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Abstract Shieh (2013) discussed in detail δ*, a proposed
standardized effect size measure for the two-independent-
groups design with heteroscedasticity. Shieh focused on infer-
ence—notably, the large challenge of calculating confidence
intervals for δ*. I contend, however, that the standardizer
chosen for δ*, meaning the units in which it is expressed, is
appropriate for inference but causes δ* to be inconsistent with
conventional Cohen’s d . In addition, δ* depends on the relative
sample sizes in the particular experiment and, thus, lacks the
generality that is highly desirable if a standardized effect size is
to be readily interpretable and also usable in meta-analysis. In
the case of heteroscedasticity, I suggest that researchers should
choose as standardizer for Cohen’s δ the best available estimate
of the SD of an appropriate population, usually the control
population, in preference to δ* as discussed by Shieh.
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Standardized effect sizes (ESs)—notably, Cohen’s d—are
widely used in psychology for two main reasons. First, a d
value affords understanding and interpretation independently
of the original measure and situation. A reduction in anxiety of
d = 0.3 has at least some meaning, whatever the original
anxiety scale and whatever the study in which it was measured.
Second, most meta-analyses in the social and behavioral sci-
ences need to use standardized ESs because the separate studies
used a variety of original measures for the effect of interest—
perhaps the reduction in anxiety produced by some psycho-
therapeutic procedure. Both of these two valuable features of d

rely on the measurement unit of d—the standardizer—being
chosen appropriately. Only with a consistent and readily inter-
pretable standardizer can d have the generality—across
researchers, experimental designs, and situations—that is
necessary for meaningful interpretation and inclusion in
meta-analyses.

Shieh (2013) recognized that “the choice of a suitable
effect size parameter and statistic is a difficult and
substantive decision” (p. 2). An important thread through
the current comment is that, indeed, a range of substantive
decisions are needed when selecting, calculating, and
interpreting standardized ESs; informed judgment in context
is required. Shieh’s main purpose was to discuss a form of d
proposed by Kulinskaya and Staudte (2007) for the case of
two independent groups with heteroscedasticity. Shieh, like
Kulinskaya and Staudte, focused on inference—notably, the
challenging task of calculating confidence intervals (CIs).
I contend, however, that the form of d studied by Shieh
lacks generality, is inconsistent with familiar, widely used
forms of d , and is likely not to be interpretable in any practi-
cally useful way.

Cohen’s d

First, I briefly review some issues about d . I discuss these and
other aspects of d in more detail in Cumming (2012, Chap. 11),
which is accompanied by software (ESCI, Exploratory
Software for Confidence Intervals , freely available from
www.thenewstatistics.com) designed to support understanding
of d and calculation of d and CIs on d in a range of common
situations.

Cohen’s d is a ratio: an ES divided by a standardizer, where
both numerator and denominator are expressed in original
units. Cohen’s δ , the standardized mean difference between
the population means, is given by Eq. 1, where μ1 and μ2 are
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the two population means and σ , the standardizer, is the
assumed common population SD :

δ ¼ μ1−μ2ð Þ=σ: ð1Þ

We use Eq. 2 to calculate d from our data, where d is our
estimate of δ , M1 and M2 are the two group means, and s is
our chosen standardizer:

d ¼ M 1−M 2ð Þ=s: ð2Þ

As standardizer, s , we need to choose an estimate of σ;
usually, sp, the pooled within-groups SD , is best if we are
happy to assume homogeneity of variance. However, despite
the lower number of degrees of freedom and, thus, loss of
precision, we might prefer s1 if group 1 is a control group and
we suspect heteroscedasticity because the experimental treat-
ment may give a different, usually larger, SD in group 2.

