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Abstract Latent curve models (LCMs) have been used ex-
tensively to analyze longitudinal data. However, little is
known about the power of LCMs to detect nonlinear trends
when they are present in the data. For this study, we utilized
simulated data to investigate the power of LCMs to detect the
mean of the quadratic slope, Type I error rates, and rates of
nonconvergence during the estimation of quadratic LCMs.
Five factors were examined: the number of time points,
growth magnitude, interindividual variability, sample size,
and the R2s of the measured variables. The results showed
that the empirical Type I error rates were close to the nominal
value of 5 %. The empirical power to detect the mean of the
quadratic slope was affected by the simulation factors. Finally,
a substantial proportion of samples failed to converge under
conditions of no to small variation in the quadratic factor,
small sample sizes, and small R2 of the repeated measures.
In general, we recommended that quadratic LCMs be based
on samples of (a) at least 250 but ideally 400, when four
measurement points are available; (b) at least 100 but ideally
150, when six measurement points are available; (c) at least 50
but ideally 100, when ten measurement points are available.

Keywords Power analysis . Latent curvemodels . Structural
equationmodels . Monte Carlo . Convergence . Type I error
rates

In the social and psychological sciences, the past decades have
witnessed the accumulation of extensive longitudinal data
sets, previously considered a rarity, allowing for the explora-
tion of dynamic and multivariate processes (e.g., Ferrer &
McArdle, 2003, 2010). Accompanying this development,
parallel methodological progresses have been made in the
analysis of longitudinal data. From initial repeated measures
(multivariate) analysis of variance (M)ANOVA-based analy-
ses (e.g., Fitzmaurice, Laird, & Ware, 2004; Hedeker &
Gibbons, 2006), more flexible methods were developed and
incorporated within the multilevel (e.g., Bryk & Raudenbush,
1987, 1992; Singer & Willett, 2003) or structural equation
modeling (SEM) frameworks (e.g., McArdle & Anderson,
1990; McArdle & Epstein, 1987; Meredith & Tisak, 1990;
Rogosa, 1995). These methods—commonly referred to as
latent growth modeling , latent growth curve analysis , latent
trajectory modeling , or simply growth curve modeling—are
equivalent (e.g., Curran, 2003; MacCallum, Kim, Malarkey,
& Kiecolt-Glaser, 1997) and allow for the direct estimation of
average patterns of intraindividual growth observable in the
total sample, as well as interindividual variation around these
average trends. Hereafter, we will refer to these models as
latent curve models (LCM).

LCMs can easily be extended to incorporate nonlinear
functions of growth in two ways. The first class of nonlinear
growth trajectory is characterized by the fact that a linear
relationship exists between the dependent variable (repeated
measurement) and the parameters associated with the trajec-
tory—for instance, polynomial or piecewise growth functions
(Bollen & Curran, 2006). Conversely, in the second class, the
relationship between the dependent variable and the parame-
ters of the trajectory is nonlinear—for instance, exponential,
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Gumpertz, or sigmoid growth functions (e.g., Blozis, 2007;
Browne, 1993; Browne & Du Toit, 1991; Grimm, Ram, &
Hamagami, 2011; Ram & Grimm, 2007). Among the first
class, the quadratic polynomial function—our focus in this
study—is the most common. As noted by Bollen and Curran
(2006), the specification of a quadratic model is simple, as it
represents a simple and direct extension of linear LCM, in
which an additional latent variable is used to capture a
nonlinear quadratic component of change. These models, es-
pecially linear and quadratic LCM estimated within the SEM
framework, are being increasingly used in applied psycholog-
ical and social research due to the recent development of user-
friendly SEM packages (Arbuckle, 2009; Bentler, 2006;
Jöreskog & Sörbom, 2006; Muthén & Muthén, 2011), and
introductions (e.g., Bollen & Curran, 2006; Duncan, Duncan,
& Strycker, 2006; Grimm & Ram, 2009; Hancock & Mueller,
2006; McArdle, 2009; Schumaker & Lomax, 2010).

Despite the extensive use of these models for the analysis
of longitudinal data, we were able to locate very few studies in
which systematic estimates of the statistical power of the
LCM to detect specific types of development (linear, quadrat-
ic, exponential, etc.) were provided. Most statistical studies of
the power of LCMs were concerned with the capacity of these
models to detect between-group differences (Duncan,
Duncan, Strycker, & Li, 2002; Fan, 2003; Muthén &
Curran, 1997), rather than with the ability of these models to
correctly detect one or more parameters used to characterize
the shape of the estimated trajectories. Hertzog, Lindenberger,
Ghisletta, and von Oertzen (2006) estimated the capacity of
the LCM to detect the covariance between two linear rates of
change under various conditions of sample size, number of
time points, and the proportion (R 2) of the time specific
indicators explained by the growth process (i.e., reflecting
the effect size of the LCM model, a major issue to consider
in power analyses). Hertzog, von Oertzen, Ghisletta, and
Lindenberger (2008) compared the capacity of different
methods to detect individual differences in change (variance
of the slope in a linear LCM), rather than the ability to detect
linear change per se, as a function of sample size, number of
measurement points, and the R2 of the time-specific indica-
tors. Sun and Willson (2009) investigated the power of linear
LCMs to detect covariate–intercept interactions as a function
of sample size, magnitude of the interaction effect, and size of
the covariate–intercept covariance. Cheong (2011) investigat-
ed the power of linear LCMs to detect longitudinal mediation
involving distinct growth processes as a function of sample
size, the magnitude of the indirect effect, the number of
measurement points, and the R2 of the measured variables.
However, none of these studies investigated the power of the
LCM to detect linear or nonlinear development. To our knowl-
edge, only two studies did so (for a formal illustration of
power analyses within the multilevel LCM framework; see
also Tu, Kowalski, Zhang, Lynch, & Crits-Christoph, 2004).

