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Abstract Systems factorial technology (SFT) comprises a set
of powerful nonparametric models and measures, together with
a theory-driven experiment methodology termed the double
factorial paradigm (DFP), for assessing the cognitive
information-processing mechanisms supporting the processing
of multiple sources of information in a given task (Townsend
and Nozawa, Journal of Mathematical Psychology 39:321–
360, 1995). We provide an overview of the model-based mea-
sures of SFT, together with a tutorial on designing a DFP
experiment to take advantage of all SFT measures in a single
experiment. Illustrative examples are given to highlight the
breadth of applicability of these techniques across psychology.
We further introduce and demonstrate a new package for
performing SFT analyses using R for statistical computing.

Introduction

Systems factorial technology (SFT) is a framework for study-
ing how different sources of information combine in cognitive
processing (Townsend&Nozawa, 1995). These sources can be
as similar as visual information from the left and right visual
field or as disparate as the demands of two different tasks, such
as driving while talking on a cell phone. SFT stands out as a

particularly powerful framework because the various ways in
which information can be combined are classified on the basis
of mathematically defined model properties. Despite the con-
straints due to the rigor of the definitions, SFT is quite general
in that it requires no distributional or parametric assumptions
about the cognitive processes. Using these precise mathemati-
cal definitions, there are a number of tests within the SFT
framework to reject large classes of possible processing prop-
erties and support very specific properties.

While the mathematical rigor is an advantage of the frame-
work, the technical details can be overwhelming. In this article,
we describe the general process of SFT experimental design
and analysis and introduce a package for the R statistical
software (R Development Core Team, 2011), while leaving
the description of the mathematical details to others
(Dzhafarov, Schweickert, & Sung, 2004; Houpt & Townsend,
2010b, 2011, 2012; Townsend, 1972, 1974; Townsend &
Ashby, 1983; Townsend & Honey, 2007; Townsend &
Nozawa, 1995; Townsend & Wenger, 2004). We begin by
outlining the general purpose of SFT and the specific questions
the methodology can and cannot address. We then describe the
measures in SFT, the mean interaction contrast (MIC), survivor
interaction contrast (SIC), and the workload capacity coeffi-
cients. We cover the necessary experimental manipulations to
use the measures, the statistical tests associated with the mea-
sures, and how to use the R package for the measures. We will
end with a description of the double factorial paradigm (DFP),
an experimental setup that allows one to use both the SIC and
the capacity coefficients. In each section, we will describe the
relevant functions in the sftR package and give a brief example.
For reference, a complete list of the functions currently
implemented in the package is given in Table 1.

The goals of SFT

As was stated in the introduction, SFT is a framework for
understanding the cognitive processing of multiple sources of
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information. These multiple sources could take the form of
information from different modalities, such as audio and visual
information, or different properties of a stimulus within a
modality, such as color and shape. In many cases, the sources
are based on the experimental design and not necessarily on
psychologically meaningful features, such as the top half and
bottom half of a face (cf. Burns, Pei, Houpt, & Townsend,
2009). Questions about how the sources are processed together
can be grouped into four classes—architecture, stopping rule,
stochastic dependence, and workload capacity—each of which
will be defined below (cf. Townsend, 1974).

Before going into the details of each of those properties, we
first want to point out that SFT is not designed for studying a
single source in isolation. Psychologists are often interested in
how changes in a single dimension of a stimulus correspond to
changes in performance. This includes finding psychometric
curves, just noticeable differences, and so forth. SFT is not the
appropriate tool for these questions. The SFT approach is

focused on multiple sources of information, each of which can
be used to make a response. Additionally, the theoretical tools
described in this article were developed for high-accuracy tasks,
although the general theory can be extended to include varia-
tions in accuracy (e.g., Townsend & Altieri, 2012).