Beyond those basics, we should recognize several chal-
lenging aspects of d . First, d calculated using Eq. 2 is the ratio
of two quantities both subject to sampling variability. When
considering any value of d , when comparing any two d
values, or when conducting a meta-analysis using d , we must
remember that all values are produced by an original-units ES
value (the numerator in Eq. 2) and an estimated SD (the
denominator). The standardizer (the denominator) is the mea-
suring unit for d but will almost certainly be different for
different samples from the same population, merely because
of sampling variability. Cohen’s d is thus measured on a
rubber ruler, so called because the measuring scale stretches
in or out each time we measure (Cumming, 2012, Chap. 11
explained further and provided ESCI simulations to illustrate).
Great caution is needed when interpreting d .

Second, although my focus in this comment is on mean-
ingfulness and interpretation, inference is always important—
notably, to calculate CIs for d and to provide a variance
estimate for use in meta-analysis. For the homogeneous case,
using sp as standardizer, an iterative procedure based on
noncentral t distributions provides accurate CIs on d
(Cumming, 2012, Chaps. 10–11; Cumming & Finch, 2001).
Cumming and Fidler (2009) described and evaluated an ex-
cellent approximation. If we elect to use s1, the SD of the
control group, as standardizer, perhaps because we suspect
heterogeneity, Hedges (1981, pp. 110–111) explained the
calculations needed, again using noncentral t . Calculation of
d in this case (as in the homogeneous case) is not sensitive to
the relative sizes of the two samples, nor is the CI on d in the
homogeneous case. However, it is interesting to note that the
CI on d calculated using s1 as standardizer—the heteroge-
neous case—is sensitive to the relative sizes of the two sam-
ples (Hedges, 1981, pp. 110–111). (I thank an anonymous
reviewer for pointing this out.)

Third, d is a biased estimate of δ , being somewhat too
large, especially for small samples. The correction needed to
calculate dunb, the unbiased version of d , was explained by
Hedges (1981, pp. 112–116) and Cumming (2012, pp. 294–
295). Unbiasing is easily accomplished as described in those
sources or by using ESCI; dunb should probably be our routine
choice of standardized ES measure.

Note that I am using “Cohen’s d” as a generic term for the
standardized mean difference and dunb for the unbiased version.
Using Cohen’s d accordswith contemporary practice but requires
that any mention of d must be accompanied by an explanation of
how d was calculated, especially what standardizer was used.
Various other terms, such as “Hedges’s g,” are also used, but with
striking inconsistency (Cumming, 2012, pp. 295–296), and so are
best avoided.

Choice of standardizer

Equations 1 and 2 show that δ and d are expressed in SD
units: The standardizer is the unit of measurement. We need to
choose as standardizer a population SD , σ , that makes con-
ceptual sense (Kline, 2013, p. 133)—that can be given a
substantive interpretation in context. Then we choose our best
estimate of that σ to use as s in Eq. 2.

In the case of two independent groups, sp is our likely choice
of standardizer, and sp is also used to conduct inference about
the difference between the two groupmeans.Whether applying
an independent-groups t test or calculating a CI on the differ-
ence, we use sp. In many cases, however, the best choice of
standardizer is not the SD needed to conduct inference on the
effect in question. Consider, for example, the paired design,
such as a simple pre–post experiment in which a single group
of participants provide both pretest and posttest data. The most
appropriate standardizer is virtually always (Cumming, 2012,
pp. 290–294; Cumming & Finch, 2001, pp. 568–570) an
estimate of the SD in the pretest population, perhaps s1, the
pretest SD in our data. By contrast, inference about the differ-
ence requires sdiff, the SD of the paired differences—whether
for a paired t test or to calculate a CI on the difference
(Cumming & Finch, 2005). To the extent the pretest and
posttest scores are correlated, sdiff will be smaller than s1, our
experiment will be more sensitive, and a value of d calculated
erroneously using sdiff as standardizer will be too large.

The primary reason for choosing spre as standardizer in the
paired design is that the pretest population SD virtually al-
ways makes the best conceptual sense as a reference unit.
Another important reason is to get d values that are likely to
be comparable to d values given by other paired-design ex-
periments possibly having different pretest–posttest correla-
tions and by experiments with different designs, including the
independent-groups design, all of which examine the same
effect. The d values in all such cases are likely to be compa-
rable because they use the same standardizer—the control or
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pretest SD . Such comparability is essential for meta-analysis,
as well as for meaningful interpretation in context.

