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Abstract Themethod of oversampling data from a preselected
range of a variable’s distribution is often applied by researchers
who wish to study rare outcomes without substantially increas-
ing sample size. Despite frequent use, however, it is not known
whether this method introduces statistical bias due to dispro-
portionate representation of a particular range of data. The
present study employed simulated data sets to examine how
oversampling introduces systematic bias in effect size estimates
(of the relationship between oversampled predictor variables
and the outcome variable), as compared with estimates based
on a random sample. In general, results indicated that increased
oversampling was associated with a decrease in the absolute
value of effect size estimates. Critically, however, the actual
magnitude of this decrease in effect size estimates was nominal.
This finding thus provides the first evidence that the use of the
oversampling method does not systematically bias results to a
degree that would typically impact results in behavioral re-
search. Examining the effect of sample size on oversampling
yielded an additional important finding: For smaller samples,
the use of oversampling may be necessary to avoid spuriously
inflated effect sizes, which can arise when the number of
predictor variables and rare outcomes is comparable.

Keywords Sampling . statistical bias . latent variable
modeling

Sample size remains a ubiquitous hurdle in the study of rare
outcomes. Without an adequate number of participants, we
cannot perform meaningful analyses from which to draw con-
clusive inferences. This is especially the case in longitudinal
studies that aim to capture significant predictors of outcomes
that are rare or difficult to detect. In such studies, garnering a
large sample of participants is critical, in order to increase the
probability of securing a sufficient number of cases that the
study aims to predict. However, obtaining large samples gen-
erally presents practical and financial encumbrances (e.g.,
Allison, Allison, Faith, Paultre, & Pi-Sunyer, 1997), and even
more so when the variables of interest are rare in the general
population. Examples of research areas for which this issue is
particularly relevant include the study of psychiatric and neu-
rological disorders, given that even the most “common”
psychiatric and neurological conditions have a low prev-
alence in the general population (e.g., Hirtz et al., 2007;
Kessler et al., 2005). Full-range random sampling, therefore,
is not always an efficient methodological choice.

Sampling approaches

Extreme groups approach

One solution to this problem involves restricting study inclu-
sion criteria to participants with extremely high or extremely
low scores on a preselected measure of interest. This method,
termed the extreme groups approach (EGA), diminishes sam-
ple size (as compared with a random sampling method), since
data are selected only on the basis of extreme values within a
sample distribution. Thus, the predictor variable consists of two
“extreme groups,” while the criterion variable is not directly
manipulated.

Some have suggested that EGA may be a more powerful—
and thus, more efficient—method for testing hypotheses than
the method of random sampling (e.g., Abrahams & Alf, 1978;
Alf & Abrahams, 1975; Borich & Godbout, 1974; Preacher,
Rucker, MacCallum, & Nicewander, 2005). However, other
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researchers have exhorted against the use of EGA for numerous
reasons (e.g., Preacher et al., 2005). First, discarding all values
from the middle of the distribution necessarily distorts the
distribution of the data (Cohen, 1983; MacCallum, Zhang,
Preacher, & Rucker, 2002). Second, Preacher et al. demonstrat-
ed that the use of EGA results in an artifactual inflation of
reliability. Third, several researchers have shown that EGA is
associated with a bias toward increased effect sizes
(Humphreys, 1985; McClelland & Judd, 1993; Preacher et al.,
2005). In a recent analysis, Preacher and colleagues estimated
the magnitude of standardized effect size inflation in the range
of approximately 0.0–0.13, depending on the size of the popu-
lation correlation and on the proportion of data sampled (i.e.,
tertile or quartile split). These researchers have agreed that effect
sizes associated with EGA are a misrepresentation of the true
effect sizes in the population. Interestingly, in the original anal-
ysis of EGA (Feldt, 1961), Feldt himself argued that this ap-
proach should be applied only to detect the presence of a linear
relationship between two variables (both conforming to a bivar-
iate normal distribution), rather than to evaluate the size of their
relationship. Feldt specifically cautioned that the use of EGA to
evaluate the size of a relationship between two minimally
associated variables could lead to spuriously inflated estimates.

Oversampling

An alternative to random sampling that is more conservative
than EGA involves the disproportionate gathering of data
from a particular range of the predictor variable’s distribution.
This method, termed oversampling , allows for an efficient
and practical data-gathering process, allowing researchers to
focus on the range of data most likely to be associated with the
rare outcome. Like EGA, data within the critical range of
interest occur more frequently than they would in a random
sample. However, unlike EGA, the remaining values are not
limited to any particular slice of the distribution, thus retaining
a representation of the entire distribution. Most typically, this
range of oversampled data consists of very high or very low
values of the predictor variable.

