
The scene and the unseen: Manipulating photographs
for experiments on change blindness and scene memory
Image manipulation for change blindness

Felix Ball & Anne Elzemann & Niko A. Busch

Published online: 6 December 2013
# Psychonomic Society, Inc. 2013

Abstract The change blindness paradigm, in which partici-
pants often fail to notice substantial changes in a scene, is a
popular tool for studying scene perception, visual memory,
and the link between awareness and attention. Some of the
most striking and popular examples of change blindness have
been demonstrated with digital photographs of natural scenes;
in most studies, however, much simpler displays, such as
abstract stimuli or “free-floating” objects, are typically used.
Although simple displays have undeniable advantages, natu-
ral scenes remain a very useful and attractive stimulus for
change blindness research. To assist researchers interested in
using natural-scene stimuli in change blindness experiments,
we provide here a step-by-step tutorial on how to produce
changes in natural-scene images with a freely available image-
processing tool (GIMP). We explain how changes in a scene
can be made by deleting objects or relocating them within the
scene or by changing the color of an object, in just a few
simple steps. We also explain how the physical properties of
such changes can be analyzed using GIMP and MATLAB (a
high-level scientific programming tool). Finally, we present an
experiment confirming that scenes manipulated according to
our guidelines are effective in inducing change blindness and
demonstrating the relationship between change blindness and
the physical properties of the change and inter-individual
differences in performance measures. We expect that this
tutorial will be useful for researchers interested in studying

the mechanisms of change blindness, attention, or visual
memory using natural scenes.
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Our subjective experience suggests that we have access to a
rich and stable representation of the visual world around us.
However, this intuition has been challenged by results obtain-
ed with the “change blindness” paradigm (see Jensen, Yao,
Street, & Simons, 2011; Rensink, 2002, for reviews). This line
of research has demonstrated that observers are often unable
to detect large changes in a scene when the change occurs
simultaneously with a brief visual disruption, be it a saccade
(Grimes, 1996; Hayhoe, Bensinger, & Ballard, 1998;
Henderson & Hollingworth, 1999), an eye blink (O’Regan,
Deubel, Clark, & Rensink, 2000), a flicker (Rensink,
O’Regan, & Clark, 1997), or a distracting stimulus
(O’Regan, Rensink, & Clark, 1999). Change blindness has
been demonstrated with a wide range of stimuli including
artificial scenes with abstract stimuli (Thornton &
Fernandez-Duque, 2000; Watanabe, 2003), photographs of
natural scenes (Henderson & Hollingworth, 1999; Rensink
et al., 1997), video clips (Levin & Simons, 1997), and even in
real-life situations (Simons & Levin, 1998). Changes are
ecologically highly relevant events, for example in traffic
situations: “looking, but failing to see” is one of the key
perceptual errors contributing to traffic accidents (Galpin,
Underwood,&Crundall, 2009). Thus, a brief distracting event
such as the driver’s cell phone ringing could make the driver
oblivious to a change in the road situation such as a changing
traffic light or a pedestrian crossing. Importantly, change
blindness does not simply occur when observers fail to look
directly at the changing object; in fact, direct fixation of the
changing object by no means guarantees change detection:
several studies found that observers frequently miss a change
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even when they are looking directly at it (Caplovitz, Fendrich,
& Hughes, 2008; O’Regan et al., 2000). The existence of
change blindness obviously points to a limit in our ability to
represent, process, and maintain visual scenes, and numerous
studies have been conducted to identify the nature of this
limitation (Jensen et al., 2011).

In most of the impressive demonstrations of change blind-
ness, digital photographs of natural scenes have been used. In
fact, what makes change blindness interesting to the lay person
and to many researchers is the conflict between the apparent
ease of beholding a natural scene and the surprising failure to
detect substantial changes in the scene. Moreover, natural
scenes offer a number of advantages over other, more artificial
types of displays. First, the incidence and persistence of change
blindness is usually higher for changes in natural scenes
(Rensink, 2002). Second, change blindness for natural and
artificial scenes may involve different processes. For example,
EEG studies have demonstrated implicit registration of the
change using natural scenes (Fernandez-Duque, Grossi,
Thornton, & Neville, 2003), whereas most studies using artifi-
cial displays have shown no such effects (Busch, Dürschmid, &
Herrmann, 2010; Eimer&Mazza, 2005; Koivisto&Revonsuo,
2003). Furthermore, some of the key factors in change detection
are impossible to investigate with artificial displays from the
outset. For example, change detection is facilitated for objects
considered to be important in the context of the scene (Rensink
et al., 1997) or for changes that violate the overall semantic gist
of the scene (Hollingworth & Henderson, 2000; Sampanes,
Tseng, & Bridgeman, 2008); obviously, no gist is available in
artificially created displays. Moreover, researchers may be in-
terested in studying change blindness specifically for certain
types of natural scenes—for example, scenes depicting traffic
situations (Galpin et al., 2009) or for testing the effect of
domain-specific expertise (Werner & Thies, 2000).