The first of those studies was not designed as a simulation
study. Zhang and Wang (2009) developed an SAS macro to
estimate the power of LCM for linear and nonlinear functions
as a function of a limited set of conditions including sample
size, growth magnitude, and number of measurement points.
Their article was designed to present this macro to help
applied researchers conduct a priori power analyses. In illus-
trating the use of this macro, they also conducted a short
power analysis of linear and exponential LCMs. Their results
showed that for linear trajectories, power increased with sam-
ple size (50 to 1,000), magnitude of the linear growth (three
different means of the linear slope factor: .1, .2, .3), and
number of measurement points (three to six). Regarding the
exponential trajectory, fewer conditions were investigated and
power was found to increase with sample size (100 to 1,000).
In the second study, Fan and Fan (2005) compared the capac-
ity of various methods to detect linear growth as a function of
the number of time points (four conditions: three to nine),
growth magnitude (six conditions: .20 to .80), and sample size
(ten conditions: 50 to 500). Their results show that LCM was
superior to traditional methods (t test and repeated measures
ANOVAs and MANOVAs) in the detection of linear growth,
at least when the magnitude of the growth is small, as well as
with small tomoderate sample sizes. However, with three time
points, LCM was associated with increased rates of
nonconvergence (i.e., up to 37 %). Interestingly, this study
was the only one to report a systematic investigation of rates
of nonconvergence in the context of LCMmodels. Otherwise,
their results show that the number of repeated measures had
no effect on the statistical power of LCM to detect linear
growth. This result was surprising, as previous work based
on different types of models have shown that a higher number
of time points tended to be associated with increases in preci-
sion and power.

It is also important to note that both of these studies failed to
consider the R2 of themeasured variables (i.e., the effect size of
the model) as one of the manipulated design condition. Rather,
these studies relied on a homoscedastic condition in which the
error variances were specified as equal over time. Given that
the R2 of the measured variables are determined by a complex
relation between the residuals, the variance–covariance of the
LCM factors, and the time scores (for more details on these
relations, see Eq. 6 and the online supplemental materials),
these studies thus considered models in which the R2 values
changed over time. In other words, these studies estimated
power in a context where the effect size of the model varies
within a model, as well as across models within a single design
condition given that the R2 also differs as a function of other
design conditions (i.e., the variances–covariances of the LCM
factors and the number of time points). This is an important
limitation given that the R2 reflects the effect size of the LCM
model, and that effect sizes are known to represent one of the
main factors to consider in the context of power analyses (e.g.,
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Cohen, 1988). Indeed, the other previously cited studies
(Cheong, 2011; Hertzog et al., 2006; Hertzog et al., 2008) of
LCMs clearly showed that the R2 of the repeated measure was
an important condition to consider.

Unfortunately, most of the previous studies focused on linear
growth trajectories, which is a very strict assumption to hold
when modeling real-life longitudinal data, in which nonlinear
trajectories have frequently been observed (e.g., Grimm et al.,
2011;Marsh, Nagengast, &Morin, 2013;Moneta, Schneider, &
Csikszentmihalyi, 2001; Morin et al., 2011; Ram & Grimm,
2007). Thus, although we can often reasonably expect develop-
mental processes to follow nonlinear trajectories (e.g., Grimm
et al., 2011; Ram & Grimm, 2007), we currently have little
information regarding the power of LCMs to detect nonlinear
trends when they are present in the data, even when the models
are specified to do so. The present simulation addresses this
issue in the context of the quadratic LCM by studying the power
to detect the mean of the quadratic slope factor (i.e., of correctly
rejecting the null hypothesis that the mean of the quadratic slope
factor is equal to zero, when it is simulated to have a nonzero
value). In addition to power, we also address the issue of
nonconvergence. Indeed, Fan and Fan (2005) have already
shown that LCM is associated with convergence problems
(i.e., converging on an inadmissible solution) in specific
cases, and experience shows that these problems are more
frequent in the context of the quadratic models.

A graphical presentation of a quadratic LCM is presented
in Fig. 1. In this figure, Y1, Y2, Y3, Y4, Y5, and Y6 represent
data collected at six equally spaced time waves. When esti-
mated within the SEM framework, LCMs are specified as
highly restricted factor models, where growth is represented
by factors corresponding to the latent intercept (I), linear slope

(S ), and quadratic slope (Q ), specified as influencing the
repeated measures through fixed loadings that reflect the
passage of time. Thus, individual observations are specified
as a weighted combination of a random intercept factor, a
random linear slope factor, a random quadratic slope factor,
and a random time-specific residual.

In Fig. 1, time is coded 0 at the beginning of the study, so that
the intercept I , representing the initial status, can be estimated at
the first time point. The linear slope S represents the instanta-
neous rate of change at the initial assessment, whereas Q , the
quadratic slope, represents the rate of change in the linear slope
factor per unit of time. μ I is the mean of I , μS is the mean of S ,
and μQ is the mean of Q . For purposes of identification, the
intercepts of the Ys (i.e., τ1 to τ6) are fixed to zero. = I is the
interindividual variance of the initial status, = S is the
interindividual variance on the linear slope factor, =Q is the
interindividual variance on the quadratic slope factor, = IS is the
covariance between the intercept and linear slope factors, = IQ is
the covariance between the intercept and quadratic slope factors,
and = SQ is the covariance between the linear and quadratic slope
factors. Finally, θ1 to θ6 represent the variances of the time-
specific residuals of the Ys. LCMs generally assume that the
time-specific residuals (e1 to e6) have a mean of 0 and are not
correlated over time, across cases or with the Ys. This path
diagram can be expressed by the following equation for Y, the
vector of observed repeated measures variables:

Y ¼ Ληþ e: ð1Þ

In this equation, η a vector of latent variables representing the
growth parameters, Λ represents the factor loading matrix relat-
ing the growth factor to the observed variables and reflecting the
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Fig. 1 Graphical presentation of
a quadratic latent curve model
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passage of time, and e represents a vector of residuals. Thus, the
quadratic model illustrated in Fig. 1 with equally spaced time
points corresponds to
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; ð2Þ

where e1 to e6 are the time-specific residuals at each time
point. The mean and variance–covariance matrices can be
expressed as follows:
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Note that the quadratic growth is defined by the elements in
the factor loading matrix,

1 0 0
1 1 1
1 2 4
1 3 9
1 4 16
1 5 25

2
6666664

3
7777775
: ð5Þ

The factor loadings associated with the intercept factor I
are in the first column, {1, 1, 1, 1, 1, 1}. The loadings
associated with the slope factor S are in the second column,
{0, 1, 2, 3, 4, 5}, and reflect the passage of equally spaced time
points, and the factor loadings associated with the quadratic
factor Q are in the third column, {0, 1, 4, 9, 16, 25}, and
reflect the squares of the linear slope factor loadings.1

The purpose of this article was to investigate the power of
the LCM to detect the mean of the quadratic slope. More
specifically, we investigate the effects of the number of time
points, growthmagnitude and interindividual variability of the
growth magnitude, sample size, and the proportion (R2) of the
time specific indicators explained by the LCM (i.e., the effect
size of the model) on the statistical power to detect the mean of
the quadratic slope, Type I error rates and percentages of
inadmissible solutions during the estimation. On the basis of
the previously reviewed studies, these conditions appear to be
critical factors in the determination of statistical power in

LCMs. On the basis of these studies (Cheong, 2011; Fan &
Fan, 2005; Hertzog et al., 2006; Sun & Willson, 2009), it is
expected that the power to detect themean of the quadratic slope
will be enhanced as sample size and the magnitude of the
parameter to detect (i.e., the mean of the quadratic slope)
increase. Indeed, larger parameters are generally easier to detect,
especially with larger samples. However, we extend previous
studies by also considering the effects of the variability of the
estimated quadratic trajectory since this factor has been previ-
ously found to play a role in influencing the size of biases
induced by model misspecifications in LCM (Kwok, West, &
Green, 2007; Voelkle, 2008). In this regard, we expect power to
decrease as a function of the interindividual variability of the
quadratic slope factor. Similarly, we expect to observe greater
power when the number of repeated measurements increase
(Cheong, 2011; Hertzog et al., 2006). Indeed, given the equiv-
alence of SEM- and multilevel-based LCM (Chou, Bentler, &
Pentz, 1998; Curran, 2003; MacCallum et al., 1997; Willett,
2004), repeated measurements constitute observations taken at
level 1 (within-person). Thus, the number of repeated mea-
surements should combine with sample size to increase the
power of the LCM to detect quadratic development. It has also
been previously argued that an increased number of measure-
ment points allows for greater precision in the estimation of
LCM (Cheong, 2011; Singer &Willett, 2003) and lower rates
of convergence problems (Fan& Fan, 2005). Finally, previous
studies found that the proportion of the variance (R2) of the
repeated measures that is explained by the LCM (in this study
the intercept, linear slope, and quadratic slope factors) has a
determining impact on the statistical power to detect themean of
the quadratic slope (Cheong, 2011; Hertzog et al., 2006). This is
not surprising as this indicator (R2) reflects the effect size of the
LCM in explaining the repeated measures and that effect size

1 As shown by Biesanz, Deeb-Sossa, Papadakis, Bollen, and Curran
(2004), the coding of time does not affect the power to detect the
quadratic component in LCMs.
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has long been known to be a determining factor in power
analyses (e.g., Cohen, 1988). Here, we assume that all measure-
ment points are equally well explained by the LCMs. In this
situation the residual variances increase over time due to in-
creasing growth curve variance. This is a common assumption
in LCM simulations studies (e.g., Cheong, 2011; Yu, 2002). In
the present study, our hypothesis is that largerR2 would increase
the power to detect the mean of the quadratic slope.

Method

Statistical model

The populationmodels used in this study are quadratic LCMs as
previously defined and the data were generated under multivar-
iate normality conditions. All of the observed variables were
specified as continuous, and the quadratic growth was modeled
with equally spaced time intervals. The mean of the intercept
factor (μ I) was fixed to 15, the mean of the linear slope factor
(μS) to –1.2. In order to reflect commonly seen variance ratios
(Kwok et al., 2007; Yu, 2002), the variance of the intercept factor
(= I) was fixed to 1.5, the variance of the linear slope factor (= S)
was fixed to .7, and their covariance (= IS) was fixed to .25.
Following Yu (2002), we fixed the covariance of the intercept
and quadratic slope factors (= IQ) as well as the covariance of the
linear slope and quadratic slope factors (= SQ) to 0.

Manipulated factors

Data were generated under different conditions defined by the
combination of growth magnitude, sample size, number of
measurement occasions and R2 of the measured variables.

