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Abstract Hierarchical data sets arise when the data for lower
units (e.g., individuals such as students, clients, and citizens) are
nested within higher units (e.g., groups such as classes, hospi-
tals, and regions). In data collection for experimental research,
estimating the required sample size beforehand is a fundamental
question for obtaining sufficient statistical power and precision
of the focused parameters. The present research extends previ-
ous research fromHeo and Leon (2008) and Usami (2011b), by
deriving closed-form formulas for determining the required
sample size to test effects in experimental research with hierar-
chical data, and by focusing on both multisite-randomized trials
(MRTs) and cluster-randomized trials (CRTs). These formulas
consider both statistical power and the width of the confidence
interval of a standardized effect size, on the basis of estimates
from a random-intercept model for three-level data that con-
siders both balanced and unbalanced designs. These formulas
also address some important results, such as the lower bounds
of the needed units at the highest levels.
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A hierarchical linear model (HLM1) is a regression model for
hierarchical data sets. Hierarchical data sets result from
nesting the data for lower units (e.g., individuals such as
students, clients, and citizens) within higher units (e.g., groups
such as classes, hospitals, and regions). Repeated measures
data and data collected through paired designs are also hier-
archical data (Raudenbush & Bryk, 2002; Singer & Willett,

2003). The main advantages of using HLMs are attaining
improved estimates of parameters and improved information
on the residuals at different hierarchical levels. Software pack-
ages for hierarchical data analysis include HLM, MLwiN,
Mplus, R, SAS, and SPSS.

In data collection for experimental research, estimating the
required sample size beforehand is fundamental to obtaining
sufficient statistical power and precision of the focused pa-
rameters, and sample size determination problems are often
closely related to human resource and budget requirements
(Chow, Shao, & Wang, 2003; Raudenbush, 1997; Usami,
2011a). Estimating the expected statistical power before be-
ginning research by power analysis is sometimes crucial to
avoiding wrong conclusions (Cohen, 1988). However, actual
psychological research is often underpowered (Bezeau &
Graves, 2001; Cohen, 1962; Maxwell, 2004; Maxwell,
Kelley, & Rausch, 2008). Although in simpler data collection
designs there are multiple ways of conveniently conducting
power analysis for both nonhierarchical data (e.g., Dupont &
Plummer, 1998, for PS; Faul, Erdfelder, Lang, & Buchner,
2007, for G*Power 3) and hierarchical data (e.g., Donner &
Klar, 2000, for ACluster; Fosgate, 2007; Raudenbush,
Spybrook, Congdon, Liu, & Martinez, 2011, for OD), a more
intuitive method is strongly desired for estimating the required
sample size for more general data collection designs.

The present research provides closed-form formulas that
generalize sample size requirements for testing effects in
experimental research with hierarchical data, focusing on both
multisite-randomized trials (MRTs), in which individuals are
randomized (Raudenbush & Liu, 2000), and cluster-
randomized trials (CRTs), in which clusters are randomized
(Heo& Leon, 2008). AlthoughMRTs are generally preferable
to CRTs, since in CRTs the dependency of individual response
data within clusters (i.e., intraclass correlation) inflates the
standard errors of estimates of the experimental effects (see
the Comparing CRTs andMRTs section for details). However,
in many cases CRTs have to be chosen, due to the research
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1 HLMs are also called multilevel models (Goldstein, 2003; Hox, 2010;
Singer & Willett, 2003; Skrondal & Rabe-Hesketh, 2004), mixed-effects
models, or random-effects models (Laird & Ware, 1982).
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purposes (e.g., a difference of doctors is a focused issue of the
intervention).

These formulas are derived through considering both sta-
tistical power and the width of the confidence interval for a
standardized effect size, on the basis of estimates from
random-intercept models for three-level data that consider
both balanced and unbalanced designs. As was summarized
in Usami (2011a), although several methods have been devel-
oped for sample size determination in hierarchical data (e.g.,
Heo & Leon, 2008; Okumura, 2007; Raudenbush, 1997;
Raudenbush & Liu, 2000; Roy, Bhaumik, Aryal, &
Gibbons, 2007; Usami, 2011b), these methods were devel-
oped under designs featuring restricted data collection and
numbers of levels. For example, Heo and Leon derived a
closed-form power function and a formula for determining
the sample size required to detect a single experimental effect
in three-level hierarchical CRTs. The derived formulas were
restricted to CRTs under a balanced design, however, and
formulas to obtain desired confidence intervals were not con-
sidered. Roy et al. devised a general method for sample size
determination in a three-level HLM for longitudinal data, but
it was not in a closed form and the experimental design was
not directly considered. In the Japanese literature, Usami
(2011b) derived formulas for MRTs and CRTs, but the derived
formulas were restricted to two-level hierarchical data under a
balanced design. Three-level hierarchies arise frequently in
both cross-sectional studies (e.g., students are nested within
classes within schools) and longitudinal studies (e.g., longitu-
dinally obtained data are nested within patients within hospi-
tals). In the present research, formulas were derived in a
unified way, using generalized least squares estimators for
experimental effects, in order to overcome the restrictions of
the former research. These formulas also address additional
results not derived in previous research, such as lower bounds
on the number of required units in the highest (third) level and
cases involving more than three levels.

This article is organized into five sections. The following
section introduces a three-level HLM. The one after gives
derivations of the generalized formulas and examples of esti-
mating the required sample size on the basis of programs
provided in the Appendix. Next, additional results obtained
from the derived formulas are addressed, and the final section
discusses prospects for the proposed method and related
problems.

Statistical model

This section introduces a three-level random-intercept model that
considers both balanced and unbalanced designs, referring to
Heo and Leon (2008). Experimental and control groups are
sometimes unbalanced due to practical considerations. For ex-
ample, producing experimental drugs for clinical trials is

expensive, so the experimental and control groups may be of
unequal size (Ogungbenro & Aarons, 2009). For brevity, the
discussion here will be confined to the case in which the numbers
of Level 1 units (e.g., students) and Level 2 units (e.g., classes)
are equal within the Level 3 unit (e.g., schools), and in which no
attrition occurs during trials (on this point, some conventional
alternatives are addressed in the Discussion section).

