).
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Appendix 2 R code for Example 2
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Appendix 3 R code for Example 3
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Appendix 4 R code for Example 4
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