Mean and variance of the quadratic slope In order to repre-
sent different magnitudes of quadratic growth, we simulated
data with three different mean values of the quadratic slope
factor: 0, .3, and .5. These values were selected within the
more extensive range of values considered in previous simu-
lation studies (0, and .10 to .80) as those reflecting likely
turning points for changes in power rates (e.g., Fan & Fan,
2005; Zhang & Wang, 2009), while also corresponding to
relatively small and moderate quadratic trends that can realis-
tically be expected with real data. Longitudinal trajectories
based on these values (and the intercepts and slopes values
used in the present study) are graphed in Fig. 2 to illustrate the
magnitude of quadratic growth reflected by these values.
Although the quadratic trend associated with the .3 value is
easy to visually discern from the figure when the data include
six and more measurement points, this trend is likely to be
barely discernible with only four measurement points (the
smallest value considered here), providing a nice visual illus-
tration of the value of adding measurement points to a longi-
tudinal design. In addition, in order to extend previous studies,
we considered four different levels of quadratic slope variabil-
ity, to reflect no (=Q = 0), low (=Q = .05, or SD = .22),
moderate (=Q = .16, or SD = .4), or high (=Q = .36, or SD =
.6) levels of interindividual variability around this aver-
age trend. These values for the quadratic slope variabil-
ity were selected from values considered in the context
of previous studies (e.g., Kwok et al., 2007; Voelkle,
2008). The value of 0 was considered, following the obser-
vation that many published studies have shown no vari-
ation in the estimated quadratic component of LCMs
(e.g., Li & Hser, 2011; Tofighi & Enders, 2007). All
combinations of mean and variability levels were con-
sidered, with the exception of the 0 mean and SD combination
(i.e., a fully linear LCM).
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Sample size We simulated data based on ten different sample
sizes, the lowest corresponding to the lowest sample size con-
sidered in previous LCM simulations studies (Ferron, Dailey, &
Yi, 2002; Kwok, Luo, & West, 2010): 30, 50, 100, 150, 200,
250, 300, 400, 500, and 1,000. Furthermore, the first three
values were chosen in order to evaluate the power and Type I
error rates in samples smaller than what is usually seen in
applied LCM research, especially in combination with an in-
creasing number of measurement points, so as to reflect a reality
that is more common in the context of time series analyses, with
few participants but multiple waves of measurement (e.g.,
Browne & Nesselroade, 2005; Hamaker, Dolan, & Molenaar,
2005; Price, 2012). Conversely, the last two sample size values
were chosen in order to assess power, nonconvergence, and
Type I errors in large samples with fewer measurement points,
another common condition for applied research.

Number of measurement occasions For arguments similar to
those presented for sample size, we considered three different
conditions regarding the number of measurement points: four,
six, and ten. The lowest bound was selected as the minimum
number of measurement points that are required to fully
identify a SEM-based quadratic LCMwithout any constraints.
The other two numbers were selected to reflect a moderate
number of measurement occasions commonly seen in applied
LCM research, and an elevated number of repeated measures
seldom seen in applied research.

R2 of the repeated measures Three different R2 of the repeat-
edmeasures were considered in order to reflect small, medium
and large proportions of explained variance:2 .3, .5, and .75.
R2 values are a function of the time score, the variances and
covariances of the growth factors and the variances of the time
specific residual. More precisely, R2 values, which represent
the effect size of the LCM, were calculated using the follow-
ing formula:

R2 ytð Þ ¼ y I þ λ2
tyS þ λ4

tyQ þ 2λty IS þ 2λ2
ty IQ þ 2λ3

tySQ

y I þ λ2
tyS þ λ4

tyQ þ 2λty IS þ 2λ2
ty IQ þ 2λ3

tySQ þ θt
;

ð6Þ

where y t is the outcome at time t , = I is the variance of the
intercept growth factor, λ t is the time score at time t , = S is the
variance of the linear slope factor, =Q is the variance of the
quadratic slope factor, = IS is the covariance between the
intercept and the linear slope factors, = IQ is the covariance
between the intercept and the quadratic slope factors, = SQ is
the covariance between the linear slope and the quadratic
slope factors, and θ t is the residual variance for the outcome
at time t . Thus, this formula allowed us to identify the specific
θ t that were needed to specify the model.

Data generation and analysis

For each of the 990 design cells (11 means/variances × 10
sample sizes × 3 repeatedmeasures × 3 R2 conditions), 10,000
replications were generated. The simulation was conducted in
different runs. First, we generated data for each cell and
recorded the percentage of the nonconverging samples in
order to be able to compare nonconvergence rates across
conditions based on the same number of runs. Second, new
samples were generated until 10,000 converging samples
were obtained for each cell and a power analysis was
conducted on those samples in order to ensure that the results
regarding Type I error rates and power were unbiased by rates
of nonconvergence (for additional details on this two steps
strategy, see Burton, Altman, Royston, & Holder, 2006; Fan
& Fan, 2005). All simulations were conducted using the
Mplus 6.11 statistical package (Muthén & Muthén, 2011)
and the true models were always estimated. This simulation
was made possible through Compute Canada high perfor-
mance computing facilities (https://computecanada.ca/).

Statistical power

The concept of statistical power is related to hypothesis testing,
in which a null hypothesis and an alternative hypothesis (re-
spectively H0 and H1) are defined for a set of parameters. In
that context, statistical power is the ability of a statistical test to
detect an effect of a given size under the assumption that the
effect exists (e.g., Cohen, 1988). Expressed in probabilistic
terms, the power of a test is the probability of rejecting the
null hypothesis when the alternative is true. Therefore, the
power of a test is 1 – β , where β (Type II error) is the
probability of not rejecting a false null hypothesis. Power is
generally known to depend on many factors such as Type I
error or α (the probability of rejecting a true null hypothesis),
Type II error β , the magnitude of the difference between the
value of the tested parameters and the value specified by the
null hypothesis (this magnitude is called effect size and amajor
component of power analyses), the standard deviation of the
effect size and sample size (Cohen, 1988), although the extent
to which each of these factors influence the power of different

2 Nonconstant R2 values for the measured variables were also considered
by means of a homoscedastic condition in which the error terms were
simulated as being equal over time, with a value of 3.5. This value reflects
within a single model a range of R2 values comparable to that of the three
constant conditions. However, no difference was observed between the
high and constant R2 value of .75 and the nonconstant situation generated
in this study. As such, the non-constant-rate condition was omitted for the
sake of brevity. On the basis of reviewers’ comments, we also explored
additional conditions in which the R2 values were allowed to differ across
time points (with averages equal to the R2 value conditions used in the
present study: .3, .5, and .75) and generally found that these additional
results supported the conclusions reported here.
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types of models remains an open question. Simulation studies
such as this one are naturally suited to power analyses as they
provide a context to assess power when the “true” population
value for all parameters is known (e.g., Burton et al., 2006;
Muthén & Muthén, 2002).