Let Yijk be the outcome for an i (= 1, 2, . . . , I )-th Level 1
unit nested within a j (= 1, 2, . . . , J )-th Level 2 unit, which is
again nested within a k (= 1, 2, . . . , K)-th Level 3 unit. The
following Level 1 model is assumed for expressing Yijk:

Y ijk ¼ b0jk þ dX ijk þ eijk : ð1Þ

Here, Xijk is a corresponding assignment indicator variable,
set to 1 when it is assigned to an experimental group and to 0
when it is assigned to a control group. Let the proportion of an
experimental group size be P (0 < P < 1). The balanced
condition is satisfied only when P = .5. In CRT, essentially
Xijk = Xk, since clusters are randomized, so the number of
Level 1 units assigned to an experimental group per Level 2
units is P × I for MRTs, whereas it is 0 or I for CRTs. β0jk is a
random intercept denoting the overall control group mean in
the j th Level 2 unit nested within the k th Level 3 unit. e ijk is
the corresponding residual, assumed to be independent ofXijk.
Additionally, e ijk is assumed to be distributed as e ijk∼
N(0,σ1

2). Here, σ3
2 is the residual variance for the respective

groups in each Level 1 unit.
The Level 2 model is a decomposition form of β0jk as

b0 jk ¼ b0k þ ejk : ð2Þ

Here, β0k is a random intercept denoting the overall control
group mean in the k th Level 3 unit. e jk is the corresponding
residual and is assumed to be independent of Xijk and of other
residuals. Additionally, e jk is assumed to be distributed as
e jk∼N(0,σ2

2), and σ2
2 is the residual variance for the respec-

tive groups in each Level 2 unit.
β 0k can be further decomposed in order to obtain the

following Level 3 model:

b0k ¼ b0 þ ek : ð3Þ

Here, β 0 is the overall control group mean. e k is the
corresponding residual, assumed to be independent of Xijk

and of other residuals. Additionally, ek is assumed to be
distributed as ek∼N (0,σ3

2), and σ3
2 is the residual variance

for the respective groups in each Level 3 unit. From Eqs. 2 and
3, Eq. 1 can now be written as

Y ijk ¼ b0 þ dX ijk

� �þ ek þ ejk þ eijk
� �

: ð4Þ
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This combined form clarifies the fixed and residual parts of
the three-level model. From Eq. 4, it is evident that the mean
of Yijk, given Xijk, is

E Y ijk jX ijk

� � ¼ b0 þ dX ijk ; ð5Þ

where E () denotes the mean. Additionally, the covariance of
Yijk and Yi'j'k' can be generally expressed as

cov Y ijk ; Y i0 j0k 0 j X ijk ;X i0 j0k 0
� � ¼ 1 i ¼ i0& j ¼ j0&k ¼ k 0ð Þσ1

2

þ1 j ¼ j0&k ¼ k 0ð Þσ2
2 þ 1 k ¼ k 0ð Þσ3

2;

ð6Þ

where cov() denotes the covariance, and 1() is an indicator
function, which has a value of 1 if the conditions in parentheses
are satisfied and 0 if they are not. From Eq. 6, the variance of Yijk
(namely, i = i' , j = j' , and k = k' , respectively) can be expressed as

Var Y ijk jX ijk

� � ¼ σ2
1 þ σ2

2 þ σ2
3 ¼ σ2: ð7Þ

Here, Var() denotes the variance. The standardized effect
size Δ of an experimental effect δ is defined according to
Cohen (1988) by using the pooled standard deviation σ .
Namely,

Δ ¼ δ

σ
: ð8Þ

Therefore, the intraclass correlation coefficient (ICC)
among the Level 2 data can now be expressed as

ρ2 ¼ Corr Y ijk ; Y i0 j0k
� � ¼ σ3

2

σ1
2 þ σ2

2 þ σ3
2 ¼ σ3

2

σ 2
; ð9Þ

and the ICC among the Level 1 data can be expressed as

ρ1 ¼ Corr Y ijk ; Y i0jk
� � ¼ σ2

2 þ σ2
3

σ2
1 þ σ2

2 þ σ2
3

¼ σ2
2 þ σ2

3

σ2
: ð10Þ

Here, Corr() denotes the correlation.

Derivation of generalized formulas

Standard errors of δ

Without loss of generality, we can set σ2 = 1, and then from
Eqs. 8–10, Δ = δ ,ρ2 = σ3

2, and ρ1 = σ2
2 + σ3

2. If residual
variances σ1

2, σ2
2, and σ3

2 are known, the test statistic Z for
the null hypothesis H0 : δ = 0 can be constructed as

Z ¼
bδ

se bδ� � ; ð11Þ

where se bδ� �
denotes a standard error of estimate bδ . Z is

normally distributed as Z ~N(δ , 1). To derive formulas under a
clear and unified procedure, consider a matrix notation of Eq. 4:

Y ¼ eX β þ eε : ð12Þ

Here, β = (β0, δ)' and Y is an (I × J × K) × 1 vector, and its
elements are arranged as Y = (Y ′1, . . . , Y ′k, . . . , Y ′K)' , where
Yk = (Y ′1k, . . . , Y ′jk, . . . , Y ′Jk)' and Yjk = (Y1jk, . . . , Yijk, . . . ,

YIjk)' . eX ¼ 1IJK ;X Þð is a corresponding (I × J × K) × 2
matrix, and X is a corresponding (I × J × K) × 1 vector
including information about Xijk. eε is also a corresponding
(I × J × K) × 1 vector including information about eeijk ¼ ek
þejk þ eijk . From Eq. 6, it can be shown thateeijk is distributed
as eeijk∼N 0;Σð Þ , where

eΣ ¼ IK⊗Σ;

Σ¼ σ2
31IJ1

0
IJ þ I J⊗ σ2

21I1
0
I

� �þ σ2
1I IJ

ð13Þ

¼ ρ21IJ1
0
IJ þ I J ⊗ ρ1–ρ2ð Þ1I10I½ � þ 1–ρ1ð ÞI IJ : ð14Þ

Here we assume that σ1
2 ≥ 0, σ2

2 ≥ 0, and σ3
2 ≥ 0, and that

the inverse matrix of Σ (denoted as Σ–1) exists. Let the
diagonal elements of Σ–1 be a , the off-diagonal elements
denoting the same Level 2 and Level 3 units in Σ–1 be b ,
and the off-block diagonal elements denoting the same Level
3 unit in Σ–1 be c . Comparing the left and right sides of the
identity ΣΣ–1 = I , the following equations are obtained:

a þ I–1ð Þ ρ1b þ I J–1ð Þ ρ2c ¼ 1 ;
b þ ρ1a þ I–2ð Þ ρ1b þ I J–1ð Þ ρ2c ¼ 0 ;
1þ I–1ð Þρ1½ �cþ ρ2 aþ I–1ð Þb½ � þ J–2ð ÞIρ2c ¼ 0:

ð15Þ

These equations can be rewritten as

a ¼ b þ 1

1−ρ1
;

b ¼ f −Iρ2ð Þρ1−I J−1ð Þρ22
I2 J−1ð Þρ22 þ Iρ2− fð Þ I−1ð Þρ1 þ 1½ �

1

1−ρ1

� �
;

c ¼ ρ2
Iρ2− f

Ibþ 1

1−ρ1

� �
;

ð16Þ

where f = 1 + I (J – 1)ρ2 + (I – 1)ρ1 is a variance inflation
factor or design effect (Heo & Leon, 2008). Simple calcula-
tion shows that

348 Behav Res (2014) 46:346–356



1

aþ I−1ð Þbþ I J−1ð Þc ¼ f : ð17Þ

Using the generalized least squares estimators, a sample distri-

bution of bβ can be expressed as bβ ∼N eX0 eΣ−1eX� �−1
� eX0 eΣ−1

Y ; eX 0 eΣ−1eX� �−1
� , and then se bδ� �

can be evaluated by (2, 2)

elements of eX 0 eΣ–1 eX� �–1=2
¼ eX 0 I K ⊗Σ –1

� � eXh i–1=2
.

Let xm and x c be xm = (1 ′PI , 0 ′(1 –P )I )′ and x c =
(1 ′PK, 0 ′(1–P)K)′, respectively. Now X can be expressed as

X ¼ 1JK ⊗ xm MRTsð Þ
xc ⊗ 1IJ CRTsð Þ:

�
ð18Þ

for the respective randomized trials. Then, from Eqs. 17 and
18, se bδ� �

can be calculated as

se bδ� �
¼

se bdM� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

IJKP 1−Pð Þ a−bð Þ

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−ρ1

IJKP 1−Pð Þ

s
; MRTsð Þ

se bdC� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

IJKP 1−Pð Þ aþ I−1ð Þbþ I J−1ð Þc½ �

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f

IJKP 1−Pð Þ

s
; CRTsð Þ:

8>>>><>>>>: ð19Þ

for the respective randomized trials. As for se bδC� �
in Eq. 19,

this completely corresponds to the results of Heo and Leon
(2008) when a balanced design is used (i.e., P = 1/2). From
Eq. 19, it is evident that larger ρ2 and ρ1 lead to an se bδ� �

that
is smaller in MRTs and larger in CRTs, and
se bδM� �

¼ se bδC� �
when ρ2 = ρ1 = 0.

Generalized formulas for desired statistical power

Let α be a two-sided significance level for the test of the null
hypothesis H 0 : δ = 0. Under test statistic Z in Eq. 11,
statistical power ϕ can be evaluated as

ϕ ¼ Φ zα=2−E Zð Þ
 �þ Φ E Zð Þ−z1−α=2

 �

: ð20Þ

Here, Φ is a cumulative density function of the standard
normal distribution, and zα denotes the 100α% point of a
standard normal distribution.

Without loss of generality, a positive experimental effect
(i.e., δ ≥ 0) is assumed here. Then, the probability that zα/2
exceeds E (Z ) (i.e., Φ[zα/2 – E(Z )]) is generally very low, and
the first term in Eq. 20 can be pragmatically ignored, unless
sample size or effect size is too small (e.g., Usami, 2011b).2

The above equation therefore becomes

ϕ ≈ Φ E Zð Þ−z1−α=2

 �

: ð21Þ

For a desired statistical power ψ , we can obtain the follow-
ing relations (Usami, 2011b):

Φ E Zð Þ–z1–a=2

 �

≥ψ;
↔E Zð Þ–z1–a=2≥ zψ;
↔E Zð Þ≥z1–a=2 þ zψ:

ð22Þ

Additionally, when σ1
2,σ2

2, and σ3
2 (namely, ρ2 and ρ1) are

known, E bδ� �
¼ δ , since E bβ� �

¼ E eX 0fΣ −1 eX� �h
−1 eX 0fΣ

−1Y � ¼ ð eX 0 Σ −1 eX Þ−1 eX 0fΣ −1E Yð Þ ¼ eX 0fΣ −1 eX� �−1 eX 0fΣ
−1 eX β
� �

¼ β . Then, this relation and Eqs. 11, 19, and 22,

give the following required sample size (IJK) for an MRT
design:

IJK ≥
z1−α=2 þ zψ
� �2

1−ρ1ð Þ
P 1−Pð ÞΔ2

: ð23Þ

Note that δ = Δ because σ2 is assumed to be 1. From this
formula, under fixedα and P, larger ρ1 and Δ lead to a smaller
sample size requirement for a desired statistical power ψ .
Additionally, a balanced design in which P = 1/2 provides
the least demands on sample size. Likewise, in a CRT design,
the formula for required sample size can be obtained from

Eqs. 11, 19, and 22. Since se bδC� �
includes f in its numerator,

we get the following sample size determination formulas for
the respective units:

I ≥
1−ρ1ð Þ z1−α=2 þ zψ

� �2
JKP 1−Pð ÞΔ2− z1−α=2 þ zψ

� �2
J−1ð Þρ2 þ ρ1½ �

ð24Þ
2 For example, even when α = .05 and a small value of E(Z) = .2 are
assumed,Φ[za/2–E(Z)] =Φ[z .025 –.2] =Φ[– 1.9599 –.2] =. 0154, and this
probability can be pragmatically ignored. In cases of situations such as
E(Z) > .2, this probability becomes much lower.
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J ≥
I ρ1−ρ2ð Þ þ 1−ρ1½ � z1−α=2 þ zψ

� �2
IKP 1−Pð ÞΔ2−ρ2I z1−α=2 þ zψ

� �2 ð25Þ

K≥
f z1−α=2 þ zψ
� �2
IJP 1−Pð ÞΔ2

¼ 1þ I J−1ð Þρ2 þ I−1ð Þρ1½ � z1−α=2 þ zψ
� �2

IJP 1−Pð ÞΔ2
: ð26Þ

Note that Eqs. 24–26 reduce to the formulas obtained in Heo
and Leon (2008) when a balanced design is used (i.e., P = 1/2).
In each equation, for a fixed α and P, a larger ρ2 and ρ1 and a
smaller Δ lead to larger sample size requirements for a desired
statistical powerψ . Additionally, as in anMRT design setting, a
balanced design (P = 1/2) provides the least demands on
sample size.