Architecture

Within the SFT framework, architecture refers to the temporal
organization of the processes.1 Within this approach, we are
interested in assessing whether the processes fall into one of a
few broad classes of architectures, in order to qualitatively
characterize the system structure. One such class, foundational
to the early work in response time research (e.g., Donders,
1969), is a serial architecture. When a serial architecture is
employed, each source of information is processed one at a
time in a sequence—that is, serially. For example, if a partici-
pant is watching the left and right sides of a display to deter-
mine whether a small dot appears (see Townsend & Nozawa,
1995), a serial architecture would mean that he or she first
checks whether the dot has appeared on one side, then the other.
Note that a serial architecture does not necessarily mean the
dots are checked in a specific order or even the same order each
time, but only that one side is checked before the other on each
trial. Two types of serial architecture are depicted in Fig. 1. The
difference between these serial processes is the stopping rule,
which is discussed in the next section.

In contrast, both sources of information may be processed
simultaneously—that is, in parallel.With a parallel architecture,
the participant watching the monitor would concurrently check
both the left and right sides for the appearance of a dot. Parallel
architectures are depicted in Fig. 2. Like the serial models in
Fig. 1, the difference between these parallel processes is the
stopping rule, which is discussed in the next section.

As another example of the distinction between parallel and
serial processing, consider a categorization task in which
categories are determined by two different dimensions—say,
color and form (see Fifić, Little, & Nosofsky, 2010). In a serial
process, one would first check which category is indicated by
the shape (color) of the object, then check which category is
indicated by the color (shape). In a parallel process, both color
and shape are examined at the same time.

A special case of parallel processing, referred to as coactive
processing, is when the information is pooled before a

Table 1 Complete list of the functions included in the sft package with a
brief description

Function Description

capacity.and Calculates the capacity coefficient for exhaustive
(AND) processing

capacity.or Calculates the capacity coefficient for first-
terminating (OR) processing

capacityGroup Performs workload capacity analysis on each
participant and each condition

estimateNAH Calculates the Nelson–Aalen estimator of the
cumulative hazard function

estimateNAK Calculates the Nelson–Aalen estimator of the
cumulative reverse hazard function

estimateUCIPand Estimates the cumulative reverse hazard function of
an UCIP process on an AND task

estimateUCIPor Estimates the cumulative hazard function of an UCIP
process on an OR task

mic.test Performs either an adjusted rank transform or
ANOVA test for an interaction at the mean level

sic Calculates the survivor interaction contrast and
associated measures

sic.test A nonparametric test of for significant positive and
negative parts of an SIC

sicGroup Performs SIC analysis on each individual and each
condition of a DFP experiment

siDominance Tests for the ordering of survivor functions implied by
selective influence using KS tests

ucip.test A nonparametric test for capacity values significantly
different than those predicted by the estimated
UCIP model

The capacity and survivor interaction contrast functions are explicated in
the text. UCIP refers to unlimited capacity, independent, parallel. For
more details on the syntax for each function, the manual is available on
the Comprehensive R Archive Network (http://cran.r-project.org/web/
packages/sft/sft.pdf).

1 In other areas of cognitivemodeling, architecture is used to refer to fixed
properties of the cognitive system. In some cases, this may include the
temporal organization of the information processing, but they are distinct
concepts. Architecture in the sense of this article may vary with a
participant’s strategy, especially on high-level cognitive tasks in which
a participant has a fair amount of control over strategy (Fifić, Nosofsky, &
Townsend, 2008; Yang, 2011; Yang, Chang, & Wu, 2012; C. T Yang,
Hsu, Huang, & Yeh, 2011). Architecture in the other sense could refer to
properties that we classify under other monikers, such as workload
constraints on information-processing efficiency.
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decision is made. In a standard parallel model (e.g., those
depicted in Fig. 2), a decision about each source of informa-
tion is made separately; then each of those individual deci-
sions are combined (usually according to a stopping rule,
defined below) for the final decision or action. In a coactive
architecture, all of the information is used together to directly
make the final decision. The pooling can take different forms,
although the most well-developed coactive models assume
that the information is summed and the total is compared with
a threshold to make a decision (e.g., Houpt & Townsend,
2011; Schwarz, 1989; Schwarz, 1994; Townsend &
Nozawa, 1995). This coactive model is depicted in Fig. 3.