In longitudinal studies, for example, oversampling would
increase the sample size of individuals at significant risk for
the outcome of interest, providing a greater probability for its
development. Importantly, increasing the number of cases of
the predicted outcome could provide two methodological
benefits. First, it could inspire greater generalizability and
confidence in the results, since it would increase the likelihood
that the individuals in the sample who developed the predicted
outcome were representative of the population of individuals
with this outcome. Second, for studies involving more than
one predictor variable, it would decrease the probability for
the number of predictor variables to equal (or exceed) the
number of predicted outcomes. An example of overfitting ,
this substantial statistical issue can lead to spuriously inflated

estimates of the relationship between the risk factor(s) and the
outcome and will be addressed in further detail below.

Specific aims of the present study

Although there are obvious practical benefits to applying the
method of oversampling, potential statistical costs of this ap-
proach have not been evaluated. That is, the question of wheth-
er there is systematic bias in testing an oversampled predictor
has not yet been examined. Given the number of researchers
who have reported that the use of EGA may result in biased
effect sizes (Humphreys, 1985; McClelland & Judd, 1993;
Preacher et al., 2005), it is imperative to evaluate the possibility
that oversampling may misrepresent effect sizes as well, due to
its disproportionate representation of the original range of data.

It should be noted that, although the issue of disproportion-
al sampling has been addressed by the use of sampling
weights, sample weighting is a controversial practice that
has been heavily criticized as limited in both applicability
and interpretability (Gelman, 2007). Sampling weights, which
are intended to correct for disproportionate representation of a
range of data, are derived from estimations of the extent of
disproportionate representation. However, some researchers
have argued that not only do these estimations require arbi-
trary statistical choices, but also they present problems when
applied to particular parameter estimates (such as regression
coefficients; DuMouchel & Duncan, 1982) and render stan-
dard errors uninterpretable (Gelman, 2007). Thus, the purpose
of the present investigation was to determine the extent to
which the method of oversampling, without the use of sam-
pling weights, may affect estimates of effect size, as compared
with results derived from a random sampling design.

In addition, it was critical to examine not only variables that
were directly oversampled, but also those that were indirectly
oversampled. This is because, in any multivariate design con-
taining only one oversampled predictor, additional predictor
variables that are correlated with the oversampled predictor will
have been “indirectly oversampled” as a by-product of their
correlation with the directly oversampled predictor variable.
Therefore, an added purpose of the present study was to deter-
mine whether the oversampling method also affects estimates
of effect size in indirectly oversampled variables, as compared
with results derived from a random sampling design.

To address its aims, the present study employed simulated
data. The following manipulations were included: (1) the pro-
portion of data oversampled (scores were weighted by a factor
that represented the probability of overselection); (2) the zero-
order correlations between the criterion variable and the
oversampled predictor variables, including both the directly
oversampled variable (DOV) and the indirectly oversampled
variables (IOV); and (3) the number of participants in the
sample. In order for the simulated data set to be representative
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of a wider range of experimental data sets (i.e., those with
measurement error and those including nonlinear relationships),
two additional manipulations included (4) the amount of mea-
surement error (1 − ρ2

X,X) in the oversampled predictor vari-
ables and the criterion variable (to facilitate comparisons be-
tween a model with no measurement error and a model with
measurement error) and (5) the shape of the relationship be-
tween the oversampled variables and the criterion variable (thus
analyzing linear, as well as various curvilinear, relationships).

Method

The present study employed simulated data sets, comprising
four oversampled predictor variables (DOV, IOV3, IOV2,
IOV1) and a criterion variable (DV), as illustrated in Fig. 1.
To account for varying levels of measurement error (as de-
scribed above), data were generated using one of two latent
variable models, one under the condition of no measurement
error and one under the condition of measurement error (as

g

IOV1 IOV2 IOV3 DOV

ηIOV1 ηIOV2 ηIOV3

ξDV

DV

eIOV1 eIOV2 eIOV3 eDOV

eξDV

eDV
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.500
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.781 .781 .781

.250

.000

.500

.500

.927
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.250 .250 .400

.374.374.374.374

.612

ηDOV

.469

.250

Fig. 1 Latent variable model (model 1) representing relationships be-
tween oversampled predictor variables and the categorical dependent
variable (DV), in which measurement error was eliminated by setting
reliabilities for all variables at 1.000. As in model 2, model 1 incorporated

four oversampled predictor variables: a directly oversampled variable
(DOV) and three indirectly oversampled variables (IOVs). Correlations
between the DV and oversampled predictor variables were as follows:
rDOV,DV = .558, r IOV3,DV = .691, r IOV2,DV = .480, and r IOV1,DV = .270
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will be described in further detail below). From each of these
two models, a constant sample size of 10,000 samples of raw
data per cell was generated via R software (R Development
Core Team, 2007), thus providing the population from which
oversampled data would be selected.