Generalized formulas for confidence intervals

A 100(1 – α )% confidence interval for δ is expressed as

bδ − z1−α=2se bδ� �
≤δ≤bδ þ z1 − α=2se bδ� �

; ð27Þ

so the width of a confidence interval L can be evaluated as

L ¼ 2z1 − α=2se bδ� �
: ð28Þ

Note that this is also the width of the confidence
interval for Δ because σ 2 is assumed to be 1. When a
desired width of the confidence interval is specified as
L' , using Eqs. 19 and 28, the relation L ≤ L' can be
reexpressed in MRTs as follows:

IJK ≥
4z21 − α=2 1−ρ1ð Þ
P 1−Pð ÞL02 : ð29Þ

Naturally, as ρ1 and L' become smaller, the required sam-
ple size becomes larger. In CRTs, as with the formulas for
desired statistical power (Eqs. 24–26), determination formulas
can be derived for the respective units as

I ≥
4z21 − α=2 1−ρ1ð Þ

JKP 1 − Pð ÞL02−4z21 − α=2 J−1ð Þρ2 þ ρ1½ � ð30Þ

J ≥
4z21−α=2 1−Iρ2 þ I−1ð Þρ1½ �
IKP 1−Pð ÞL02−4z21−α=2Iρ2

ð31Þ

K ≥
4z21−α=2 f

IJP 1−Pð ÞL02 ¼
4z21−α=2 1þ I J−1ð Þρ2 þ I−1ð Þρ1½ �

IJP 1−Pð ÞL02 ð32Þ

using Eqs. 19 and 28. Naturally, these equations reduce to the
results obtained in Usami (2011b) when the number of levels
and P are restricted to two (K = 1 and ρ2 = 0) and 1/2
(balanced design), respectively.

Examples

To facilitate the use of the derived formulas, R programs are
provided in the Appendices to estimate the minimum required
sample size in MRTs and CRTs for statistical power (Eqs. 23–
26) and the width of the confidence intervals for different
standardized effect sizes of the experimental effects
(Eqs. 29–32). Here, we consider a hypothetical situation in
which students from different classes and schools are assigned
to either an experimental or a control group in order to
evaluate the experimental effect on test scores of new learning
programs for English conversation. From previous research
results, the variance of test scores and the size of the experi-
mental effect δ are assumed to be σ2 = 202 and δ = 16,
respectively, so that Δ = 16/20 = .80. As for ICC, the variance
of the means of English conversation ability is assumed to be
small among schools, but large among classes in each
school, so that σ3

2 is small and σ2
2 is large. Therefore,

ρ1 and ρ2 are set as .15 and .03, respectively.
The desired statistical power and the two-sided significance

level for testing the null hypothesisH0 : δ = 0 are set asψ = .80
and α = .05, respectively. If MRTs are conducted, Eq. 23
indicates that the required minimum sample sizes of IJK to
achieve ϕ ≥ .80 are calculated as being 42 and 50 for different
proportions of experimental group sizes P = .5 and .7, respec-
tively. When using the provided programs, the same results can
be obtained:

MRTpower alpha ¼ 0:05; psi ¼ 0:80; rho1 ¼ 0:15; Delta ¼ 0:80; P ¼ 0:50ð Þ
42
MRTpower alpha ¼ 0:05; psi ¼ 0:80; rho1 ¼ 0:15; Delta ¼ 0:80; P ¼ 0:70ð Þ
50

When the required sample size is determined on the basis
of the desired width of a confidence interval L' so that L' =
.30, from Eq. 29 the required minimum sample sizes IJK to
achieve L' ≤ .30 are calculated as being 581 and 692 for P = .5
and .7, respectively. When using the provided programs, the
same results can be obtained:

MRTconfidenceinterval alpha ¼ 0:05; rho1 ¼ 0:15; L ¼ 0:30; P ¼ 0:50ð Þ
581
MRTconfidenceinterval alpha ¼ 0:05; rho1 ¼ 0:15; L ¼ 0:30; P ¼ 0:70ð Þ
692

If CRTs are conducted and J andK are fixed at J = 3 andK =
10, from Eq. 24 the required minimum number of units I to
achieve ϕ ≥ .80 is calculated as 3 for P = .5. When using the
provided programs, the same result can be obtained:
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CRTpowerI ðJ ¼ 3; K ¼ 10; alpha ¼ 0:05; psi ¼ 0:80;
rho1 ¼ 0:15; rho2 ¼ 0:03; Delta ¼ 0:80; P ¼ 0:5 Þ
3

When the required sample size is determined on the basis
of a desired width of the confidence interval of L' = .70, from
Eq. 30 the required minimum number of units I to achieve L'
≤ .70 is calculated as being 30 for P = .5. When using the
provided programs, the same result can be obtained:

CRTconfidenceintervalI ðJ ¼ 3; K ¼ 10; alpha ¼ 0:05; rho1 ¼ 0:15;

rho2 ¼ 0:03; L ¼ 0:70;P ¼ 0:5Þ
30

Some results relating the derived formulas

This section addresses several useful and important results
relating the formulas derived above.

Comparing CRTs and MRTs

Comparing the numerators in the square root of se bδC� �
and

se bδM� �
in Eq. 19 shows that f – (1 – ρ1) = 1 + I(J – 1)ρ2 +

(I – 1)ρ1 – (1 – ρ1) = I(J – 1)ρ2 + Iρ1 = I[(J – 1)ρ2 + ρ1] ≥ 0,

since I ≥ 1, J ≥ 1, ρ2 ≥ 0, and ρ1 ≥ 0. Therefore, se bδC� �
≥

se bδM� �
, andMRTs are always preferable to CRTs. This relation

indirectly indicates that ϕ c ≤ ϕm and Lc ≥ Lm for any
combination of I , J , K , ρ2, and ρ1. Here, ϕ c (or ϕm) and Lc

(or Lm) are the statistical power and the width of the confi-
dence intervals for CRTs (or MRTs). From Eq. 19, increasing
I , J , and K and conducting a balanced design (P = 1/2) both

lead to a smaller se bδ� �
, since ∂se(δ )/∂I < 0, ∂se(δ )/∂J < 0,

∂se(δ )/∂K < 0, and ∂se(δ )/∂P < 0 (P ≤ 1/2) in MRTs and
CRTs. However, the strengths of the effect of improving I , J ,
K , and P on se(δ ) are different between MRTs and CRTs. For
example, it can be shown that

∂se2 δmð Þ=∂J−∂se2 δcð Þ=∂J ¼ I2KP 1−Pð Þ ρ1−ρ2ð Þ=W ≥0;
ð33Þ

∂se2 δmð Þ=∂K−∂se2 δcð Þ=∂K ¼ I2JP 1−Pð Þ J−1ð Þρ2 þ ρ1½ �=W ≥0;

ð34Þ

∂se2 δmð Þ=∂P−∂se2 δcð Þ=∂P ¼ I2JK 1−2Pð Þ J−1ð Þρ2 þ ρ1½ �=W ≥0;

ð35Þ

whereW = [IJKP(1 – P )]2 ≥ 0. Namely, the effect of improv-
ing the values J ,K , and P are always more dominant inMRTs
than in CRTs. Interestingly, the similar result for I becomes

∂se2(δm)/∂I – ∂se2(δ c)/∂I = 0. Namely, the strengths of the
effect of improving I are the same between MRTs and CRTs.