Two main approaches are available for power computations
in a growth model context. The first approach proposed by
Saris and Satorra (1993; see also Satorra & Saris, 1985)
computes power from the population model’s means, vari-
ances, and covariances and utilize a likelihood ratio test. The
second approach is a simulation-based method in which power
can be computed either by using theWald test or the likelihood
ratio test. The first approach is considered to be accurate in the
presence of large sample size and with small specification
errors in the null hypothesis (Bollen, 1989), whereas the sec-
ond approach is still accurate with small samples when numer-
ous replications are used in the simulation. In this article,
Monte Carlo simulations (the second approach) are used.
Another issue is the specific test that is used for power calcu-
lation. Likelihood ratio tests are well suited for situations in
which the normality assumption is met and multiple parame-
ters are estimated. However, the Wald test is more frequently
used in practice. In particular, most software compute Wald
tests for most parameters. However, it is also well-known that
the squared version of theWald test and the likelihood ratio test
are asymptotically equivalent and follow a chi-square distribu-
tion with one degree of freedom (Bollen, 1989; DasGupta,
2008), and thus should give similar results in most situations.
In fact, small differences may potentially be expected when the
asymptotic equivalence between the Wald and the likelihood
ratio test no longer hold—in which case the likelihood ratio test
is expected to outperform theWald test. For instance, the Wald
test has been shown to lack efficiency in the detection of
individual differences in change (variance of the slope in a
linear development; Hertzog et al., 2008) because testing indi-
vidual variability in change places the variance parameter on
the boundary of parameter space and turns the asymptotic
distribution of the likelihood ratio test into a mixture of chi-
square distributions (Hertzog et al., 2008; Shapiro, 1985; Stoel,
Garre, Dolan, &Wittenboer, 2006; Stram & Lee, 1995). In the
present study, power to detect the mean of the quadratic slope
was computed using both methods. Overall, the results proved
to be fully equivalent across methods in the context of the
present study. Given that the Wald test is the most commonly
used in practice, we focus our presentation on the results
obtained with this test. However, the detailed results for both
tests are presented in Figs. 3, 4, 5, and 6 and in the online
supplemental materials.

Outcome measures

The outcome variables were the empirical power to detect the
mean of the quadratic slope, the empirical Type I error rates

and the proportion of inadmissible solutions obtained during
the estimation procedure. Three different populationmeans (0,
.3, and .5) of the quadratic slope factor were manipulated to
evaluate the empirical power for the test of the hypothesis that
the mean of the quadratic factor is zero when this hypothesis is
false, whereas empirical Type I error rates reflect the case were
this hypothesis is true. Thus, empirical Type I error rates are
the proportion of replications with a significant mean value of
Q , at a level of .05, when the population mean value is set to
zero. In contrast, empirical power is the proportion of replica-
tions with a significant mean value of Q when the population
value is nonzero.

For the Wald approach, the statistical test is based on the
ratio of the mean estimate to its standard error. This test
follows a normal distribution with a critical value of 1.96 at
a 5 % level. The likelihood ratio test is based on nested model
testing. When constraints are put on the parameters of a
model, this test consists of taking the difference of the chi-
square of the constrained model (null hypothesis of the test)
and the chi-square of the full model and comparing this
difference to a chi-square distribution with degrees of freedom
(df) equal to the number of parameter constraints. Power was
computed by following different steps. Two models were
estimated for each simulation condition—one model in which
all the mean of the growth factors were freely estimated and
one model in which the mean of the quadratic slope factor was
fixed to zero- and the chi-square difference of the two models
was saved. The chi-square difference (with 1 df) of the two
models was compared to the critical value of 3.84 at a 5 %
level.

Convergence problems can occur during the estimation of
LCM. These problems occur when the matrix of the variance–
covariance of the latent factors is nonpositive definite
(Murphy, Beretvas, & Pituch, 2011; Wothke, 1993). These
problems tend to be higher with quadratic LCM since they
require the introduction of additional terms in the variance–
covariance matrix (=Q, = IQ, = SQ). Thus, the number of
replications converging on an improper solution was also
considered.

Results

Because statistical significance tests are highly sensitive to
sample size, they tend to be less informative in the comparison
of results obtained from different design conditions in the
context of simulation studies, where one only has to increase
the number of replications (i.e., the “sample” size associated
with the specific design condition) in order to reach signifi-
cance. For this reason, we focus here on the main conclusions
from a synthesis of the results. Where numerical results are
provided, we also provide their 95% confidence intervals (CI)
to help in the interpretation. However, extensive results tables
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Fig. 3 Empirical power curves for an R2 of .3 and a quadratic mean of .3
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Fig. 5 Empirical power curves for an R2 of .5 and a quadratic mean of .3
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Fig. 6 Empirical power curves for an R2 of .5 and a quadratic mean of .5
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are available in the online supplementary materials accompa-
nying this article, and power curves are also presented (see
Figs. 3, 4, 5, and 6 and supplemental Figs. S1 and S2) for
those interested in more specific results. Similarly, for readers
interested in statistical significance tests, we also present the
results of these tests in the online supplementary materials,
and note that these are perfectly in line with the interpretations
presented here.

Type I error rates

Across all conditions, Type I error rates remained reasonable,
ranging between 3 % and 6 % with very few cells equal or
higher than 7 %. The average Type I error rates were all close
to the nominal value of .05 for all conditions. For instance, the
mean errors are .058 (confidence interval [CI] = .056 to .06),
.048 (CI = .046 to .05), and .045 (CI = .043 to .047), respec-
tively, for four, six, and ten measurement points across all
conditions. Larger Type I error rates were associated with the
smallest sample size condition (n = 30) and four measurement
points (M = .078, CI = .075 to .081), since these conditions
were associated with slightly larger standard errors estimates,
leading to increased rates of significance when no significant
quadratic development should have been detected. However,
Type I error rates were similar between six and ten measure-
ment points across all conditions.