Latent variable models were used to generate the simulated
data sets, in order to account for all possible sources of variance
(i.e., observable variables, latent variables, error). As is illus-
trated in Fig. 1, all four oversampled variables (DOV, IOV3,
IOV2, IOV1) were influenced by a general factor (g), their
unique error (eDOV, e IOV3, e IOV2, e IOV1), and their correspond-
ing, unique latent variable (ηDOV, η IOV3, η IOV2, η IOV1). Latent
independent variables all influenced the latent dependent vari-
able (ξDV), which was itself influenced by its own unique error
(eξDV). Finally, the observable dependent variable (DV) was
influenced by its own unique error (eDV), as well as the latent
DV (ξDV). Importantly, in order for the DV to represent a rare,
categorical outcome (i.e., the circumstances under which
oversampling is typically applied, such as the prediction of
disorder onset), the DV was set at “1” for the upper 5 % of
the distribution (representing “cases”) and at “0” for the
remaining 95 % (representing “no cases”). The cutoff value of
5 % was selected due to its representativeness among reported
prevalence rates of psychiatric and neurological disorders (e.g.,
Hirtz et al., 2007; Kessler et al., 2005)—areas of research for
which the use of oversampling is standard.

For each of the two models (one with measurement error
and one without), two consecutive sets of conventional re-
gressions were performed. The first set of regressions estimat-
ed the effect of each oversampling variable (DOV, IOV3,
IOV2, IOV1) on the DV. Importantly, regression coefficients
were calculated to include the following conditions (as de-
scribed in detail further below): two levels of sample size (i.e.,
the number of participants selected for oversampling), three
levels of the proportion of oversampled data (i.e., the propor-
tion of original data selected for oversampling), and four
levels of relationship shape (between the oversampled pre-
dictor variable and the DV). Oversampled data were thus
selected via a 2 (sample size) × 3 (proportion of oversampled
data) × 4 (relationship shape) manipulation, with a total of 24
conditions. Regression coefficients for this first regression
were calculated separately for each of the 24 conditions for
1,000 simulations, resulting in 24,000 sets of regression coef-
ficients, each of which included four regression coefficients
(bDV~DOV, bDV~IOV3, bDV~IOV2, bDV~IOV1). Because the
present study used a categorical DV rather than a con-
tinuous DV (to better approximate a rare, clinical out-
come), this first regression was necessarily logistic, thus
yielding regression coefficients in units of unstandardized beta
(Menard, 2004).

The second set of regressions consisted of four linear
multiple regressions, in which the criterion variable was rep-
resented by one of the four coefficients from the previous set

of logistic regressions (bDV~DOV, bDV~IOV3, bDV~IOV2,
bDV~IOV1). Predictor variables in this second set of regressions
included measures of oversampling (including interactions of
oversampling with sample size and relationship shape, as
listed in Table 1)—thus providing the final estimates
of the effect of oversampling on effect size. For this
second set of (linear) regressions, all predictor variables
were centered, and resulting standardized regression co-
efficients were reported.

Description of manipulated variables

Amount of measurement error

The amount of measurement error was manipulated in order to
determine whether effects found under the condition of perfect
measurement would hold under more generalizable conditions.
Thus, two levels of measurement error were chosen, to reflect
either (1) a condition of no measurement error in the predictor
and outcome variables (ρX,X = 1.000, indicating perfect reli-
ability), or (2) a condition with a realistic level of measurement
error in the predictor and outcome variables (ρX,X = .860). This
“realistic” reliability level of .860was determined by examining
recent longitudinal research in which oversampling has been
employed and adopting the most representative level of reli-
ability reported across these studies (Zinbarg et al., 2010). The
two latent variable models used to test these differences in
measurement error are illustrated in model 1 (ρX,X = 1.000;
Fig. 1) and model 2 (ρX,X = .860; Fig. 2).

Proportion of oversampled data

The proportion of data selected for oversampling was calculat-
ed as a ratio of the likelihood of being sampled for the
oversampled quartile, relative to the likelihood of being sam-
pled for nonoversampled quartiles. Quartiles were chosen for
the present analyses, due to the prevalent use of oversampling
quartiles in research on psychiatric and neurological disorders
(e.g., Alloy et al., 2006; Costello et al., 1996). A range of
probability weights (i.e., 1, 4, 8) was chosen to refine the
detection of the shape of the relationship between oversampling
probability and correlation of oversampled variables with
criterion variables.