However, despite the attractiveness of natural-scene stim-
uli, the majority of change blindness studies have used artifi-
cially generated scenes consisting of simple stimuli such as
oriented lines or Gabors (e.g., Thornton & Fernandez-Duque,
2000; Watanabe, 2003) or “free floating” schematic objects
(e.g., Busch, 2013; Busch, Fründ, &Herrmann, 2010;Mitroff,
Simons, & Levin, 2004). This impression was confirmed by
an automated literature survey using PubMed search (www.
ncbi.nlm.nih.gov/pubmed; accessed and updated on June 4,
2013) for the keywords “change” + “blindness” + “detection.”
The search yielded 157 publications, out of which 118 were
identified as being visual change blindness experiments.1

Only 26 of these studies (22 %) used photographs of natural
scenes. Among these studies, only 36 different scene images
were used on average, and many studies used the identical set
of images. Only 15 out of 118 studies (13 %) used images that
were created with image-processing software. This finding

suggests that researchers face limitations that keep them from
using natural-scene stimuli in change blindness experiments.

It is reasonable to ask why natural scenes are not used more
frequently in change blindness research. An undeniable ad-
vantage of artificial displays is that the experimenter has tight
control of stimulus properties—for instance, size, location,
and intensity of the change. Another reason might be that
natural-scene stimulus material is not as easily produced. To
use natural-scene stimuli in a change blindness study, numer-
ous images must be collected and then manipulated, be it by
removing, relocating, or exchanging objects in the scene. In
the era of cheap digital cameras and searchable online image
repositories, image collection is straightforward. This article
addresses the second and less trivial task: image manipulation.

In this tutorial, we will explain how to use a freely available
image processing software (GNU Image Manipulation
Program; GIMP) to manipulate natural-scene stimuli for
change blindness experiments. GIMP is a platform-
independent, open-source-licensed software with an active
community of users and developers. However, the tools intro-
duced in our tutorial have been implemented in image pro-
cessing software for over two decades (Schewe, 2000) and
thus can be found in most other popular software packages,
too. In contrast to general-purpose tutorials, we will specifi-
cally detail the workflow for creating subtle and quickly
producible image modifications for conducting change blind-
ness experiments. We will also address specific challenges
related to such modifications. Next to describing how natural
scenes can be altered and how three different types of changes
(deletion, position, and color) can be produced, we present
results from an experiment that used scenes created with these
guidelines. We found that these scenes were effective at pro-
ducing change blindness. In addition, we analyzed the effect
of physical image properties on change detection perfor-
mance, and compared their effect to that of inter-individual
differences in performance measures.

Manipulating natural scenes for a change blindness
experiment

Image collection

Experimenters may choose to use their own digital camera and
take control of factors such as theme, resolution, depth of
field, and so forth, themselves. Alternatively, images can be
collected rapidly on the internet using Google image search or
online image galleries such as Google’s Picasa, SmugMug,
Photobucket, and Flickr. Note that these websites or the orig-
inal providers of these images may place restrictions on the
use of the images, especially regarding publication or sharing
with the scientific community.1 One study listed by PubMed was not available to us.
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The collected images need to be stored digitally in any of
the file formats available for images. Most file formats use
some form of image compression to reduce redundancy of the
image data and thus reduce the file size. Importantly, lossy
compression methods such as JPEG will diminish image
quality. Moreover, the compression of manipulated images
may lead to undesired distortions of pixels outside the manip-
ulated area. Thus, we recommend storing images using a
lossless compression format (or use no compression at all),
such as PNG or TIFF.

Working with GIMP

The collected images need to be manipulated to introduce
changes. For this tutorial, we used a freely licensed, open-
source, and platform-independent image editing software: the
GNU Image Manipulation Program (GIMP; version 2.6.11;
www.gimp.org/). Further, the techniques presented here can
be easily reproduced using most other image editing software
packages, including commercial programs (such as
Photoshop, Corel Photo-Paint, Serif Photo Plus, or Xara
Photo) and freely available programs (such as Paint.NET,
PhoXo, Photo Pos Pro, Photo Filtre, or Pixlr).

GIMP’s user interface displays three different windows by
default: the Toolbox window, the Main window, and a window
containing information on the layers, channels, history, and
paths (see Fig. 1). We will refer to the latter one as the Layers
window. The Toolbox window (red in Fig. 1) lists all tools as
icons in the upper part of the window. A table with a description
of the tools used for this tutorial can be found in the supple-
mentary materials (http://oszilla.hgs.hu-berlin.de/CB_GIMP/).
Tools are used for image manipulation—for example, to select
objects, change their orientation, and shift their position. When
a tool is selected (e.g., the Pencil tool in Fig. 1), additional
information about this tool is displayed in the lower part of the
Toolbox window (red shaded area in Fig. 1). Each tool has
different parameters that can be adjusted. For example, if the
Pencil tool is selected, parameters such as the opacity level or
the radius can be set (see the red shaded area in Fig. 1). The
image is always displayed in theMain window (green in Fig. 1).
The Main window is the workspace, which is used to apply
tools and process the images. Information on layers is provided
in the Layers window on the right (blue in Fig. 1).

Layers are an important concept in GIMP, as in most image-
editing programs. Layers are used to separate different elements
of an image, such as the original and the modified versions of a
scene, or a particular object extracted from the scene. Layers are
hierarchically organized: The top layer represents the fore-
ground of the new image, and the bottom layer represents its
background. The order of layers can be arranged manually by
“drag and drop.” The advantage of using layers is that each
layer represents a dedicated workspace that can be manipulated
independently of the other layers. After finishing the processing

of each layer, all layers are merged to create the final image (see
the “Merging Layers” section below).