Power

Number of measurement points The empirical power to cor-
rectly detect the mean of the quadratic slope was positively
related to the number of measurement points. More precisely,
the results show that, although the average power remained
satisfactory across conditions, a notable difference in power
could be observed between four measurement points (mean
power across conditions = .85, CI = .83 to .87) and either six
(mean power = .959, CI = .94 to .98) or ten (mean power =
.988, CI = .97 to 1) conditions, which did not substantially
differ from one another.

Sample size Empirical power to detect the mean of the qua-
dratic slope was related to sample size. Power rates increased
as a function of sample size, varying from .72 (averaged
across conditions; CI = .69 to .76) for n = 30 to 1 (CI = .97
to 1) for n = 1000, and reached an acceptable level of .80
(CI = .79 to .86) or higher at n = 50 and higher.

R2 The power to detect quadratic growth was also significant-
ly related to the R2 of the repeated measures. The power thus
increased as a function of the R2 value, with average power
levels of .874 (CI = .85 to .89), .941 (CI = .92 to .96) .981
(CI = .96 to 1), for R2 values of .3, .5, and .75.

Level and variability of Q Consistent with statistical theory,
empirical power rates to detect the mean of the quadratic slope
were related to the mean and variability of the quadratic slope.
Power increased as the mean of Q increased but decreased as
the variance of Q increased. The average power was of .897
(CI = .88 to .91) when the mean ofQ was .3 and .967 (CI = .95
to .99) when the mean of Q was .5. Similarly, the average
power was .964 (CI = .94 to .99) when Q did not vary (SD =
0), .952 (CI = .93 to .98) when Q showed a small variation
(SD = .22), .927 (CI = .90 to .95) when Q showed a medium
variation (SD = .4) and .886 (CI = .86 to .91) whenQ showed
a large variation (SD = .6).

Summary Figures 3, 4, 5, and 6 summarize these results with
power curves, in which power is presented as a function of
sample size and variations in (1) the mean level and SD of the
quadratic slope, (2) the number of measurement points, and (3)
R2. Figures 3 and 4 plot these curves for conditions with an R2

value of .3, whereas Figs. 5 and 6 plot these curves for condi-
tions with an R2 value of .5. Since power rates were very close
to 1 across conditions when the R2 value was .75, we selected
not to report these power curves in the main article. However,
these curves are reported in the online supplemental materials.
As expected, empirical power to detect the mean of the qua-
dratic slope was systematically larger when the mean ofQ was
larger, the sample size larger, the R2 larger, and the number of
measurement points larger. However, the six and ten measure-
ments conditions had similar and constantly high empirical
power estimates whereas empirical power under the condition
of four measurement occasions required a larger sample size to
reach the level of .8 or greater. For instance, for the conditions
with the smallR2 value (.3), four measurement occasions, small
level of Q (.3) with no variation in the quadratic factor, a
sample size of approximately 250 was required for power of
.8 or greater. For six measurement occasions and the same
conditions, a sample size of only 50 was needed. With ten
measurement occasions, a sample size less than 100 was need-
ed to achieve a power of .8 or greater across all conditions. On
the basis of our results, and to ensure a satisfactory power rate
higher than .80 across all possible conditions, we recommended
that LCM studies for the detection of the mean of the quadratic
slope should be based on samples of (a) at least n = 250 but
ideally n = 400, when four measurement points are available;
(b) at least n = 100 but ideally n = 150, when six measurement
points are available; (c) at least n = 50 but ideally n = 100,
when ten measurement points are available.

Convergence

Number of measurement points The rates of nonconvergence
were related to the number of measurement points. The rates

366 Behav Res (2014) 46:357–371



of nonconvergence decreased when the number of measure-
ment points increased: 70.96 % (CI = 68.33 % to 73.61 %),
49.28 % (CI=46.64 % to 51.92 %), and 35.88 % (CI =
33.24 % to 38.52 %), respectively, for four, six, and ten
occasions (averaged across conditions).

Mean and variability of Q Although rates of nonconvergence
did not appear to vary as a function of the mean of the
quadratic slope, they were related to the standard deviation
of the quadratic growth factor and mostly differed across
conditions with no variations in comparison with the other
conditions. The rates of nonconvergence, averaged across
conditions were 67.75 % (CI = 64.3 % to 71.21 %) when Q
had no variation, 44.67 % (CI = 41.22 % to 48.13 %) whenQ
had a small level of variation, 45.82 % (CI = 42.37 % to
49.28 %) when Q had a moderate level of variation and
49.92 % (CI = 46.46 % to 53.38 %) when Q had a large level
of variation.

R2 The rates of nonconvergence were negatively related to
R2. The rates of nonconvergence were thus higher for an R2

value of .3 and decreased as the R2 increased (the rates of
nonconvergence, averaged across conditions were 62.01 %
(CI = 58.97 % to 65.06 %), 52.08 % (CI = 48.04 % to
55.13 %), 42.03 % (CI = 38.99 % to 45.08 %) for R2 values
of .3, .5, and .75.

Sample size Sample sizes and the rates of nonconvergence
were related. The results show that the rate of nonconvergence
was considerably higher for the smallest sample sizes (n = 30
and 50) corresponding in rates of nonconvergence of 80.58 %
(CI = 75.68 % to 85.47 %) and 71.86 % (CI = 66.98 % to
76.77%). These rates then decreased for larger sample sizes to
38.93 % (CI = 34.04 % to 43.83 %) for n = 500 and 32.58 %
(CI = 27.68 % to 37.48 %) for n = 1,000.