For the present study, a value from the upper quartile of the
original population that had been given a probability weight of
1 had a 1/4 likelihood of being selected for the sample—thus
representing a randomly sampled value. Likewise, a value
from the upper quartile that had been given a probability
weight of 4 had a 4/7 likelihood of being selected for the
sample (with values in the other three quartiles having a 1/7
likelihood of being sampled). The probability weights of 4 and
8 were intended to follow traditional splits (Alloy et al., 2006;
Costello et al., 1996).
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Population correlation between the criterion variable
and oversampled variables

There were several important considerations regarding the
association between the categorical dependent variable and
the oversampled predictor variables (i.e., ρDOV,DV, ρ IOV3,DV,
ρ IOV2,DV, ρ IOV1,DV). First, although an indirectly oversampled
variable (IOV) would technically be defined as any predictor
variable exhibiting a nonzero correlation with the DV, values
representing typical multivariate analyses were used in the
present study (range = .232 [ρ IOV1,DV with reliability at
.860] −.691 [ρ IOV3,DV with reliability at 1.000]). Multiple
IOVs were considered because including only one IOV would
not have provided informative results regarding the differences

between the IOV and the DOV, since the use of a single IOV
would have resulted in identical standard errors for the IOVand
DOV (on the basis of analogies to the equation for standard
error in a multiple regression). The number of IOVs was set at
three in order to represent weak, moderate, and strong correla-
tions between the IOVand the DV. Note that the four population
correlations differed between model 1 (which did not include
measurement error) and model 2 (which included mea-
surement error). For model 1 (ρX,X = 1.000; see Fig. 1),
population correlations were set as follows: ρDV,DOV =
.558, ρDV,IOV3 = .691, ρDV,IOV2 = .480, and ρDV,IOV1 =
.270. For model 2 (ρX,X = .860; see Fig. 2), population
correlations were ρDV,DOV = .480, ρDV,IOV3 = .594, ρDV,IOV2 =
.413, and ρDV,IOV1 = .232. All correlations were calculated on

Table 1 Summary of regression analyses for oversampling (predictor variables) and effect size estimates (criterion variable)

Predictor DV~DOV (ρDOV,DV = .480)

ß SE

oversampling -6.72E-03 5.67E-04

oversampling2 6.73E-04 2.80E-04

(oversampling) * (sample size) 1.66E-05 4.54E-06

(oversampling) * (sample size) * (accelerating curve) -1.62E-05 6.42E-06

(oversampling) * (sample size) * (logistic curve) -1.66E-05 6.42E-06

(oversampling) * (sample size) * (decelerating curve) -1.51E-05 6.42E-06

DV~IOV3 (ρ IOV3,DV = .594)

ß SE

oversampling -2.33E-02 1.84E-03

oversampling2 5.39E-03 9.06E-04

(oversampling) * (sample size) 7.58E-05 1.47E-05

(oversampling) * (sample size) * (accelerating curve) -7.69E-05 2.08E-05

(oversampling) * (sample size) * (logistic curve) -7.64E-05 2.08E-05

(oversampling) * (sample size) * (decelerating curve) -7.75E-05 2.08E-05

DV~IOV2 (ρ IOV2,DV = .413)

ß SE

oversampling -1.08E-02 7.11E-04

oversampling2 2.04E-03 3.51E-04

(oversampling) * (sample size) 3.49E-05 5.69E-06

(oversampling) * (sample size) * (accelerating curve) -3.54E-05 8.05E-06

(oversampling) * (sample size) * (logistic curve) -3.45E-05 8.05E-06

(oversampling) * (sample size) * (decelerating curve) -3.73E-05 8.05E-06

DV~IOV1 (ρ IOV1,DV = .232)

ß SE

oversampling -2.58E-03 1.42E-03

oversampling2 6.77E-04 7.02E-04

(oversampling) * (sample size) 2.62E-05 1.14E-05

(oversampling) * (sample size) * (accelerating curve) -2.56E-05 1.61E-05

(oversampling) * (sample size) * (logistic curve) -2.71E-05 1.61E-05

(oversampling) * (sample size) * (decelerating curve) -2.40E-05 1.61E-05

Note. All predictor variables were centered prior to analysis. The four criterion variables are noted in the right column as DV~OV, and were derived from
previous analyses in which oversampled variables predicted the dependent variable, based on reliability set at ρX,X = .860. Results are reported in units of
standardized effect size (ß).
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the basis of the relationships with the dichotomized,
categorical DV.

Population correlations in model 2 were calculated by
decreasing reliabilities from 1.000 to .860, while keeping
constant both of the following: (1) all paths between the
latent DV and the latent independent variables (η IOV1,
η IOV2, η IOV3, g , and ηDOV; see Figs. 1 and 2), which were
0, .25, .50, .50, and .25, respectively, and (2) the ratio of
the factor loading paths (i.e., any path between an

observable variable and its corresponding latent variable)
to the paths between g and the observable predictor vari-
ables (DOV, IOV3, IOV2, IOV1). In model 1, the calcula-
tion of this ratio of factor loadings to rg ,OV was 0.469/
0.800 = 0.586 for the DOVand 0.781/0.500 = 1.562 for the
IOVs; and in model 2, this ratio was 0.505/0.863 = 0.585
for the DOV and 0.842/0.539 = 1.562 for the IOVs. Factor
loadings were chosen to represent typical values in multi-
variate analyses.