An interesting example of a case where coactive processing
is possible is when information sources from different modal-
ities are processed together (e.g., Miller, 1982). Suppose that
you need to determine whether someone speaking has said
“bad” or “dad” on the basis of seeing the speaker’s mouth and
hearing the word spoken (see Altieri & Townsend, 2011). If
you first check for the difference between the “b” and “d” only
on the basis of what you hear, then only on the basis of how
the speaker’s mouth looked when he or she pronounced the
word, this would be a serial process. If you simultaneously
process the visual cues and the aural cues, you are using a
parallel process. Coactive processing is the special case in
which, instead of separately determining whether the mouth
indicates “bad” and the sound indicates “bad,” you pool
evidence from both modalities to make the decision.

Other architectures may be possible, particularly with more
than two sources of information. Many of those possible
architectures can be formulated in terms of combinations of

parallel and serial processes. These more advancedmodels are
beyond the scope of this article, but the theoretical work on
SFT for more than two sources continues to evolve.

Stopping rule

A second question that arises with respect to the combination
of multiple sources of information is that of the stopping rule,
or how many sources of information are processed before a
person responds.2 Similar to the SFTapproach to architecture,
the SFT approach is concerned with the qualitative classes of
stopping rule, rather than exact quantitative measures of in-
formation, and so the methods will assess which class of
stopping rule is engaged given a particular task. One possibil-
ity is that a person must exhaustively process all of the
information available before responding. We will often refer
to this as AND processing, in reference to the Boolean rule
combining the decision on each source, but it is also known as
an exhaustive or maximum time stopping rule. AND stopping
rules can be used with serial models (bottom of Fig. 1) and
parallel models (bottom of Fig. 2).

Alternatively, a person may respond as soon as he detects a
target, regardless of how many other sources of information
are present. This stopping rule is often referred to as self-
terminating. Self-terminating stopping rules encompass a va-
riety of possible decision situations, ranging from decisions
based on a single target among distractor information to
needing to identify a subset of multiple targets for a decision,
although not all targets as in the AND case. In the special case
in which all sources of information indicate a target (also
known as a redundant-targets task), a person can respond as
soon as any one source is finished processing. This is referred
to as a first-terminating process, or often, simply OR, again in
reference to the Boolean logic rule. Self-terminating stopping
rules can be combined with serial models (top of Fig. 1) and
parallel models (top of Fig. 2).

The design and demands of an experiment will often re-
quire a participant to use a particular stopping rule to correctly
respond. For example, if participants were asked to respond

Fig. 1 Serial architectures with OR (above) and AND (below) stopping
rules. In serial processes, each target is processed sequentially. In an OR
process, the participant can stop once either A or B has completed. In an
AND process, both A and B must complete before a response is made

Fig. 2 Parallel architectures with OR (above) and AND (below) stopping
rules. In parallel processes, each target is processed at the same time. In an
OR process, the participant can stop once either A or B has completed. In
an AND process, both A and B must complete before a response is made

Fig. 3 A coactive model, based on the summed activation of the channels

2 In many models, the amount of information required to stop processing
a given source (i.e., the threshold in an information accumulator model;
cf. Brown & Heathcote, 2008; Link & Heath, 1975; Ratcliff & Smith,
2004) can vary. This also falls under the general category of stopping rule.
However, the SFT approach does not include the more detailed analyses
involved in identifying changes in the amount of information needed for
each subprocess to finish.
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positively only if they detected both a dot above the midline
and a dot below the midline of a display, they would need to
check both above and below before responding (e.g., Eidels &
Townsend, 2009; Townsend & Nozawa, 1995). If the instruc-
tions change so that a positive response is made if there is a dot
detected in at least one position, above or below (or both), the
task no longer requires the AND stopping rule but allows for
self-terminating responses. However, even when the task al-
lows for a self-terminating process, people may still exhaus-
tively process the information, as has been observed in some
clinical populations (e.g., Johnson, Blaha, Houpt, &
Townsend, 2010).