Note that if an image is not displayed in the Layers window
after loading, the “Auto” button in the top-right corner of this
window (see the arrow in Fig. 1) can be used to display the
currently available layers (see the blue-shaded area in Fig. 1).
By using the “eye” symbol on the left side of the layer descrip-
tion, layers can be hidden in theMain window (e.g., in Fig. 1 the
object layer is hidden, as denoted by a missing “eye” symbol).
Hiding different layers in theMain window is especially helpful
if only information in one of several layers is beingmanipulated.

Finally, another useful function is the History dialog (top
right tab; the yellow arrow in Fig. 1). The History dialog is
part of the Layers window in the program’s default settings.
Alternatively, it can be accessed in the menu bar under
“Windows/Dockable windows/Undo history.” It shows all
steps of the image processing in a chronological list, starting
with opening of the image. Using this history, the user can
reset the work to a certain stage of processing by clicking on
one of the points on the list. It is important to mention that
resetting cannot be applied to specific processing steps in the
workflow. For example, only resetting processing steps 20 to
60 out of 500 is not possible. The reset function will always
undo all commands from the last processing step to the one of
interest. However, it is also possible to redo processing steps
that were excluded by clicking on an entry farther down the
list. Pressing ctrl+z can be used to undo the most recent action,
and ctrl+y can redo the previously undone action (see also
“Edit/Undo” and “Edit/Redo” in the menu bar).

We provide sample GIMP files for each of the examples in
this tutorial in the supplementary materials (http://oszilla.hgs.
hu-berlin.de/CB_GIMP/GIMP files/). For the sake of
simplicity, we stored several different layers in each GIMP
file (original/modified images and object, shadow and
background layers). However, we recommend against storing
different versions of the same image in a single GIMP file as
long as no back-up of the modified image exists. We and other
users experienced problems with reopening such files, which
never occurred with files containing a single image.

Choosing an object

The choice of the change object should be guided by several
considerations: how easy it will be to detect the change, how
much effort the manipulation will require, and how the physical
properties of the change will compare to other stimuli in the
experiment. The detectability of a change depends on the phys-
ical saliency of the change as well as on observers’ expectations
as to which objects are most likely to change (seeWright, 2005;
Ma, Xu, Wong, Jiang, and Hu 2013, see also experiment
below). Such expectations may be based on object semantics
(e.g., clouds are more likely to change than buildings), guesses
about the experimenters intentions, or guesses regarding objects
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that lend themselves to a manipulation. As we will describe in
detail below, for each scene we noted which objects were
selected by experimenters for manipulation and which objects
were identified by the observers as most probable change ob-
jects. Indeed, observers’ expectations matched the experi-
menters’ initial selections with 60 % accuracy. This finding
suggests that the first objects that come to mind when choosing
change objects are also among the best detectable changes. The
expected effort depends to a large extent on the contour and
background of the object. Changes are most easily implemented
for objects with a clear-cut outline and for homogeneous back-
grounds, in which the empty space after deleting the object can
be easily filled in. Finally, detectability and physical properties
of the change should be as consistent as possible throughout the
experiment to avoid confounding experimental conditions. In
the “Computing the physical properties of changes” section, we
will explain how to measure the physical properties of the
change. Sometimes it is desirable to create changes that are
difficult to spot. A simple way to create such changes is to alter
regions that are usually not interpreted as objects, such as
shadows, reflections, and the background (sky, horizon, etc.).
However, presenting changes to these regions might cause
observers' focus and strategy to differ from natural viewing
conditions.

Deletion changes

The objective in this example is to delete the photo from the
advertisement on the right pillar in Fig. 2a. This represents an

easy example of a deletion change because (1) the object has a
very clear-cut outline and (2) the background is a homoge-
neous surface.

Opening an image

To start working on an image, the image is opened by clicking
“File/Open” in the Main window (green in Fig. 1) and
rescaled, if necessary. The image is displayed in the Main
window and should be listed in the Layers window on the
right (blue in Fig. 1). Use the “Auto” button (top-right corner
Layers window) if the layer is not listed.

Selecting and deleting an object

To delete an object from the active layer, the object has to be
selected using either the Free Select tool (lasso) or the Fuzzy
Select tool (magic wand; see the “Color Changes” section). The
Free Select tool is based on free-hand mouse selection (“click
and drag”) and used whenever the object is inhomogeneously
colored. It provides the Feather edges option, which smoothens
and blends the edges of the selection. The options have to be set
individually. We determined a range of 1–5 pixels to be useful,
but different images may require different values. In our expe-
rience, smaller values improve the selection of small objects
and of objects in the image foreground, whereas larger values
are better suited for larger objects and objects located in the
background. The selection outline (thin line) is formed through
several clicks around the object (see Fig. 2c). It is useful to

Fig. 1 Default layout of GIMP. Important windows are marked by
colored squares: the Tool window with tool shortcuts (red) and specific
tool information (red-shaded); the Main window (green); and the Layers

window (blue) and specific layer information (blue-shaded). The yellow
arrow tab opens the History dialog, and the blue arrow points to the
“Auto” load button for layers
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magnify the to-be-deleted object using “ctrl+mouse scroll” to
have a better view of its outline and select objects more pre-
cisely (see Fig. 2d). After finishing selection by making a
double left click (see Fig. 2e), the line surrounding the object
will automatically change into a moving dotted line.
Importantly, one should not forget to also delete any shadow
that belongs to the deleted object.