g

IOV1 IOV2 IOV3 DOV

ηIOV1 ηIOV2 ηIOV3

ξDV

DV

eIOV1 eIOV2 eIOV3 eDOV

eξDV

eDV

.863

.539

.539

.539

.842 .842 .842

.250

.000

.500

.500

1.000

.000

.291 .291 .465

.000.000.000.000

.612

ηDOV

.505

.250

Fig. 2 Latent variable model (model 2) representing relationships be-
tween oversampled predictor variables and the categorical dependent
variable (DV), in which measurement error was included by setting
reliabilities for all variables at .860. Model 2 incorporated four

oversampled predictor variables: a directly oversampled variable (DOV)
and three indirectly oversampled variables (IOVs). Correlations between
the DVand oversampled predictor variables were as follows: rDOV,DV =
.480, r IOV3,DV = .594, r IOV2,DV = .413, and r IOV1,DV = .232
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Number of participants

In initial analyses, sample size was examined at two levels:N =
250 and N = 500. Sample sizes of this range were selected due
to the frequency at which they appear within the types of
longitudinal studies in which oversampling is typically applied,
including studies on the development of rare psychological or
neurological outcomes (Alloy et al., 2000; Zinbarg et al., 2010).
In a set of additional analyses (as will be discussed further
below), two additional sample sizes were also examined: N =
100 and N = 1,000. These were included to increase general-
izability of results to studies with sample sizes outside of
the typical range of oversampled data sets.

Shape of the relationship between the criterion variable
and oversampled variables

Relationship shape was manipulated in order to determine
whether results would generalize beyond the case of linear
relationships between the oversampled predictor variable and
the latent DV. Thus, for the simulated data set to be represen-
tative of a wide range of experimental data sets, four common
relationship shapes were chosen: linear, accelerating curve,
decelerating curve, and logistic function. The linear relation-
ship was created by forming the underlying latent model with
a multivariate normal distribution of errors and applying the
equation y = f(x ). Linearity (y ) was then transformed into
accelerating, decelerating, and logistic shapes, by using the
logistic transform with a constant c. As shown below, c could
equal −1 (leading to a decelerating curve), 1 (leading to an
accelerating curve), or 0 (approximating a logistic curve), and
x represented the underlying latent model of oversampled
predictor variables and the DV (M = 0.00, SE = 0.01):

y ¼ 1

1þ eð Þ c−xð Þ ð1Þ

A decelerating curve is marked by an initial steep increase,
followed by a plateau. An accelerating curve is marked by a
slow increase, followed by a sharp incline. The first half of a
logistic function consists of an accelerating curve, and the
second half consists of a decelerating curve.

Data analysis

As was explained previously, two sets of multiple regressions
were performed. In the first set, the predictor variables were
made up of all oversampled variables (DOV, IOV3, IOV2,
IOV1), and the criterion variable was made up of the categor-
ical DV (i.e., a dichotomous variable consisting of “0” or “1”
values only, with a proportion of .05 “1” values). Results of
this first regression yielded unstandardized effect sizes (i.e.,
regression coefficients), which were regressed separately on

the linear term for the oversampling factor (1, 4, 8), the
quadratic term for the oversampling factor (oversampling2,
to test for curvilinearity), sample size (250, 500), and the
categorical variable of relationship shape (linear, accelerating
curve, decelerating curve, logistic function). Additionally,
two- and three-way interactions of oversampling (both linear
and quadratic terms) with sample size and relationship shape
were included as predictor variables in the regression equa-
tion. In order to obtain results based on data with differing
levels of reliability (as discussed above), both sets of regres-
sions were performed twice: once for observable variables
with a reliability of 1.000 (model 1; see Fig. 1) and once for
those with a reliability of .860 (model 2; see Fig. 2).

Results

Simulations identified relationships between the degree of
oversampling and the DV~OV effect sizes (i.e., the amount
of variance in the criterion variable that was predicted by the
oversampled variables). As will be evidenced in detail below,
our results supported a consistently negative relationship be-
tween the degree of oversampling and DV~OV effect sizes,
regardless of the oversampled variable (i.e., DOV, IOV3,
IOV2, IOV1) or measurement error (ρX,X = 1.000 or ρX,X =
.860). The linear oversampling term yielded larger associa-
tions with DV~OV effect sizes than did the quadratic
oversampling term (see Table 1), again, regardless of the
oversampled variable or measurement error. Finally, although
there was a main effect of oversampling on DV~OVassocia-
tions, it is critical to note that the effect sizes for these rela-
tionships were small in absolute value (see Table 1).