Stochastic dependence and selective influence

Another well-studied property of combined information pro-
cessing is the extent to which each process depends on the
others. We formalize this construct with the probabilistic defini-
tion of independence. If the distribution of the processing times
of all of the sources is equal to the product of the distributions of
the processing time of each individual source, we say that they
are independent. Otherwise, they are dependent.

A closely related, although not identical, concept is that of
selective influence. An experimental manipulation selectively
influences the processing of a source if that factor changes the
processing of that source but processing of all other sources is
unchanged. In the dot detection experiment described above,
selective influence of the contrast manipulation of a dot would
mean that reducing or increasing the contrast of the dot above
fixation does not change how quickly dots below fixation are
detected and vice versa. For a more formal treatment of
selective influence, see Dzhafarov (2003; Dzhafarov &
Gluhovsky, 2006).

There are different ways that the independence might fail,
some of which may also cause failures of selective influence.
One way that a dependence between the processing times
could arise is when an external factor, such as attention, speeds
up or slows down the processing of all of the sources. When a
person is more focused on the task, processing times will be
faster for all sources. When he or she is less focused, process-
ing times will be slower. Thus, if the processing time for one
source is known to be fast, it is more likely that the person was
focused, and hence, processing times for the other sources are
likely to be faster. Therefore, the processing times are depen-
dent. Despite this dependence, selective influence may still
hold, as long as the experimental manipulation does not affect
the participant’s attention.

Completion times may also be dependent due to interactions
among the processes (e.g., Eidels, Houpt, Pei, Altieri, &
Townsend, 2011; Townsend & Wenger, 2004), which will also
lead to failures of selective influence (cf. Townsend & Thomas,
1994). For example, with configural stimuli, such as faces (Fifić
& Townsend, 2010) or words (Houpt & Townsend, 2010a),

different sources of information within the stimulus can facilitate
each other. One way this may occur in faces is that the more
detail one perceives from the left side of a face image, the more
information one has about the right side of that same face image.
Facilitation among sources of information can also occur when
participants are highly trained with a stimulus such that the
components are unitized and practiced (e.g., Blaha, 2010).

A further potential source of dependence arises if partici-
pants discern, even implicitly, conditional stimulus probabil-
ities based on the presentation rates of different stimulus
elements (Mordkoff & Yantis, 1991). This dependence can
be mitigated by careful experimental design, and we will
return to a discussion of this issue in greater detail in the
Stimulus Rates and Contingencies section.

Workload capacity

A fourth property characterizing the processing of multiple
sources is how the processing rate of each source changes as
more sources are added. This characteristic is termed workload
capacity, which is a special case of the general system
information-processing capacity (see Townsend & Ashby,
1983). Note that in the SFT context, capacity refers to the
information throughput characteristics of the system, addressing
the question of how much work can be completed (i.e., informa-
tion processed) in a given amount of time.Additionally,workload
refers to themanipulation of the number of sources of information
(e.g., number of stimulus modalities, number of features in an
object). Thus, workload capacity assesses howmuch information
is processed over time when the amount of information available
to be processed is manipulated. For example, a recent study
applied the workload capacity construct to inform models of the
Thatcher illusion (Donnelly, Cornes, & Menneer, 2012). They
showed that, although participants were faster at detecting a
manipulation of the features when multiple manipulations were
present in the stimulus, there was no evidence that the processing
of each feature had changed. This result is evidence against
positive interactions between the feature-specific processes, a
common explanation of the Thatcher illusion.