After the object is selected, the selection can be refined.
Areas can be added to the current selection by holding down
“shift,” or they can be deselected by holding down the “ctrl”
key while left-clicking on the relevant area. When a selection
tool is activated, these options can also be found in the lower
part of the Toolbox window. In our example, we deselected
the previously automatically marked area between the man’s
arms and body (see Fig. 2f). Note that as long as an area of the
image is selected, all modifications (e.g., with the Clone or
Eraser tool) are restricted to this area.

Once the selection process is finished, the objects in the
selected area can be deleted by using the “delete” button,
leaving an empty space (see Fig. 2g). This empty space needs
to be filled in the next step.

Filling in empty space

Homogeneous backgrounds such as plain walls can be easily
duplicated and used for filling in the empty space with the
Clone tool. This tool requires setting a reference point (“ctrl +
left click”), from which information is transferred to the
position of the mouse pointer. As can be seen in Fig. 2h, we
used the Clone tool to fill in the empty space with a patch of
gray surface taken from the pillar. The user can perform
“strokes” by holding down the left mouse button and moving
the mouse cursor within the empty space. Note that the refer-
ence point is not static and will move along with the mouse.

a b

c d e

f g h

Fig. 2 Creating a deletion
change, showing the original (a)
and modified (b) scenes. In this
example, the man on the ad is
deleted from the original image.
The object is selected with the
Free Select tool (c) and magnified
in order to increase selection
precision (d). After finishing the
coarse object selection (e), the
selection is refined and certain
areas are excluded from the
selection range (red area in panel
f). Next, the object is deleted (g),
and the resulting empty space is
filled in using the Clone tool (h)
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Reference points should be always set close to the empty
space, so that the pattern of illumination is kept consistent.

For more complex backgrounds the Clone tool is less
useful, because it does not work well with regular patterns
such as tiles. Thus, rather than filling the empty space with
cloning, the pattern or object can be selected from a suitable
area or object in the image using the Fuzzy Select or the Free
Select tool, and then copied and pasted into the empty area
(see Fig. 3h).

Sometimes the borders of manipulated areas are unnatural-
ly sharp and color or luminance transitions are clearly visible.
This problem can be dealt with in different ways. The Clone
tool can be used with different levels of opacity (e.g., 20 %) to
generate a smooth, gradual color transition. Furthermore, the
Blur/Sharpen tool (to blur newly formed edges) or the
Smudge tool (to smudge neighboring color areas) can also
be used to generate a smooth transition. Alternatively, the
Eraser tool with opacity set to a low value can be applied to
reduce the intensity around a critical area.

The Pencil tool and the Paintbrush tool can be used to fill
small gaps and add small details. Select a matching color and
apply it with these tools to a relevant area of the image, hold
down “ctrl,” and click on that area with the Color Picker tool.

These tools were used to fill in the missing part of the truck in
the background in Fig. 3i.

Position changes

In this section, we illustrate how to shift the position of a
bicyclist in the traffic scene in Fig. 3.

Selecting and moving an object

After loading the image, the object is selected using the Fuzzy
Select tool. Once the selection is completed, the selected area
can be copied by pressing ctrl+c. Alternatively, the shortcut
ctrl+x allows the user to delete the object in the current layer
and store it in memory (see Fig. 3c), shown in the lower part of
the Layers window (see Fig. 3c and d). With ctrl+v, the object
can be pasted into a new layer. This layer will be created
automatically and is called a “floating” layer. All “floating”
layers have to be named (e.g., “bike” or “shadow”), to avoid
automatic merging of layers. Alternatively, new layers can be
created by a right click on the Layers window.

If the object casts a shadow (as in our example), it might be
helpful to move the object together with its shadow to the new

a b

c d e

f g h i

Fig. 3 Creating a position
change, showing the original (a)
and modified (b) scenes. In this
example, the position of the
bicyclist is changed. To shift the
position of the bicyclist, the object
is selected, extracted, and stored
in a new layer (c). The shadow
can be stored in a separate layer
(d) but can also be stored together
with the bicyclist. Both the
bicyclist and her shadow are
moved (Moving tool) to their new
position (e). Next, the shadow is
rotated (Rotation tool) to fit its
new location (f). The missing part
of the shadow is outlined with the
Free Select tool and filled in with
the Clone tool (g). Empty space is
filled in by “copy and paste” (h).
The Pencil tool, the Paintbrush
tool, and the Eraser tool are then
used to add detail (i). Merging all
layers creates the final image (b)
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layer. Alternatively, the shadow can also be moved separately,
by extracting only the shadow and copying it into its own
layer (see Fig. 3d). This offers the possibility to alter the
shadow separately.

After selecting the object or shadow layer in the Layers
window, the Move tool can be used to move the object/
shadow (see Fig. 3e). In this step, it is also possible to change
the object’s size (Scale tool) or orientation (Rotate tool),
mirror the object (Flip tool), or change its apparent angle using
the Shear or Perspective tool. Here, we only shifted the
bicyclist to a new position and slightly adjusted the orientation
of the shadow by using the Rotate tool (see Fig. 3f).