Oversampling and measurement error

When effect sizes for all 24 conditions were examined, 20 were
larger (in absolute value) for the condition of perfect measure-
ment (ρX,X = 1.000), as compared with the condition of imper-
fect measurement (ρX,X = .860; see Table 1). When effect sizes
were examined across all 24 conditions, these effect sizes were
small in both perfect measurement (−.051–.013 ß) and imper-
fect measurement (−.023–0.005 ß) conditions.

Proportion of oversampled data

The effect of oversampling probability was relatively consis-
tent across oversampled variables (DOV, IOVs); however, the
size of these effects was small. As is shown in Table 1 (ρX,X =
.860), negative associations were found for relationships be-
tween the main effect of oversampling and DV~OV effect
sizes for all OVs excepting the IOV1 (as will be discussed
below). The same pattern of results was also revealed when no
measurement error was included in the model (ρX,X = 1.000),
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but with slightly stronger (i.e., more negative) effects. Data
with no measurement error showed consistently stronger re-
lationships between the main effect of oversampling and
DV~OV effect size (M = −.020 ß, SE = .012) than did data
with measurement error (M = −.011 ß, SE = .004); but
these effects were small in both conditions. Effects of
the quadratic oversampling term also followed the same
pattern of results: Data with no measurement error
showed stronger relationships between the quadratic ef-
fect of oversampling and DV~OV effect size (M = .005 ß,
SE = .003) than did data with measurement error (M = .002 ß,
SE = .001); but these relationships were again small in
both conditions.

Examining additional levels of oversampling probability

In the above analyses, oversampling probability was set at the
three levels of 1, 4, and 8. In order to view a more detailed
illustration of the relationship between DV~OVeffect size and
a larger range of oversampling probabilities, a new simulated
data set was created, using eight levels of oversampling (prob-
ability of oversampling = 1, 2, 3, 4, 5, 6, 7, 8). These analyses
were based on data characterized by a linear relationship only
(since results did not differ between relationship shapes, as is
reported in detail below). As with the original set of regres-
sions (described in the Method section), a set of logistic
regressions was performed, in which the DV (again a dichot-
omous variable of “0” or “1” values, with a cutoff of .05) was
regressed on all four OVs. Figure 3 illustrates the negative
relationship between the degree of oversampling and the
DV~OV effect size, while demonstrating that the magnitude
of this negative relationship is small. It is important to note
that Fig. 3 includes only data with a sample size of 250 and
reliability set at ρX,X = .860.1 Unlike relationship shape and
measurement error, which did not affect the pattern of results
seen in Fig. 3, sample size did affect results (see Figs. 4 and 5)
and will be addressed below.

Oversampling and population correlation

For data generated from model 2 (ρX,X = .860), associations
between the linear oversampling term and effect sizes for all
four DV~OV relationships are indicated in Table 1. As is listed
in Table 1, the population correlation showed a small effect on
the relationship between oversampling and DV~OVeffect size.
The size of the population correlation was commensurate with
the size of the association between oversampling and DV~OV
effect size. For example, the largest population correlation (ρDV,

IOV3 = .606) was associated with the largest (absolute value)
association between oversampling and DV~OV relationship
(ß = −.023, p < .001; see Table 1). Likewise, the smallest
population correlation (ρDV,IOV1 = .328) was associated with
the smallest (absolute value) association between oversampling
and DV~OV relationship (ß = −.003, p < .001; see Table 1). It
is important to note that oversampling had generally small
effects on each of the DV~OV associations, since even the
“largest” effect of oversampling (i.e., ß = −.023, DV~IOV3)
was small in magnitude. This pattern was maintained in model
1, for which reliability was set at 1.000 (these results are
available upon request1).

Oversampling and sample size

For the regression analyses reported in Table 1, sample size
was examined at two levels: n = 250 and n = 500. Although
not noted in Table 1 (to conserve space), there was a main
effect of sample size, with a decrease in sample size predicting
an increase in DV~OV effect sizes. However, effect sizes for
this association were so small (i.e., ß < .0002) in absolute
value that their practical significance is highly questionable
and will not be discussed further.

Effects for the interaction of sample size with the degree of
oversampling (as well as a three-way interaction with
oversampling and shape) were also found. Again, however,
these effects were nominal in size and render their practical
impact questionable. The largest effects involving two- and
three-way interactionswith sample size are reported inTable 1;

Fig. 3 Unstandardized effect size estimates for DV~OV (oversampled
variables) associations at eight levels of oversampling (in which a factor
of 1 represented random selection). Note that all values in this graph were
based on the following: categorical DV cutoff set at .05, reliability (ρX,X)
set at .860, n = 250, and linear shape. Error bars represent SEs. Dashed
lines represent the true score of this estimate for a linear relationship
within the total population (with no oversampling)

1 Additional results not shown in Table 1 or in the figures are available
upon request. Supplementary Table 1 presents a summary of regression
analyses for oversampling (predictor variables) and effect size estimates
(criterion variable) based on reliability set at ρX,X = 1.000.
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however, even these effect sizes (ß ) were in the range of
.00002–.00008.