As with architecture and stopping rule, the SFT approach is
to qualitatively assess any changes in processing rates by clas-
sifying capacity into one of three categories: limited, unlimited,
and super-capacity. Limited-capacity processing is when per-
formance on each individual source degrades as the number of
sources increases. This degradation is typically interpreted as a
slowing of individual information sources’ processing rates in
the presence of additional sources. Unlimited capacity refers to
performance that reflects no effect of an increased workload on
each individual process (i.e., the additional sources do not
influence the processing rate of the original information
sources). Finally, super-capacity is when performance on each
source is better under increased workloads, meaning that the
addition of more information sources has resulted in increased
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processing speed for the other individual sources. Humans are
not likely to show unlimited capacity, let alone super-capacity,
with a large number of sources. Nonetheless, super-capacity is
often observed in experimental settings using a limited number
of sources (e.g., Blaha, 2010; Houpt & Townsend, 2010a). In
some cases, this is the result of facilitation (a positive stochastic
dependence) among the processes. Another situation that would
result in super-capacity is if participants exhibit less focused
attention on single-source tasks, perhaps because they are rel-
atively easy, but focus more attention on the task when there are
multiple sources present.3 Further research on how super-
capacity can arise is an exciting direction for SFT in applied
cognitive psychology (cf. Repperger et al., 2009). Under this
capacity taxonomy, the aforementioned Thatcher illusion study
by Donnelly et al. (2012) found unlimited capacity, despite the
popular notion that the perception of face parts is super-capacity
when the parts are presented in their normal configuration.

The measures in SFT

Having delineated the basic processing aspects, we now turn
to the SFT measures available for analyzing these properties.
We note that all four of the constructs above are independent
properties, so a system can be defined by any combination of
architecture, stopping rule, (in)dependence, and workload
capacity level. If it were possible to directly observe the time
it takes for each process to complete, analysis would be
greatly simplified. Unfortunately, observed response times
are based on the aggregate of the various properties. For
example, when an audio target and visual target are present
in an OR task, a given response time could be produced by
any combination of each of the properties above (Townsend,
1972; Townsend & Ashby, 1983). Even if we know how long
responses to audio and visual targets take in isolation, all
combinations are still possible, although some trade-offs are
necessary depending on the observed response times on the
OR task. For example, longer response times in the redundant-
target condition could be due to limited-capacity parallel
processing or unlimited-capacity serial processing. It is there-
fore critical to find ways to analyze all four properties simul-
taneously from a single set of measurements.

SFT includes measurements that are informative with re-
gard to architecture, stopping rule, workload capacity, and
stochastic dependence. The MIC and the SIC are tools for
analyzing architecture and stopping rules and can, in some
cases, also be informative about stochastic dependencies. The
capacity coefficients for OR processes, COR(t), and AND
processes, CAND(t), are useful for measuring workload

capacity and stochastic dependencies; some inferences
about architecture may also be possible from the capacity
coefficients.4

One important feature of the SFT measures is that they are
nonparametric in nature, thereby enabling researchers to in-
vestigate the information-processing properties for a given
task without any parametric assumptions about the response
time distribution. All of the measures present here are based
on some transformation of the empirical response time
distribution.

The survivor interaction contrast and mean interaction
contrast

The SIC (Townsend & Nozawa, 1995) indicates the architec-
ture and stopping rule of the underlying information-
processing system. To estimate the SIC for a participant in a
given task, response times are needed from conditions in
which the speed of processing each individual source of target
information is factorially manipulated. Then an interaction
contrast of the estimated survivor functions of the response
times for those conditions is taken.

The survivor function, S(t), is the probability that an event
has not yet occurred by time t; that is, the survivor function of
a random variable X is SX(t) = Pr {X > t} (see Fig. 4 for a
depiction of the various descriptions of a random variable).
For response times, it is the probability that a participant has
not responded by a given time. S(t) is the complement of the
more familiar cumulative distribution function (CDF), FX(t) =
Pr {X ≤ t},

FX tð Þ ¼ Pr X ≤ tf g ¼ 1−Pr X > tf g ¼ 1−SX tð Þ:

Much of the early work with the SIC focused on simple
visual detection tasks, so an experimental manipulation to
speed up and slow down processing is frequently referred to
as a salience manipulation. Conditions that should lead to
faster processing are usually denoted by an “H” for high
salience; slow conditions are usually denoted by an “L” for
low salience. For example, SHL(t) is the survivor function of
the response times when the first target is high salience and the
second target is low salience.