Shieh’s δ*

For the case of two independent groups of sizes N1 and N2,
Shieh, following Kulinskaya and Staudte (2007), defined δ*,
given by Eq. 3, as the population standardized ES of interest,
where N = N1 + N2, q1 = N1 / N , and q2 = N2 / N :

δ� ¼ μ1−μ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ2
1=q1 þ σ2

2=q2
p : ð3Þ

Shieh provided a detailed discussion of δ*, especially calcu-
lation of CIs on δ* and the determination of sample sizes so an
experiment is likely to give CIs on δ* that are no longer than a
stated length. He considered, in particular, cases having
heteroscedasticity (σ1

2≠σ22) and unequal group sizes (N1 ≠
N2). He provided valuable results and recommendations, espe-
cially in relation to inference based on δ*. He made little
mention, however, of how d* values (estimates of δ*) might
be interpreted in practice. He stated clearly that δ* is dependent
on aspects of the experiment, notably q1 and q2, the relative
sample sizes. The denominator in Eq. 3 is appropriate for
Shieh’s inferential purpose of calculating CIs but, I contend,
has two serious deficiencies as a standardizer. Just as sdiff is
what we need for inference in the paired design but should not
be used as the standardizer for d , so the denominator in Eq. 3 is
appropriate for inference but, I suggest, does not give a readily
interpretable version of Cohen’s d if used as a standardizer.

Problems with δ*

First, consider the base case of σ1
2=σ2

2=σ2, and N1 = N2, so
that q1 = q2 = ½. Equation 2 and my discussion above give sp
as our preferred standardizer; in addition, using sp as our
estimate for σ is the most common way to calculate d .
However, the denominator in Eq. 3 reduces to 2σ , not σ ,
and so δ* = δ / 2. Therefore, in the equal-variance, equal-
group-sizes case, δ*, as used by Shieh (2013) and Kulinskaya
and Staudte (2007), does not reduce to Cohen’s δ as most
commonly defined.

Second, the standardizer for δ* (the denominator in Eq. 3)
is, as was mentioned above, chosen as relevant for inference
and not as necessarily giving a measurement unit for d that has
any clear conceptual meaning or any generality over aspects
of the experiment—including relative sample sizes and differ-
ent experimental designs. Its most striking lack of generality is
its dependence on the relative sample sizes, indexed by q1 and
q2: Choose different sample sizes for your experiment, and the
measurement unit of δ* changes.

These two problems with δ* mean that d* values are not
comparable with familiar d values. In addition, when experi-
ments vary even a little in their characteristics, d* values are
not comparable across experiments and cannot be combined
by meta-analysis. For research practice, I suggest that these
are fatal flaws.

Shieh (2013) defended δ* by noting that it is directly
related to “the strength of association effect size or weighted
coefficient of determination . . . under the heteroscedastic
ANOVA models when there are two populations” (p. 3).
Perhaps, therefore, δ* should be regarded as a member of a
family of ES measures, including such measures of associa-
tion, and given a justification and interpretation in terms of its
relationship with those measures. It is not my purpose to
suggest how that might be done or to defend such an
approach. I do suggest, however, that consistency with the
most familiar version of Cohen’s d is likely to be more
important and useful in practice than such a relationship.
Also, in further justification of δ*, after explaining the depen-
dence of δ* on relative sample sizes, Shieh described another
case of an ES measure depending on characteristics of the
experiment:

Note that the squared multiple correlation coefficient is
the prevailing strength of association effect size in linear
regression. Despite its usefulness, applied researchers
may not notice that it is a function of both the model . . .
parameters and the distribution properties . . . of the
designated covariates. (p. 3)

That another ES measure is dependent in this way does not
lessen the disadvantage that δ* lacks the generality necessary
to meet the two requirements for d that I describe in the first
paragraph of this comment.