Examining additional levels of sample size

In the above analyses, sample size was examined at the levels
of n = 250 and n = 500. In order to view a more detailed
illustration of the role of sample size, an additional simulated
data set was also examined, using four levels of sample size:
n = 100, n = 250, n = 500, and n = 1,000. These analyses
were based on data characterized by a linear relationship
(since results did not differ between relationship shapes,
as detailed below). As with the original set of regres-
sions (described in the Method section), a set of logistic
regressions was performed, in which the DV (again
dichotomous, with a cutoff of .05) was regressed on
all four OVs.

Although the relationship between degree of oversampling
and DV~OVeffect size was consistent for sample sizes of 250,
500, and 1,000, the pattern of findings for n = 100 was
markedly distinct. As can be seen in the last panel of Figs. 4
and 5, effect sizes and standard errors among samples of n =
100 were disproportionately large, with some effect sizes
exceeding b = 3.5 (Fig. 4, showing effect size estimates of
the DV~DOVrelationship) and b = 4.5 (Fig. 5, showing effect
size estimates of the DV~IOV3 relationship). Critically,
however, this was the case only when oversampling
was set at 1—indicating no oversampling for these data
(i.e., a randomly sampled design). Oversampling served
to prevent such overfitting. As in Fig. 3, Figs. 4 and 5
also include data with linear shape and reliability of
.860 only; the same effects were present for analyses
using data with no error (ρX,X = 1.000) and nonlinear
shapes.1

Fig. 4 The association between oversampling and unstandardized effect
size estimates of the relationship between the DVand the DOV (directly
oversampled variable), with linear shape and reliability (ρX,X) set at .860.
This figure illustrates the effect of decreasing sample size. Error bars

represent SEs. Please note the change in the y -axis scale for the
last panel (n = 100). Dashed lines represent the true score of this
estimate (b = 0.56) for a linear relationship within the total
population (with no oversampling)
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The disproportionately large effect sizes and standard errors
in the case of no oversampling for n = 100were likely the result
of two factors: the categorical cutoff and the number of predic-
tor variables in the original models. For the set of simulated
analyses used in the present study, the categorical cutoff was set
at .05, to represent a rare outcome. Therefore, for a sample size
of 100, five cases were being predicted on average. However,
because data sets were randomly created (on the basis of a
normal distribution), some analyses yielded fewer than five
cases when oversampling was not applied. This was problem-
atic, since analyses included four predictor variables. For ex-
ample, if a smaller sample set (n = 100) included four cases,
four predictors would likely predict these four cases with very
large effect sizes (Peduzzi, Concato, Feinstein, & Holford,
1995; Peduzzi, Concato, Kemper, Holford, & Feinstein, 1996;
Vittinghoff &McCulloch, 2007). In the present study, with 100
observations and outcome probability set at .05, simulations

yielded four cases (rather than the expected five) with a prob-
ability of .265. However, because simulations could also yield
more than four cases, less exaggerated effect sizes were also
included, thus creating large standard errors in the case of n =
100 (when no cases were oversampled). Notably, however,
when the sample size was increased to 250, the probability of
yielding four cases in an analysis (with no oversampling)
plummeted to .00000265. Even with 10,000 repetitions, the
probability of finding at least one data set with four cases
increased only to .0265 for a sample size of 250. Thus, the
same pattern of large effect sizes and standard errors was not
observed in analyses with larger sample sizes.

Oversampling and shape

Shape was manipulated in order to represent four patterns
between the OV (DOV, IOV1, IOV2, IOV3) and the latent

Fig. 5 The association between oversampling and unstandardized effect
size estimates of the relationship between the DVand the IOV3 (indirectly
oversampled variable), with linear shape and reliability (ρX,X) set at .860.
This figure illustrates the effect of decreasing sample size. Error bars

represent SEs. Please note the change in the y -axis scale for the
last panel (n = 100). Dashed lines represent the true score of this
estimate (b = 1.17) for a linear relationship within the total
population (with no oversampling)
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DV: linear, accelerating curve, decelerating curve, and logistic
function. The three nonlinear shapes yielded similar effect
sizes, either as main effects (not listed in Table 1, to conserve
space1) or as interactions with other predictor variables (as
listed in Table 1). Regardless of whether measurement error
was included in the model, shape as a main effect was signif-
icant in predicting all relationships between the DV and the
OVs. Since the relationship between the DV and the OV
tended to follow a nonlinear shape, the effect size decreased
for the associations between the DVand the DOV, IOV3, and
IOV2. Interactions between oversampling * shape followed
the same pattern (see Table 1) for both levels of measurement
error, with the largest effects occurring for the DV~IOV3
relationship (i.e., the DV~OV relationship for which the pop-
ulation correlation was strongest). However, even the largest
of these effects was less than ß = .00008 (in absolute value).
Thus, not all interactions are listed in Table 1.