Reasons for non-convergence and impact of the design
factors Overall, 11.86 % (CI = 10.79 % to 12.92 %) of non-
converging samples were due to negative residuals, 28.33 %
(CI = 26.45 % to 30.22 %) to negative variance associated to
the growth factors, and 59.81 % (CI = 57.59 % to 62.03 %) to
correlations greater or equal to 1 between latent growth factors.
Simulation conditions have different impact on the causes of
nonconvergence. Importantly negative residuals were associat-
ed with small sample sizes (21.45 %, CI = 18.88 % to 24.03 %,
for N = 30 vs. 2.03 %, CI = 0.80 % to 3.25 %, for N = 1,000),
large R2 values (3.77 %, CI = 3.11 % to 4.43 %, for R2 = .3 vs.
25.72 %, CI = 23.64 % to 27.82 %, for R2 = .75), large
variability of Q (5.06 %, CI = 3.95 % to 6.18 %, when the
variability ofQ was equal to zero vs. 14.12 %, CI = 11.98 % to
16.26 %, whenQ had a moderate level of variability), and four
time points (14.37 %, CI = 13.03 % to 15.72 %, for four time

points vs. 9.83 %, CI = 8.28 % to 11.38 %, for six time points).
For the correlations between the growth factors, the same pattern
was found except for the variability of Q and R2. For instance,
correlations greater than or equal to 1were associatedwith small
R2 value (77.56 %, 75.56 % to 79.56 %, for R2 = .3 vs. 39.5 %,
CI = 35.27 % to 43.73 %, for R2 = .75), null or small variability
ofQ (85.00%, CI = 83.78% to 86.22%,when the variability of
Q was equal zero vs. 50.19 %, CI = 45.79 % to 54.58 %, when
Q had a moderate level of variability), small sample sizes
(65.18 %, CI = 61.14 % to 69.21 %, for N = 30 vs. 50 %,
CI = 43.37 % to 62.16 %, for N = 1,000), and four time points
(71.69 %, CI = 69.65 % to 73.73 %, for four time points vs.
47.54 %, CI = 42.91 % to 52.17 %, for ten time points). A
different pattern was noted for the negative variance estimates
associated with the growth factors. For instance, negative vari-
ance estimates for the growth factors increased with sample size
(13.37 %, CI = 11.28 % to 15.45 %, for N = 30 vs. 45.21 %, CI
36.57 % to 53.85 %, for N = 1,000), high R2 value (18.66 %,
CI = 16.47% to 20.86%, for R2 = .3 vs. 34.78%, CI = 31.46%
to 38.09 %, for R2 = .75), large variability of Q (9.94 %, CI =
9.56 % to 10.32 %, when the variability of Q was equal to zero
vs. 35 %. CI = 31.86 % to 39.53 %, when Q had a moderate
level of variability), and with number of time points (13.93 %,
CI = 12.67 % to 15.19 %, for four time points vs. 30.49 %, CI =
27.31 % to 33.66 %, for six time points).

Summary On average, the rates of nonconvergence were near
50 %, which is surprisingly high, given that they are based on
simulated data that fully meet the statistical assumptions of the
model and that only the true model was estimated. The rates of
nonconvergence were higher for small sample sizes, condi-
tions with no or small interindividual variability on the qua-
dratic growth factor, smaller R2 values, and four measurement
occasions. These rates decreased as the sample size, variability
in the quadratic growth factor, R2, and number of measure-
ments increased. Thus, the rates of nonconvergence were quite
important with small sample sizes (n = 30 and n = 50) and
four time points, with values sometimes reaching 92.7 %. In
summary, although satisfactory power levels can be reached
with the previously recommended sample sizes, in order to
maximize the chances of converging on a proper solution
when estimating a quadratic LCM, more is generally better,
in terms of both sample sizes and the number of repeated
observations (for related discussion, see Marsh, Hau, Balla, &
Grayson, 1998).

Discussion

In this simulation study, we investigated the impact of the
number of repeated measures, the R 2 of the measured
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variables, sample size, different magnitude of quadratic growth,
and different levels of interindividual variability of the quadratic
growth factor on the empirical Type I error rates and empirical
power rates of the LCM to detect the mean of the quadratic
slope. The rates of nonconvergence (or convergence on inad-
missible solutions) of the quadratic LCM as a function of these
design factors was also investigated. The simulation results
generally supported our expectations and showed that Type I
error rates, statistical power, and nonconvergence were all af-
fected by most or all of the manipulated design factors, albeit
differently. The empirical Type I error rates were all very close
to the nominal value of 5 % and fluctuated normally around that
value. These Type I error rates were only significantly affected
by the number of time points and the sample size. More pre-
cisely, Type I error rates tended to decrease as a function of the
number of measurement occasions and sample size, with unac-
ceptable Type I error rates of .07 to .08 being limited to the
combination of four measurement points and small sample sizes
(n = 30 or 50). This result showed that the quadratic LCM
seldom ends up falsely detecting themean of the quadratic slope
when none is present in the data, at least on the basis of the
conditions simulated in the present study.

For empirical power rates, consistent with statistical theory,
power estimates for the detection of the quadratic mean of the
LCM were larger with larger means of the quadratic factor,
larger sample sizes, more measurement points, smaller levels
of interindividual variability for the quadratic growth factor,
and larger proportions of variance of the time-specific indica-
tors explained by the LCM. Those associations were particu-
larly pronounced when fewer measurement occasions (n = 4)
or smaller samples (n = 30 or 50) were available, and when
the R2 values were smaller (i.e., when the quadratic LCM does
not suffice to fully explain the repeated measurements).
Although this study is the first to systematically investigate
the empirical power rates of nonlinear LCMs, our results are
generally consistent with our expectations and with the results
of previous studies. Indeed, Cheong (2011) found a similar
pattern of relationships in the study of statistical power to
detect mediation effects in LCM. However, Cheong only
considered three and five measurement points and did not
consider nonlinear relations. The Fan and Fan (2005) results
are also generally concordant with the present results, al-
though they observed that the empirical power rates of the
linear LCM were not affected by the number of repeated
measurements. This discrepancy clearly suggests that results
based on linear LCM cannot be expected to fully generalize to
nonlinear LCMs. Similarly, we cannot expect the present
results to generalize to other forms of nonlinear relations.
Interestingly, in this study we considered the R2 of the repeat-
ed measures, as well as the interindividual variability in the
quadratic slope factor. To our knowledge, this is the first LCM
study to consider this second condition (variability ofQ). Our
results show the importance of these factors in empirical

power rates (which decrease as a function of the variability
of Q and increase as a function of the R2 values) and the
importance of incorporating these design factors in future
LCM simulations studies. Unfortunately, these factors cannot
be taken into account by the Zhang and Wang (2009) SAS
macro.