As for the influences of ρ1, an opposite relation holds between
MRTs and CRTs, since ∂se2(δm)/∂ρ1 = −1/IJKP(1 – P) < 0 and
∂se2(δc)/∂ρ1 = (I – 1)/IJKP(1 – P) ≥ 0. Namely, a larger ρ1

always leads to a smaller se bδM� �
and a larger se bδC� �

, and

when I ≥ 2, the absolute strength of ρ1 is larger in CRTs than in
MRTs.

Relative influences of ρ2 and ρ1 in CRTs

In CRTs, both ρ2 and ρ1 are included in se(δC), and the influ-
ences of these ICCs on se(δC) differ. Namely, as Heo and Leon
(2008) briefly derived in the case of a balanced design, although
larger ρ2 and ρ1 lead to a larger se(δ), the influence of ρ2 is
greater than that of ρ 1, because ∂f /∂ρ 2 = I (J – 1) > ∂f /
∂ρ 1 = (I – 1) ≥ 0 when J ≥ 2, indicating the domi-
nance of σ3

2 over σ2
2.

Asymptotic power and confidence intervals and minimum
requirement for K in CRTs

Since se(δC) includes I and J in its numerator and denomi-
nator, se(δC) does not take a value near 0, but rather has a
lower limit even when I and J become infinite under a fixed
number of highest units (K). A lower limit of se(δC) when
I → ∞, J → ∞ under a fixed K can be derived as follows:

lim
J→∞

lim
I→∞

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f

IJKP 1−Pð Þ

s

¼ lim
J→∞

lim
I→∞

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ I J−1ð Þρ2 þ I−1ð Þρ1

IJKP 1−Pð Þ

s" #

¼ lim
J→∞

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J−1ð Þρ2 þ ρ1
JKP 1−Pð Þ

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2

KP 1−Pð Þ
r

> 0 :

ð36Þ

Combining this result and the relation of Eq. 11, a limit

value of E (Z ) can be evaluated as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KP 1−Pð Þp

Δ
� �

=
ffiffiffiffiffi
ρ2

p
.

Then, from Eq. 22, the following relation is obtained, indicat-
ing the minimum requirement for K :

K ≥
ρ2 z1−α=2 þ zψ
� �2
P 1−Pð ÞΔ2

: ð37Þ

Namely, if K does not satisfy the relation above, the
actual statistical power ϕ does not exceed the desired
statistical power ψ , even when I and J become infinite.
Additionally, from the right side of Eq. 37, this
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minimum required K becomes trivial when ρ 2 = 0 or Δ
is sufficiently large.

A similar equation can be derived for a desired width of the
confidence interval, using Eq. 28:

K ≥
4z21−α=2ρ2

P 1−Pð ÞL02 : ð38Þ

Naturally, Eqs. 37 and 38 reduce to the results obtained in
Usami (2011b) when the number of levels and P are restricted
to two (K = 1 and ρ 2 = 0) and 1/2 (balanced design).
Minimum integer values ofK under α = .05 for both a desired
statistical power and a desired width of the confidence interval
are summarized in Table 1.

Interestingly, these results can also be derived from Eqs. 25
and 31. Namely, the denominators on the right sides of these
equations should be positive [IKP (1 − P )Δ2 − ρ2I (z1 − α/2 +

zψ)
2 ≥ 0 and IKP(1 − P)L ′2 − 4z1 − α/2

2Iρ2 ≥ 0] since both
numerators are always positive, and the restriction J ≥ 1
should be satisfied. Then, Eqs. 37 and 38 can be directly
derived from these relations.

Cases with more than three levels

Through the same procedure discussed in the previous
section, more generalized formulas can be derived for more
than three levels. Let D and N1, N2, . . . , ND be the
number of levels and the number of units for each level,
respectively. Let σd

2(d = 1,2…,D) and ρd = (∑ d + 1
D σd

2)/
(σ1

2 + σ2
2 + … + σD

2)(d ; = 1,2,…,D − 1) be the residual
variances and ICCs among the Level d units under the similar
d -level models discussed in the Statistical Model section.

Thus, the more generalized form of the standard errors of bδ
can be derived as

se bδG� �
¼

se bdGM� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−ρ1

ΠD
d Nd

� �
P 1−Pð Þ

s
; MRTsð Þ

se bdGC� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

XD−2

q¼1
ΠD−q−1

d¼1 Nd

� �
ND−q−1
� �

ρD−q
h i

þ N1−1ð Þρ1
ΠD

d Nd

� �
P 1−Pð Þ

vuut
; CRTsð Þ

8>>>>><>>>>>:
ð39Þ

for the respective trials when D ≥ 3. Naturally, when D = 3
(i.e.,N1 = I , N2 = J , and N3 = K ), this formula corresponds to
Eq. 19. In MRTs, more generalized formulas for required
sample sizes Πd = 1

D Nd to achieve a desired statistical power
and width of the confidence intervals can be obtained through
the same equations—namely, Eqs. 23 and 29. In CRTs, sam-
ple size determination formulas can be obtained for the re-
spective units as well, and the details are omitted here.

The results discussed in the previous subsections also hold
even when D ≥ 3. For example, the strengths of the effect of
improving the valuesN2,N3, andND toward se(δ ) are always
more dominant in MRTs than in CRTs, whereas the strengths
of improving N1 are the same between MRTs and CRTs.
Additionally, the minimum required number of the highest
unitsND to achieve a desired statistical power and width of the
confidence intervals can be expressed through equations similar
to Eqs. 37 and 38, as ND ≥ ρD − 1(z1 − α/2 + zψ)

2/(P(1 − P)Δ2)
and ND ≥ 4 z1− α/2

2ρD − 1/(P(1 − P)L ′2), respectively.