Obscuring location changes

The relocated object often needs to be adjusted to its new
location. For example, its shadow might be too dark for the
new background. If the shadow is represented in its own layer,
its opacity can be adjusted in the Layers window.
Alternatively, the Eraser tool with adjusted opacity level can
be applied to give the shadow a softer outline. Also, it might
be necessary to blur or smooth the object’s edges, and one
might want to change the color properties of the object in the
Brightness–Contrast menu (“Color/Brightness–Contrast”) to
match its luminance to the new location.

Note that in our example, the shadow was not completely
represented on the original image (i.e., the head was missing;
Fig. 3f), making it necessary to adjust the shadow after mov-
ing it to its new location. To this end, we drew the outline of
the missing head with the Free Select tool (Fig. 3g) and then
used the Clone tool to fill this selection with a patch of shadow
from a different part of the scene (Fig. 3h). Alternatively, the
Paintbrush tool can be used to fill in the selected area. The
color of the paintbrush can be chosen from the Colors menu
(double-click on the color displayed in the Toolbox window)
or by choosing a suitable color from within the image itself
using the Color Picker tool (hold down “ctrl” + left click).
Note that a natural shadow becomes fainter the farther it is
from the object. This effect can be achieved easily by lowering
the opacity level of the color or by applying the Eraser tool
with different opacity levels to the most distant parts of the
shadow area.

Merging layers

To create the final image, all layers (object, shadow, back-
ground, etc.) need to be merged. Note that layers are merged
from top to bottom, like a stack of papers; thus, the foreground
object needs to be in the top layer. The order of layers can be
changed simply by dragging the different layers in the Layers
window. Layers are thenmerged by selecting the top layer and
choosing “Merge down” from the Layers menu.

Color changes

Color changes are the easiest to produce, especially for
unicolored objects. If the object that needs to be manipulated
is homogeneous in color and distinct from the surrounding
background with a clear contour, the object can be easily
selected with the Fuzzy Select tool, which automatically se-
lects contiguous areas of similar color (e.g., the red car in
Fig. 4a). The user can preset the threshold for color similarity
or adjust the threshold during the selection process in the
Toolbox window. Note that after selecting the area with a
left-click, holding the left mouse button and moving the
mouse up or down increases or decreases the selection range.
After selecting a suitable object, all parts of the object that are
not supposed to be changed should be deselected (we have
outlined these areas manually in green in Fig. 4c for better
visualization). For example, when changing the color of the
car, windows and tires should not be selected and may have to
be deselected manually. The hue, saturation, and brightness
levels of the selection range can be adapted by using the
Colors menu (“Colors/Hue–Saturation”). All changes are
displayed online (see Fig. 4d).

Computing the physical properties of changes

One of the disadvantages of using natural-scene stimuli in
change blindness experiments is that the physical properties of
the change are not as easily controlled and manipulated as
with abstract stimuli such as oriented lines or Gabor patches.
However, it is desirable to have at least a rough estimate of the
physical extent of the change during the image manipulation.
This allows one to generate a set of images for which the
physical properties of the change are largely consistent across
images and, more importantly, between the experimental con-
ditions to which the images are then assigned. Additionally, it
may be necessary to analyze relevant properties of the changes
at a later point, for example to verify that different experimen-
tal conditions are not confounded by differences in these
properties, or to analyze directly how they relate to behavioral
performance.

GIMP can provide information about change size and
luminance difference already during image processing. The
histogram summary (under “Colors/Information/Histogram”)
displays basic properties of the selected areas, such as the
number of pixels (change size) and the corresponding mean
luminance value. The information provided by the histogram
can be used to compare the original and the modified section
of the image.

Additionally, scenes can be analyzed conveniently and in
an automated fashion using suitable software packages after
all image processing is completed. Below, we provide exam-
ples for such an analysis written in MATLAB, a general-
purpose scientific programming tool (www.mathworks.
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com). Moreover, it may be useful to choose an object (or area
of the scene) for image manipulation on the basis of the
saliency map of the scene. Saliency is a measure indicating
how an object or parts of the scene stand out from the
background. The distribution of saliency across the scene is
strongly correlated with the pattern of eye movements and the
deployment of bottom-up attention. Thus, one might decide to
apply changes to less salient parts of the image in order to
make the changes harder to detect or control for differences in
saliency between experimental conditions. Saliency maps can
be computed using the saliency map algorithm provided by
Harel, Koch, and Perona (2006).2 The computational model
implemented in this toolbox computes a saliency map based
on normalized local feature contrasts within an image. Feature
contrasts are defined as local variations of color, brightness,
and orientation (Itti, Koch, & Niebur, 1998). We provide a
sample script that illustrates how to compute these measures
in MATLAB at http://oszilla.hgs.hu-berlin.de/CB_GIMP/
Matlab/.

Experiment

In this experiment, we demonstrate that change blindness can
be successfully induced by using images manipulated accord-
ing to the guidelines of this tutorial. We presented three
different change types: color, position, and deletion changes.
Moreover, we studied the effect of the physical properties of
the change (the saliency of the affected area, size of the
manipulated area, and luminance difference between the orig-
inal and modified scenes) on change detection response times.

Moreover, we were interested in the effect of observers’
expectations about where the change could occur. Some ob-
servers may have expectations about the parts of an image that
are easily manipulated or which objects the experimenter might
find important to change, and these expectations may influence
the deployment of attention. Importantly, change blindness is
known to be reduced at the focus of attention (Rensink et al.,

1997). Hence, if participants’ expectations had an effect on
change detection, experimenters would be advised to manipu-
late less obvious or unexpected objects in a scene. Thus, we
asked participants to guess where the change might occur
before presenting the changes in order to study the effect of
subjective expectations on change detection response times.