A heteroscedastic example

Imagine that we study IQ scores, using a well-established test.
We have two independent groups, one from the general pop-
ulation (assume σ1 = 15), the other from a sect we believe has
relatively less variable IQ scores (assume σ2 = 7.5). We take
two samples, obtain twomeans, and wish to calculate d for the
difference. For simplicity, assume that the two sample SD
values happen to equal the respective population SD values.
Using s1 = 15 as the standardizer almost certainly makes the
best conceptual sense, although perhaps a case could be made
for s2 = 7.5 if we have strong reasons for using the population
of scores in the sect as our reference. Equation 3, however,
uses as standardizer the square root of a weighted average of
the two variances, where the variance corresponding to the
smaller sample is assigned greater weight. That is appropriate
for inference, but I cannot see how it provides a measurement
unit for d that researchers or readers could readily grasp or
interpret in the applied setting.
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Suppose that we find an original-units difference between
our two sample means of 5 points on the IQ scale. Whatever
the sample sizes, the most meaningful d is 5 / s1 = 5 / 15 =
0.333, or, just possibly, 5 / s2 = 5 / 7.5 = 0.667. I suggest that it
makes the best conceptual sense to evaluate the difference of 5
points against a comparison control SD of 15, or perhaps
against the sect SD of 7.5. This example illustrates the chal-
lenge of heteroscedasticity: Whether either of those standard-
ized ES measures—or δ*— makes sense needs to be consid-
ered in the particular context (Kline, 2013, pp. 137–138).

Now consider the three sample size splits used by Shieh,
which were 15/15, 10/20, and 20/10, so the q1 values were,
respectively, .5, .333, and .667. For our example, Eq. 3 gives
values of d* that are, respectively, 0.211, 0.181, and 0.222.
These values are quite different from the conventional d =
0.33 and, furthermore, vary merely because relative sample
sizes vary. The variation of d* with q1 may seem modest, but
manipulating q1 can easily give much greater variation:
Different experiments might give values of d* that suggest,
in one case, a small effect and, in another case, a large effect,
even though the original-units effect was the same in each
case. More generally, it is difficult, if not impossible, to give a
meaningful interpretation in the research context of the mea-
surement unit of d*, and therefore, d* values do not help us
understand our results, nor are they likely to be usable in a
meta-analysis.

This example prompts broader consideration of d in the
heteroscedastic case. Suppose that we use my recommended d
standardized by s1, the control group SD . Does it make
conceptual sense to compare, or combine by meta-analysis,
such a d value with d values calculated for situations likely to
have homogeneity or different extents of heterogeneity (dif-
fering experimental group population variances)? As usual,
judgment in context is required. However, suppose that we
have a number of studies that assessed the effectiveness of a
training procedure intended to increase IQ scores. Each com-
pares an experimental sample from one of a number of special
populations with a control sample from the general popula-
tion. The special populations might have diverse variances,
but we might still judge it meaningful to compare or combine
the different d values, all standardized to the control SD ,
despite the differing amounts of heterogeneity. (We might
use as standardizer an SD estimate pooled over all the
control samples; Cumming, 2012, p. 289.)

Conclusion

My example above suggests that if we suspect heteroscedasticity,
we should, as usual, choose a population SD that makes the best
conceptual sense as the measurement unit for δ . That is
likely to be the SD of the control (or reference, or base
case) population. Noting the heteroscedasticity, our best esti-
mate of that SD will be our sample SD for the control group,
rather than an estimate pooled across experimental and control
groups. Given heteroscedasticity, inference on the difference
poses the challenges that Hedges (1981) and Shieh (2013)
addressed, but choosing a standardizer for d should be no more
difficult than preference for the control group SD over a pooled
value (Grissom & Kim, 2012, p. 68). I suggest that researchers
should prefer such a d to the d* discussed by Shieh.
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