Discussion

The present research provides closed-form generalized sample
size determination formulas to use when testing effects in
experimental research with hierarchical data, focusing on
MRTs and CRTs, and these formulas are derived considering

both statistical power and the width of the confidence interval
of a standardized effect size, on the basis of estimates from a
random-intercept model for three-level data that considers
both balanced and unbalanced designs. In the present re-
search, as in Usami (2011b), formulas have been derived in
a unified way that uses generalized least squared estimators
for an experimental effect to overcome the restrictions of
previous research. Some additional useful results not derived
in the previous research, such as lower bounds on the needed
units in the highest (third) level and equations for cases of
more than three levels, are also addressed by these formulas.
As was noted in the introduction, repeated measures data,
paired data, and pre–post data can be analyzed through
HLM, and these data are also within the scope of applying
the formulas derived here. Additionally, R programs for cal-
culating needed sample sizes are provided in the Appendices
to facilitate the use of the derived formulas. Developing a
more flexible program is an important topic for future research
that will also provide various outputs, including numerical
tables. The present and improved programs will be available
on the author’s website (http://satoshiusami.com/).

As Usami (2011b) noted, almost no previous research
focusing on sample size determination for hierarchical data
has provided closed formulas and numerical tables that con-
sider the desired width of the confidence intervals that would
be usable by applied researchers. Null hypothesis significance
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testing has been criticized, in that rejection of the null
hypothesis itself does not provide useful information
because, strictly speaking, the null hypothesis is rarely
true in reality (Balluerka, Gómez, & Hidalgo, 2005;
Cohen, 1994, Sedlmeier, 2009). The American
Psychological Association has therefore recommended

that researchers report confidence intervals (American
Psychological Associat ion, 2009). The derived
Formulas 29–32 are simple and have closed forms,
and thus seem to be effective tools to encourage applied
researchers to collect data and interpret the obtained
results on the basis of confidence intervals.

Table 1 Minimum required values of Level 3 units (K) at two-sided significance level of α=.05 in CRTs

(a) Statistical power (desired statistical power φ=.80)

ρ2/Δ* 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 3.00 5.00

P = .5 0.01 32 8 4 2 2 1 1 1 1 1 1 1

0.05 157 40 18 10 7 5 4 3 2 2 1 1

0.10 314 79 35 20 13 9 7 5 4 4 1 1

0.20 628 157 70 40 26 18 13 10 8 7 1 1

0.30 942 236 105 59 38 27 20 15 12 10 2 1

0.50 1,570 393 175 99 63 44 33 25 20 16 2 1

P = .7 0.01 38 10 5 3 2 2 1 1 1 1 1 1

0.05 187 47 21 12 8 6 4 3 3 2 1 1

0.10 374 94 42 24 15 11 8 6 5 4 1 1

0.20 748 187 84 47 30 21 16 12 10 8 1 1

0.30 1,122 281 125 71 45 32 23 18 14 12 2 1

0.50 1,869 468 208 117 75 52 39 30 24 19 3 1

P = .9 0.01 88 22 10 6 4 3 2 2 2 1 1 1

0.05 437 110 49 28 18 13 9 7 6 5 1 1

0.10 873 219 97 55 35 25 18 14 11 9 1 1

0.20 1,745 437 194 110 70 49 36 28 22 18 2 1

0.30 2,617 655 291 164 105 73 54 41 33 27 3 2

0.50 4,361 1,091 485 273 175 122 89 69 54 44 5 2

(b) Confidence interval

ρ2/L'
* 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 3.00 5.00

P = .5 0.01 62 16 7 4 3 2 2 1 1 1 1 1

0.05 308 77 35 20 13 9 7 5 4 4 1 1

0.10 615 154 69 39 25 18 13 10 8 7 1 1

0.20 1,230 308 137 77 50 35 26 20 16 13 2 1

0.30 1,844 461 205 116 74 52 38 29 23 19 3 1

0.50 3,073 769 342 193 123 86 63 49 38 31 4 2

P = .7 0.01 74 19 9 5 3 3 2 2 1 1 1 1

0.05 366 92 41 23 15 11 8 6 5 4 1 1

0.10 732 183 82 46 30 21 15 12 10 8 1 1

0.20 1,464 366 163 92 59 41 30 23 19 15 2 1

0.30 2,195 549 244 138 88 61 45 35 28 22 3 1

0.50 3,659 915 407 229 147 102 75 58 46 37 5 2

P = .9 0.01 171 43 19 11 7 5 4 3 3 2 1 1

0.05 854 214 95 54 35 24 18 14 11 9 1 1

0.10 1,708 427 190 107 69 48 35 27 22 18 2 1

0.20 3,415 854 380 214 137 95 70 54 43 35 4 2

0.30 5,122 1,281 570 321 205 143 105 81 64 52 6 3

0.50 8,537 2,135 949 534 342 238 175 134 106 86 10 4

* ρ2, intraclass correlation among Level 2 units; Δ, effect size of an intervention; L' , desired width of confidence interval
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For simplicity, the explicit development of the meth-
od proposed here has been confined to a single factor
and two levels. However, it will be straightforward to
extend the proposed formulas to an arbitrary number of
levels and factors. On this point, Usami (2011a) illus-
trated a simple, unified method of estimating the statis-
tical power of various types of contrasts to be evaluated
regarding main effects and interactions for two-factor
between-subjects designs, using multiparameter tests
based on Wald statistics.

Cases in which the outcome is binary or ordered are
also intriguing topics for future research. An important
disadvantage of the derived formulas comes from the
assumption that no units will be missing for all levels,
although attrition does often occur, especially in Level
1 and 2 units. However, as Heo and Leon (2008)
discussed, if variation of the numbers of respective
units is completely random, in the sense of missing
data, then the fixed sample sizes J and I may be

replaced by eJ ¼ 1=Kð Þ∑K
k¼1nk and eI ¼ 1=eJK� �

∑K
k¼1

∑ n k
j¼1 n jk , respectively. Here, n jk denotes the number

of Level 2 units in the k th Level 3 unit, and n jk

denotes the number of Level 1 units in j th Level 2
unit nested within the k th Level 3 unit.

One possible major limitation of the present research
regards the fact that the formulas were derived on the
basis of the random-intercept model. There are merits to
considering the random-intercepts model, since this
model provides direct information about intraclass cor-
relations, which are helpful in determining whether mul-
tilevel models are required in the first place. However,
the values of slopes can vary significantly among clus-
ters, and the random-intercepts model may not be real-
istic in actual data. Several researchers (Maas & Hox,
2005; Raudenbush & Liu, 2000; Usami 2011a) have
loosened this assumption and discussed ways for evalu-
ating the needed sample size on the basis of a random-
intercepts-and-slopes model. Although the relevant pa-
rameters and indices for evaluating statistical power
would be more complex, the formulas proposed here
could be directly extended to the case of a random-
intercepts-and-slopes model, and this could be an in-
triguing topic for future research.