Discussion

The present study is the first to report that the method of
oversampling does not bias effect sizes to a degree that would
typically impact results in behavioral research. Across all
results for sample sizes of 250 and higher, the effect of
oversampling was relatively small (with the greatest single
change in effect size from 1.17 b with no oversampling to
1.21 b with oversampling).Moreover, we found that the effect
of oversampling on effect sizes did not appear to differ sub-
stantially for directly oversampled predictors, as compared
with indirectly oversampled predictors. Thus, oversampling
does not appear to be associated with an appreciable bias
favoring directly oversampled predictors over indirectly
oversampled predictors (or vice versa).

The present study also determined that refraining from
using the oversampling method (i.e., using random sampling)
could lead to drastically biased effect size estimates for small-
er sample sizes. Although sample sizes of 250 and 500 yielded
small effect sizes in the original DV~OV regression analyses
(see Table 1), lowering the sample size to 100 produced
striking results, yielding outliers with extreme values of the
associations between the predictor variables and the criterion
variable (see Figs. 4 and 5). This finding underscores the
danger of using a relatively small sample size to predict a rare,
categorical outcome, particularly when the number of predic-
tors (four, in the present study) may be similar to the number
of expected cases of the criterion variable (five, in the present
study). This finding has critical implications for researchers
studying rare outcomes. If the number of predictor variables is
expected to be similar to the number of cases being predicted
at a particular sample size, it is advisable either to use a larger
sample size or to oversample the predictor variables in order to
increase the number of expected rare outcomes.

The remaining manipulated variables in the present analy-
ses included population correlation, relationship shape, and
measurement error of all observable variables. Regarding
population correlation, the present study found that as popu-
lation correlation increased, the effect of oversampling on
DV~OVeffect sizes became more negative; however, the size
of this effect (ß ) was less than .02 (see Table 1). Regarding the
shapes of the relationship between the OV and the DV, all
three curve functions shared strong inverse relationships with
DV~OV effect sizes (excepting the DV~IOV1). Interactions
of oversampling with shape yielded results that were signifi-
cant but very small, implying that the lack of sizable effects
associated with oversampling was largely robust with respect
to relationship shapes. Regarding measurement error, data
with perfect measurement (ρX,X = 1.000) generally proved
to be the most sensitive to detecting effects. In comparison
with data not measured perfectly (ρX,X = .860), perfectly
measured data yielded stronger effect sizes for oversampling
as a main effect and as an interaction with other predictor
variables. However, the effects size (ß ) values in both condi-
tions were small (−.051–.013 ß ).

The present findings bear two central implications for re-
search on the prediction of rare outcomes. First, when the
number of predictor variables is similar to the number of
expected cases of the criterion variable, it is advisable to increase
the number of expected rare cases—either via oversampling the
predictor variables or by increasing the overall sample size. If
one of these two strategies is not employed, estimates of the
relationship between the predictor and criterion variables may
be inordinately biased. Second, if the number of predictor
variables is considerably less than the number of expected cases,
oversampling may be unnecessary. That is, in the present study,
the only substantial effect of oversampling was limited to the
case in which the number of predictors and expected cases was
comparable. Thus, first determining the expected number of
cases, relative to the number of predictor variables, would be a
highly valuable step in considering sampling technique.

Generalization of our findings and implications is certainly
not without potential limitations, however. Although we have
attempted to include as many conditions in our models as
methodologically feasible, there are several key untested con-
ditions that could potentially affect our results. For example,
the dependent variable in the present study was based on a
purely categorical variable with no noise, which may be an
overly optimistic assumption for typical data sets. It is thus
unclear how a probabilistic (rather than exact) model of a
categorical dependent variable would influence the effect of
oversampling, and we acknowledge this as a limitation in the
generalizability of our results. Similarly, our results may not
extend to data sets with overall reliability substantially less
than .860. We therefore suggest that future research on this
topic not only examine a broader range of reliability values
(e.g., ρX,X = .70), but also include an additional
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condition in which the categorical dependent variable is
based on a probabilistic model.

These limitations notwithstanding, one should be prudent
when drawing conclusions regarding characteristics of a pop-
ulation in the use of any sampling method that is not entirely
random. In general, our findings suggest that oversampling is
not a relevant source of bias in behavioral research and does
not appear to have an appreciably different effect on results for
directly versus indirectly oversampled variables. Furthermore,
this sampling technique can be advantageous and appropriate
when implemented in the proper circumstances, such as when
the number of expected cases is similar to or less than the
number of predictor variables.
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