The results of the first two analyses can only shed light on
how response times depend on a single predictor variable.
However, response times might be best explained by a set of
predictor variables and their interaction. We were interested in
whether the distribution of observed change detection re-
sponse times in this experiment are explained best by a com-
bination of different physical properties of the change (salien-
cy and size of the manipulated area, and luminance difference
between original and modified scene) or by measures of
participants’ performance (participants’ expectation, detection
accuracy, and response times). In other words, does the time
required to detect a change in a given image depend more on
the image’s physical properties or on the observer’s overall
performance? To answer this question, we conducted an anal-
ysis using multiple linear regression with different sets of
predictor variables to identify which set of predictors results
in the most accurate estimate of response times.

Method

Participants

We tested ten observers who volunteered for this experiment
(mean age: 26.9 ± 4.3 SD ; five women, five men; all right-
handed). All had normal or corrected-to-normal visual acuity
and gave signed informed consent prior to the experiment.
The experimental protocol was approved by the ethics com-
mittee of the German Psychological Society (DGPS).

Apparatus and stimuli

We collected 34 images of natural scenes using a Canon EOS
400D digital single-lens reflex camera and a Canon ES-F

a b c d

Fig. 4 Creating a color change, showing the original (a) and modified
(b) scenes. In this example, the color of the car changes from red to green.
The red car in the original scene is selected with the Fuzzy Selection tool
(c ). Windows and tail lights are excluded from selection. We have

outlined these areas manually in green for better visualization. Afterward,
(d) the color of the car is altered using the Colors menu (“Colors/Hue–
Saturation”) to create the final image

2 Available at www.klab.caltech.edu/~harel/share/gbvs.php

696 Behav Res (2014) 46:689–701

http://www.mathworks.com/
http://oszilla.hgs.hu-berlin.de/CB_GIMP/Matlab/
http://oszilla.hgs.hu-berlin.de/CB_GIMP/Matlab/
http://www.klab.caltech.edu/~harel/share/gbvs.php


Zoom Lens (focal distance 18–55 mm). Some of the scenes
were re-used to create 20 modified images each for color,
position and deletion changes. Thus, some of the images
reappeared during the experiment with a different type of
change. The experiment was written in MATLAB
(Mathworks Inc.) using the Psychophysics Toolbox
(Brainard, 1997; Pelli, 1997). Stimuli were presented on a
calibrated 19-in. CRT monitor (1,280 × 1,024 resolution;
100-Hz refresh rate). Participants’ head position was stabi-
lized using a chin rest placed 56 cm away from the monitor.

Procedure

Phase I: Rating of change expectation To study the effect of
participants’ expectations regarding the most likely objects to
change, participants completed a short survey prior to the
change detection experiment. We presented all of the original
scenes, and participants indicated the three locations in each
image where they would expect a change by visually marking
the locations in the image and by giving verbal descriptions
(e.g., “the person with a blue bag”). Participants were advised
to rely on their first impression and to choose the objects or
regions as quickly as possible. We noted that participants’
expectations as to which objects were most likely to change
strongly overlapped with the experimenters’ preferences as to
which objects they would manipulate.

Phase II: Change detection The original (A) and modified
scenes (A′) were presented for 600 ms in the sequence A, A′,
A′, A, A, A′, A′, . . . , separated by blank displays (400 ms).
Participants were asked to press a button as soon as they
detected and localized the change, and then to indicate the
position of the change using the mouse. If no response was
given after 60 display alternations (approximately 2 min), the
presentation was terminated and participants had to guess
where the change could have occurred. Participants were
allowed to make eye movements.

Analysis

In the first analysis, we studied the effect of participants’
expectation on response times (number of change presenta-
tions). Only correct responses (change was localized correct-
ly) were considered. Reports in the survey were classified as
accurate when participants correctly named the changing ob-
ject or at least one of its parts (e.g., “The jacket of the person
on the sidewalk”). We then tested how response times
depended on the type of change (deletion, position, or color
change) and expectation (accurate vs. inaccurate) using a 3 × 2
factor analysis of variance (ANOVA). The p values were
Bonferroni corrected for multiple comparisons (pBF).

A second analysis tested the effect of physical properties of
the change on response times (number of change presentations,

correct responses only). To this end, for each manipulated
image we computed the proportion of changing pixels, the
average luminance difference between the original and manip-
ulated images (based on the grayscaled images), and the salien-
cy of the location at which the change occurred. Saliency was
computed using the saliency algorithm by Harel et al. (2006),
and quantified for subsequent analysis as the average saliency
at the location at which the change occurred in both the original
and manipulated image. We then computed Spearman correla-
tions (rs) between response times and these three measures.

A third analysis tested which set of predictor variables
allowed for the best prediction of response times: is the speed
of change detection of a given observer for a given image best
predicted from the images physical properties or from the
observer’s overall performance? To this end, we modeled
response times on the basis of a generalized linear regression
(glmfit function in MATLAB) and tested three different
models. The first model (physical properties model) included
only physical properties (saliency of the changing area, pro-
portion of changing pixels, average luminance difference) as
predictor variables. The second model (performance measure
model) included only response measures (accuracy of partic-
ipants’ expectation, change detection success, participants’
mean response time) as predictor variables. Finally, a full
model included both physical change properties and response
measures as predictor variables.