Another limitation is the unrealistic assumption that
the residual variances are already known, leading to
ignoring asymptotic features of the sample distribution
and to the use of a normal distribution to conduct the
statistical test of Eq. 11. Therefore, sample sizes calcu-
lated from the derived formulas will generally be opti-
mistic and negatively biased. As Heo and Leon (2008)
noted, more accurate formulas could be evaluated under
noncentral t distributions. However, differences between

these distributions are trivial—as simulations performed
by Heo and Leon (2008) and Usami (2011a) showed—
because when the degrees of freedom are more than
20, the t distribution approaches a normal distribution.
This point seems to be important only when the esti-
mated required sample size becomes small (i.e., less
than 20)—for example, when a large effect size is
assumed.

In estimating the required sample size for hierarchical
data, one major problem facing all researchers designing
CRTs is the need to specify ICCs (Smeeth & Ng,
2002). In CRTs, the specification of ICCs becomes
problematic in behavioral research (for clinical trials,
see Hedges & Hedberg, 2007; Murray, Varnell, &
Biltstein, 2004; Shoukri, Asyali, & Donner, 2004), since
slight misspecifications of the ICCs may cause seriously
biased estimation of required sample sizes. As Smeeth
and Ng (2002) and Usami (2011b) pointed out, the
ideal solution would be to have ICCs available from
previous studies that were large enough and that had
sufficient clusters to generate reasonably accurate esti-
mates of the ICC for the variable of interest, although
this is generally impossible in practice. As Usami
(2011b) noted, although the conventional criteria pro-
vided in the literature, such as Raudenbush and Bryk
(2002, where ICCs of .05, .10, and .15 are small,
medium, and large, respectively) and Hox (2010,
where ICCs of .10, .20, and .30 are small, medium,
and large, respectively), are useful when no informative
data are available, actual ICCs depend heavily on the
features of the variables of interest and the units.
Presenting estimated ICCs for a range of outcomes
through a review, as Smeeth and Ng have done for
clinical trial research, will be a very useful to aid for
the specification of ICCs, and such reviews will be
strongly desired for various research areas. As another
strategy, constructing models that include covariates to
explain the variance of outcomes Y would also be a
useful approach to excluding the influence of ICCs
(Hedges & Hedberg, 2007; Murray & Blitstein, 2003).
However, note that when such covariates correlate high-
ly not only with the outcomes Y but also with the
assignment indicator variable X , estimates for an exper-
imental effect δ may be strongly biased and more
difficult to interpret (Usami, 2011b).

Although many issues are left to be investigated in
future research, in designing an experiment with hierar-
chical data based on either MRTs or CRTs in order to
evaluate an experimental effect, the derived formulas
and related results here will be of great help in estimat-
ing the required sample size to achieve a desired statis-
tical power and width of the confidence intervals in
actual research.

354 Behav Res (2014) 46:346–356



Appendix A

Appendix B

References

American Psychological Association. (2009). Publication manual of the
American Psychological Association (6th ed.). Washington, DC:
Author.

Balluerka, N., Gómez, J., & Hidalgo, D. (2005). The controversy over
null hypothesis significance testing revisited. Methodology, 1, 55–
70. doi:10.1027/1614-1881.1.2.55

Bezeau, S., & Graves, R. (2001). Statistical power and effect sizes of
clinical neuropsychology research. Journal of Clinical and Experi-
mental Neuropsychology, 23, 399–406.

Chow, S. C., Shao, J., & Wang, H. (2003). Sample size calculation in
clinical research (2nd ed.). New York, NY: Chapman & Hall.

Cohen, J. (1962). The statistical power of abnormal–social psychological
research: A review. Journal of Abnormal and Social Psychology,
65, 145–153. doi:10.1037/h0045186

Cohen, J. (1988). Statistical power analysis for the behavioral sciences
(2nd ed.). Hillsdale, NJ: Erlbaum.

Cohen, J. (1994). The earth is round (p < .05). American Psychologist,
49, 997–1003. doi:10.1037/0003-066X.49.12.997

Donner, A., & Klar, N. (2000). Design and analysis of cluster random-
ization trials in health research . London, UK: Arnold.

Dupont, W. D., & Plummer, W. D. (1998). Power and sample size
calculations for studies involving linear regression. Controlled
Clinical Trials, 19, 589–601.

Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G*Power 3: A
flexible statistical power analysis program for the social, behavioral,
and biomedical sciences.Behavior ResearchMethods, 39, 175–191.
doi:10.3758/BF03193146

Fosgate, G. T. (2007). A cluster-adjusted sample size algorithm for
proportions was developed using a beta-binomial model. Journal
of Clinical Epidemiology, 60, 250–255.

Goldstein, H. (2003). Multilevel statistical models (3rd ed.). New York,
NY: Oxford University Press.

Hedges, L. V., & Hedberg, E. (2007). Intraclass correlation values for
planning group randomized trials in education. Educational Evalu-
ation and Policy Analysis, 29, 60–87.

Heo, M., & Leon, A. C. (2008). Statistical power and sample size
requirements for three level hierarchical cluster randomized trials.
Biometrics, 64, 1256–1262.

Hox, J. (2010). Multilevel analysis: Techniques and applications (2nd
ed.). Mahwah, NJ: Erlbaum.

Laird, N. M., & Ware, H. (1982). Random-effects model for longitudinal
data. Biometrics, 38, 963–974.

Maas, C. J. M., & Hox, J. J. (2005). Sufficient sample sizes for multilevel
modeling. Methodology, 1, 86–92. doi:10.1027/1614-2241.1.3.86

Maxwell, S. E. (2004). The persistence of underpowered studies in
psychological research: Causes, consequences, and remedies. Psy-
chological Methods, 9, 147–163.

Maxwell, S. E., Kelley, K., & Rausch, J. R. (2008). Sample size planning
for statistical power and accuracy in parameter estimation. Annual
Review of Psychology, 59, 537–563.

Murray, D. M., & Blitstein, J. L. (2003). Methods to reduce the impact of
intraclass correlation in group-randomized trials. Evaluation Review,
27, 79–103.

Murray, D. M., Varnell, S. P., & Biltstein, J. L. (2004). Design and analysis
of group-randomized trials: A review of recent methodological devel-
opments. American Journal of Public Health, 94, 423–432.

Ogungbenro, K., & Aarons, L. (2009). Sample size/power calculations
for repeated ordinal measurements in population pharmacodynamic
experiments. Journal of Pharmacokinetics and Pharmacodynamics,
37, 67–83.

Okumura, T. (2007). Sample size determination for hierarchical linear models
considering uncertainty in parameter estimates. Behaviormetrika, 34,
79–94.