Our results also provide guidelines for applied research,
when one wants to, a priori, determine a sample size allowing
for reasonable power to detect the mean of the quadratic slope.
On the basis of the conditions considered in this study, to ensure
a satisfactory power higher than .80 across conditions, we
suggest that quadratic LCM studies with four measurement
points should be based on samples of at least n = 250 partici-
pants, but ideally n = 400. When six measurement points are
available, samples sizes of at least n = 100 seem sufficient,
albeit n = 150 would be better. Finally, when ten measurement
points are available, sample sizes as low as n = 50 seem
sufficient, although n = 100 would be ideal.

In addition, our results show that these recommended
sample sizes may be sufficient to ensure proper power rates,
but not to limit the risks of converging on inadmissible solu-
tions. In fact, our results showed that rates of nonconvergence
were quite high (with an average close to 50 %) for the
estimation of “true” models corresponding to the population
model, and were influenced by the variability of the quadratic
slope, sample size, the number of repeated measures, and R2

values. Rates of nonconvergence were thus higher with four
time points than with more measurement occasions, and
remained high (M = 32.58 %, CI = 31.73 % to 33.43 %) even
with a sample size of n = 1,000 and high R2 values. Increasing
sample size, R2, and the number of measurement occasions
contributed to a decrease in the number of inadmissible solu-
tions, such that when at least some interindividual variability
was present in the quadratic slope factor, fewer inadmissible
solutions were found when sample size was at least n = 100
for ten measurement occasions, or n = 400 for six measure-
ment occasions. However, when the quadratic growth factor
had no interindividual variability, the rates of inadmissible
solutions were systematically very high, across all conditions.
In these cases, it should be noted that most of the improper
solutions were related to a negative estimate of the variance of
the quadratic term, to the residuals, or to inflated correlations
(≤1) between the growth factors. To avoid that problem,
researchers routinely fix the variance of the problematic pa-
rameter to 0 or constrain the correlation to be less than 1 (e.g.,
Maas &Hox, 2005). The present results provide some support
to these post hoc modifications, although they remain
suboptimal in light of known population values.

Relative to the rates of nonconvergence reported by Fan
and Fan (2005) for linear LCM, as expected, quadratic esti-
mation was associated with more inadmissible solutions.
However, although we expected rates of nonconvergence to
be higher than those reported by Fan and Fan in the context of
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a linear model, we did not expected a difference of this
magnitude. Adding an additional latent variable to capture a
polynomial component of change thus has the consequence of
increasing the probability of encountering a nonpositive def-
inite variance covariancematrix during the estimation process.
Clearly, the rates of nonconvergence observed in this study are
high enough to call into question the appropriateness of qua-
dratic LCMs when sample sizes are suboptimal, reinforcing
the a priori determination of proper sample sizes.Whether this
conclusion holds for additional nonlinear functional forms
(exponential, logistic, multibase, etc.) that do not involve
adding an additional growth factor to the model or are based
on the combination of multiple linear processes (i.e., piece-
wise) remains to be seen in future studies. Overall, these
results suggest that, in order to avoid converging on improper
solutions, the simple rule of “the more the better,” with regard
to sample size and number of measurement occasions, fully
applies to quadratic LCMs (e.g., Marsh et al., 1998).

It should be kept in mind that in the present study we relied
on normally distributed continuous indicators, complete data,
and no autocorrelations among the time specific residuals. We
cannot expect the proposed rules of thumbs regarding sample
size to hold for conditions with non-normal data, missing data,
or correlated residuals. Our expectation is that larger sample
sizes may be required in these cases. Furthermore, in our study
the covariances among the intercept, linear slope, and qua-
dratic slope factors were set to zero, and variation in the size
and variability of the intercept and slope factors were fixed to
a specific value. The effect of these parameters on empirical
power rates also need to be considered in future research.
Similarly, although we only considered situations involving
fixed time intervals that were common to all participants, the
impacts of between-individual variation (i.e., random time
intervals) in the duration of time intervals and of unequal
spacing of the time waves on power should be examined in
future research. For all of these reasons, the guidelines pro-
posed in this study cannot be expected to generalize to all
contexts, and should only be considered as rough guidelines to
help in the initial stage of a study conception and design.
Whenever possible, these guidelines should be complemented
with a priori power studies based on study-specific character-
istics and expectations (Muthén, & Muthén, 2002).

The present research is important in assessing the perfor-
mance of LCMs in identifying nonlinear growth trends that
are commonly estimated in current real-world research.
Nevertheless, further extension of this research in the future
may be needed as developing methodologies become more
accessible for applied researchers. For example, increased
computing power, the development of efficient Markov chain
Monte Carlo algorithms, and increasingly (though still tech-
nical) user-friendly estimation packages (e.g., R, WinBUGS,
and Mplus) led to the rise of Bayesian approaches to latent-
variable models, including LCMs. Reviews of such methods

for complex modeling are covered in detail elsewhere (e.g.,
Lee, 2007; Lynch, 2006; Muthén & Asparouhov, 2012) but
are likely to have particular importance for future research,
since these approaches tend to (a) perform better with smaller
samples, (b) be more flexible when fitting complex models, (c)
result in better rates of convergence, and (d) allow for the
estimation of models when data have not been collected from
participants at the same time points. For these reasons,
Bayesian LCMs may be considered as a potential alterna-
tive when sample sizes are small or when high rates of
nonconvergence are observed.
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