All models were computed using a generalized linear re-
gression (glmfit function in MATLAB). Response times
served as dependent variable with an inverse Gaussian distri-
bution. Predictors (physical image properties, performance
measures, or both) were assumed to be linearly related to the
dependent variable (response times linked to incorrect re-
sponses were set to 61 change presentations). The success of
the three models was evaluated using a leave-one-out cross
validation procedure. To this end, the 59 images were divided
into a training set of 58 images and a single test image. The
linear regression model was computed for the set of training
images, and its weights were used to predict the response time
for the remaining image. This procedure was repeated 59
times, such that each image served as the test image once,
allowing us to compute the difference between predicted and
observed response times for each image. The success of each
of the three models was then quantified by computing the
models’ root mean square error (RMSE). Additionally, we
computed for each model Pearson correlations (r ) between
estimated and observed response times.

Results

Participants needed between 8 and 14 presentations (ps) of
each change to detect the changing object, indicating that the
images in this study induced persistent change blindness.
Position changes were detected faster (Mpos = 8 ps) than
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deletion changes (M del = 12.31 ps) or color changes
(M color = 13.91 ps), as was indicated by a main effect of
change type [F (2, 18) = 15.695, p < .001, η 2 = .636].
Change detection was faster when participants had accurate
expectations about where the change would occur [expecta-
tion: F(1, 9) = 16.77, p = .003, η2 = .651, M accur = 8.98 ps,
M inacc = 13.83 ps]. However, this effect was present only
for position changes (pBF = .021) and color changes
(pBF = .003), but not for deletion changes. This finding was
confirmed by a Change Type × Expectation interaction
[F (2, 18) = 5.865, p = .011, η2 = .395].

Response times decreased with increasing size of the
change (rs = −.284, p = .030) and with saliency (rs = −
.269, p = .040). Luminance differences had no effect on
response times (rs = −.045, p = .737; see Fig. 5). Similar
results were found when outlier images with extreme values of
size, saliency, or luminance difference were removed.

By using a generalized linear model, we found that the
performance measure model yielded the best estimates of
response times (RMSE = 6.58; see Fig. 6). The second-best
model was the full model (RMSE = 12.43), followed by the
physical properties model (RMSE = 32.67). In line with these
findings, we found the highest correlation of the estimated and
observed response times for the performance measure model
(r = .89, pBF < .001) followed by the full model (r = .57,
pBF < .001). No significant correlation was found for the
physical properties model (r = −.12, pBF > .05).

Discussion

In this article, we have provided a step-by-step tutorial on how
to manipulate digital images for change detection experiments
using the free software GIMP. We hope to encourage
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Fig. 5 Spearman correlation plots for image set and physical change
properties. Response times were plotted for all change types and the
respective physical change property values (top row). Correlations were
calculated across change types (solid lines). Solid markers represent the
average response times for a given value of a physical change property,
and empty markers represent images identified as extreme outliers.

Additionally, we have provided two examples for changes with reference
to each physical change property. The middle row shows the change with
the lowest change property value, and the bottom row shows the change
with the highest change property value. The left image in each change
property column is always the original image
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researchers interested in visual change detection to use natural
scenes as stimulus materials, instead of artificial stimuli, and
to facilitate the generation of such images. Although the task
of manipulating dozens of images may appear daunting, we
would point out that by using this tutorial as a guide, GIMP
novices were able to reproduce the individual example chang-
es in the tutorial in approximately 15 min. With little training,
manipulation of a single image can even be completed in
under 10 min (the exact duration depends, of course, on the
complexity of the change).

Ma et al., (2013) recently proposed a semiautomatic algo-
rithm that manipulates images to generate changes yielding a
user-defined degree of change blindness. The algorithm is
based on a computational model of image saliency and com-
plexity. This automated image processing algorithm signifi-
cantly reduces the effort to generate stimuli for change blind-
ness experiments. However, as mentioned in Ma et al.,
automated procedures currently face several limitations.
First, the algorithm prevents inserting an object in new
positions at which it would overlap with other objects.
Second, the reconstruction of empty space in the back-
ground is largely restricted to areas with homogeneous
color and structure. Thus, these procedures are most
successfully applied to simple objects with a clear out-
line that appear in front of a largely homogeneous
background. Moreover, the algorithm by Ma et al.
(2013) currently does not take into account high-level
properties of the change such as image symmetry or
semantics. Thus, the procedures for manual image ma-
nipulation presented in this article, which do not face
the abovementioned limitations, nicely complement re-
cent advances in automatic image processing.

In our experiment, we found that changes that were con-
sistent with observers’ expectations as to which objects are
most likely to change were detected faster. This finding was
expected given the importance of attention for change detec-
tion (Rensink et al., 1997). Interestingly, observers expecta-
tions strongly overlapped with the experimenters’ preference
for objects to manipulate. Thus, experimenters may be well-
advised to not manipulate the first object in a scene that comes
to mind.