Table 2 Programs for estimating minimum required sample size in
MRTs and CRTs (Eqs. 23–26) when desired statistical power is ψ

MRTpower<-function(alpha,psi,rho1,Delta,P){

IJK<-floor((qnorm(1-alpha/2) + qnorm(psi))̂ 2*(1-rho1)/(P*(1-P)*Delta^2)) + 1

return(IJK)

}

CRTpowerI<-function(J,K,alpha,psi,rho1,rho2,Delta,P){

I<-floor(((1-rho1)*(qnorm(1-alpha/2) + qnorm(psi))̂ 2)/(J*K*P*(1-P)*Delta^2-
(qnorm(1-alpha/2) + qnor m(psi))̂ 2*((J-1)*rho2 + rho1))) + 1

return(I)

}

CRTpowerJ<-function(I,K,alpha,psi,rho1,rho2,Delta,P){

J<-floor(((I*(rho1-rho2) + 1-rho1)*(qnorm(1-alpha/2) + qnorm(psi))^2)/
(I*K*P*(1-P)*Delta^2-rho2*I*(q norm(1-alpha/2) + qnorm(psi))^2)) + 1

return(J)

}

CRTpowerK<-function(I,J,alpha,psi,rho1,rho2,Delta,P){

K<-floor(((1 + I*(J-1)*rho2 + (I-1)*rho1)(qnorm(1-alpha/2) + qnorm(psi))^2)/
(I*J*P*(1-P)*Delta^2)) + 1

return(K)

}

* I, numberofLevel 1units; J, numberofLevel 2units;K,numberofLevel3units;
alpha, two-sided significance level; psi, desired statistical power; rho1, intraclass
correlation coefficient (ICC) for Level 1 (Eq. 10); rho2, ICC for Level 2 (Eq. 9);
Delta, standardized effect size (Eq. 8); P, proportion of experimental group size

Table 3 Programs for estimating minimum required sample size in MRTs
and CRTs (Eqs. 29–32) when desired width of the confidence interval is L

MRTconfidenceinterval<-function(alpha,rho1,L,P){

IJK<-floor((4*qnorm(1-alpha/2)^2*(1-rho1))/(P*(1-P)*L^2)) + 1

return(IJK)

}

CRTconfidenceintervalI<-function(J,K,alpha,rho1,rho2,L,P){

I<-floor((4*qnorm(1-alpha/2)^2*(1-rho1))/(J*K*P*(1-P)*L^2-4*qnorm
(1-alpha/2)^2*((J-1)*rho2 + rho1 ))) + 1

return(I)

}

CRTconfidenceintervalJ<-function(I,K,alpha,rho1,rho2,L,P){

J<-floor((4*qnorm(1-alpha/2)^2(1-I*rho2 + (I-1)*rho1))/(I*K*P*(1-P)*L^2-
4*qnorm(1-alpha/2)^2*I*rho2)) + 1

return(J)

}

CRTconfidenceintervalK<-function(I,J,alpha,rho1,rho2,L,P){

K<-floor((4*qnorm(1-alpha/2)^2*(1 + I*(J-1)*rho2 + (I-1)*rho1))/
(I*J*P*(1-P)*L^2)) + 1

return(K)

}

* I, number of Level 1 units; J, number of Level 2 units; K, number of Level 3
units; alpha, two-sided significance level; L, desired width of the confidence
interval; rho1, intraclass correlation coefficient (ICC) for Level 1 (Eq. 10);
rho2, ICC for Level 2 (Eq. 9); P, proportion of experimental group size

Behav Res (2014) 46:346–356 355

http://dx.doi.org/10.1027/1614-1881.1.2.55
http://dx.doi.org/10.1037/h0045186
http://dx.doi.org/10.1037/0003-066X.49.12.997
http://dx.doi.org/10.3758/BF03193146
http://dx.doi.org/10.1027/1614-2241.1.3.86


Raudenbush, S. W. (1997). Statistical analysis and optimal design
for cluster randomized trials. Psychological Methods, 2, 173–
185.

Raudenbush, S. W., & Bryk, A. S. (2002). Hierarchical linear models:
Applications and data analysis methods (2nd ed.). London, UK:
Sage.

Raudenbush, S. W., & Liu, X. (2000). Statistical power and optimal
design for multisite randomized trials. Psychological Methods, 5,
199–213.

Raudenbush, S. W., Spybrook, J., Congdon, R., Liu, X., &
Martinez, A. (2011). Optimal design software for multi-level
and longitudinal research (Version 3.01) [Software]. Available
from http://www.wtgrantfoundation.org.

Roy, A., Bhaumik, D. K., Aryal, S., & Gibbons, R. D. (2007).
Sample size determination for hierarchical longitudinal de-
signs with differential attrition rates. Biometrics, 63, 699–
707.

Sedlmeier, P. (2009). Beyond the significance test ritual: What is there?
Journal of Psychology, 217, 1–5.

Shoukri, M. M., Asyali, M. H., & Donner, A. (2004). Sample size
requirements for the design of reliability study: Review and new
results. Statistical Methods in Medical Research, 13, 251–271.

Singer, J. D., & Willett, J. B. (2003). Applied longitudinal data analysis.
Oxford: New York, NY.

Skrondal, A., & Rabe-Hesketh, S. (2004). Generalized latent variable
modeling: Multilevel, longitudinal, and structural equation models .
Boca Raton, FL: Chapman & Hall/CRC.

Smeeth, L., & Ng, E. S.-W. (2002). Intra-class correlation coefficients for
cluster randomized trials in primary care: Data from theMRC trial of
the assessment and management of older people in the community.
Control Clinical Trials, 23, 409–421.

Usami, S. (2011a). Statistical power of experimental research with hier-
archical data. Behaviormetrika, 38, 63–84.

Usami, S. (2011b). A unified method for determining sample size needed
to evaluate mean difference in hierarchical research design and
construction of numerical table—Focusing on statistical power and
confidence interval of effect size. Japanese Journal of Educational
Psychology, 59, 385–401.

356 Behav Res (2014) 46:346–356

http://www.wtgrantfoundation.org

	Generalized sample size determination formulas for experimental research with hierarchical data
	Abstract
	Statistical model
	Derivation of generalized formulas
	Standard errors of δ
	Generalized formulas for desired statistical power
	Generalized formulas for confidence intervals
	Examples

	Some results relating the derived formulas
	Comparing CRTs and MRTs
	Relative influences of ρ2 and ρ1 in CRTs
	Asymptotic power and confidence intervals and minimum requirement for K in CRTs
	Cases with more than three levels

	Discussion
	Appendix A
	Appendix B
	References