Furthermore, we demonstrated that change detection per-
formance was affected by the physical properties of the
change: size, luminance difference, and saliency. This finding
may not appear particularly surprising, given that change
detection is strongly attention-dependent and stronger changes
of low-level features are expected to result in stronger engage-
ment of bottom-up attention. However, previous studies have
reported inconsistent results regarding the effect of low-level
visual features on change detection, with some studies dem-
onstrating that low-level image features have strong effects on
change detection (Verma & McOwan, 2010); on the other
hand, other studies found only effects of subjective, but not
objective, saliency (Wright, 2005), or a stronger effect of top-
down, semantic factors (Stirk & Underwood, 2007). Even
though the effects of low-level features of the changes may
be small or inconsistent, it appears advisable to match images
in different experimental conditions according to these prop-
erties. A procedure for balancing bottom-up salience in im-
ages can be found in Verma andMcOwan (2010) andMa et al.
(2013).

We also compared the effect of physical image properties
(saliency of the changing area, proportion of changing pixels,
average luminance difference) to the effect of participants’
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Fig. 6 Observed and estimated response times (averaged across partic-
ipants), as predicted by the generalized linear model. Response times for a
given image are measured as how often a change had to be presented to be
detected. The performance measure model (left) predicted response times
only on the basis of participants’ behavioral performance (participants’
expectations, change detection success, and mean response times). The
physical properties model (middle) predicted response times only on the

basis of the images’ physical properties (saliency of the changing area,
proportion of changing pixels, and average luminance difference), where-
as the full model (right) included both sets of parameters. For illustrative
purposes only, two outliers are not shown in the graphs (in the physical
properties model, estimated = 233.82, observed = 4.5; in the full model,
estimated = 85.36, observed = 4.5)
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overall performance (participants’ expectation, change detec-
tion success, andmean response time) on response times using
a generalized linear model. In other words, we asked whether
the time required to detect a change in a given image on a
given trial is best predicted by the physical strength of the
change (size, saliency, and luminance difference) or by how
well the participant performed on other trials. Surprisingly, we
found that response times were predicted much better by
measures of participants’ performance and expectations than
image properties, indicating that the trial-to-trial variability in
response times that is explained by image properties is small
as compared with the variability explained by individual
factors. However, we acknowledge that other image properties
with potential influence on the speed of change detection were
not considered in this experiment, such as the relevance of the
changing object for the gist of the scene (Hollingworth &
Henderson, 2000; Sampanes et al., 2008; Stirk &
Underwood, 2007) or the complexity of the scene.

The existence of change blindness obviously points to a
limit in our ability to represent, process, and maintain visual
scenes. Just which of the numerous perceptual and cognitive
processes involved in change detection are subject to this limit
is a matter of ongoing research. Several authors have argued
that change blindness results from a limitation during the
encoding of visual information (Blackmore, Brelstaff,
Nelson, & Troscianko, 1995; O’Regan, 1992; Rensink et al.,
1997). Proponents of this view argue that the capacity to
represent visual information is strongly limited and suggest
that we represent no more than the semantic and structural gist
of a scene plus a small portion of the scene’s details that are
currently at the focus of attention. Alternatively, change blind-
ness could result from a failure to form a stable representation
in short-term or long-term memory. Thus, as long as the scene
is in view, visual representations may be rich, in line with our
phenomenology of a rich experience. However, in the absence
of attention, these representations are volatile and are easily
overwritten once the original scene disappears and the modi-
fied scene is presented (Beck & Levin, 2003; Becker &
Pashler, 2002; Landman, Spekreijse, & Lamme, 2003). Of
course, limited capacity and representational volatility are not
mutually exclusive factors, and some authors have proposed
both of them as the cause behind change blindness (see the
seminal work by Rensink et al., 1997, and Rensink, 2000).
Another cause for change blindness has been demonstrated by
Mitroff et al. (2004), who found that sometimes observers are
able to recognize both prechange and postchange objects in a
subsequent memory test even when they were blind to the
changes made to these objects, indicating that change blind-
ness can also result from a failure to compare existing repre-
sentations of pre- and postchange information. Recently, a
number of studies on the role of long-term memory in change
detection demonstrated that recognition of the changing ob-
jects is often better than change detection performance,

suggesting that object memory traces for the changing object
are formed, but are often not used in the change detection task
(Beck, Peterson, & Angelone, 2007; Hollingworth, 2005;
Hollingworth & Henderson, 2002; Varakin & Levin, 2006).
Notably, most of the studies on the limits of change detection
have used abstract stimuli or sets of “free floating” objects
without scene context. Are natural scenes as volatile as dis-
plays of oriented bars (Landman et al., 2003), or are they not
compared from one moment to the next (Mitroff et al., 2004)?
In sum, it is currently unknown whether the same limits apply
to the perception of abstract displays and naturalistic stimuli.

Moreover, a number of research questions require the use
of naturalistic stimuli, as they are impossible to study with
more artificial displays by design. Examples include studies of
change detection in traffic situations (Galpin et al., 2009;
Koustanaï, Van Elslande, & Bastien, 2012), video camera
surveillance (Scott-Brown & Cronin, 2007), studies on the
role of expertise in perception (Curran, Gibson, Horne,
Young, & Bozell, 2009; Jones, Jones, Smith, & Copley,
2003; Werner & Thies, 2000), or studies on the interplay
between bottom-up and top-down processes in scene percep-
tion (Stirk & Underwood, 2007). In sum, we believe that the
benefits of using natural images for change detection may
outweigh the time necessary to create them.
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