With all of the notation in place, we now can state the SIC
for two sources of target information:

SIC tð Þ ¼ SLL tð Þ−SLH tð Þ½ �− SHL tð Þ−SHH tð Þ½ �: ð1Þ

3 We do not wish to claim that participants frequently, or even ever, attend
more to the task when there are multiple sources of information. We only
wish to indicate that it is not entirely an unreasonable possibility.

4 Each of the tools in isolation is relatively weak with respect to analyzing
stochastic dependence, but they are powerful when used together (Eidels
et al., 2011).
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Each of the two parts of the contrast in brackets should
generally be positive: Response times in a low-salience condi-
tion should tend to be longer than those in a high-salience
condition, and longer response times lead to larger survivor
functions, relative to the high-salience conditions. While this
ordering does not always hold, the assumption of effective
selective influence is sufficient to guarantee that the survivor
functions are ordered as expected: SHH < {SLH, SHL} and SLL >
{SLH, SHL} (see Fig. 5).

5 Effective selective influence does not
imply any particular relationship between SHL and SLH, and
their order does not affect any conclusions about the models.

When effective selective influence holds, each of the par-
allel and serial models with OR and AND stopping rules has a
unique SIC form regardless of the distributions of the individ-
ual channel completion times (Dzhafarov et al., 2004;
Townsend & Nozawa, 1995). Figure 6 depicts these SIC
forms. A parallel model with an OR stopping rule has an
entirely positive SIC. A parallel model with an AND stopping
rule has the opposite, an entirely negative SIC. Serial process-
es with OR stopping rules have flat SICs, equal to zero for all
times. A serial process with an AND stopping rule is first
negative, then positive, producing an s-shaped signature.

Additionally, two types of coactive models, one based on
Poisson processes (Townsend & Nozawa, 1995) and the other
based on diffusion processes (Houpt & Townsend, 2011), also
have SIC forms that differ from the serial and parallel models.
Like the serial-AND models, these coactive processes have an
SIC that is first negative, then positive. The SIC for a coactive
model is shown in Fig. 7. The feature that distinguishes the serial-
AND and coactive models is the relative negative and positive
areas under the SIC curve; serial-AND processes have equal
positive and negative areas, while coactive processes have more
positive area under the SIC curve. To measure the area under the
curve, we use the integrated SIC. Due to a useful property of
positive random variables (such as response times), the integrated

SIC turns out to be an interaction contrast of the mean response
times:

MIC tð Þ ¼ MLL tð Þ−MLH tð Þ½ �− MHL tð Þ−MHH tð Þ½ �: ð2Þ

Thus, when the SIC exhibits an s-shape, a positive MIC
indicates a coactive process, and a zero MIC indicates a serial
process with an AND stopping rule.

Other SIC forms can also arise from channel interactions
(Eidels, Houpt, Pei, Altieri, & Townsend, 2011). These inter-
actions lead to violations of selective influence, so the SIC
forms are no longer required to be those shown in Fig. 6.
Instead, depending on the degree of interaction, parallel-
facilitatory models can have SIC shapes ranging from the
predicted independent form to matching the s-shaped coactive
form. Inhibitory, parallel models with OR stopping rules re-
main entirely positive, whereas inhibitory, parallel models with
AND stopping rules can have SIC forms ranging from entirely
negative to nearly entirely positive. The analogous work on
interactive serial models is yet to be completed.

SIC in R

The sft package in R (R Development Core Team, 2011)
includes the sic function to calculate the SIC and MIC.6 The
function takes response times from each of the salience con-
ditions, HH, LH, HL, and LL, and returns a stepfun object
representing the estimated SIC.7 The function returns addi-
tional useful information for interpreting the SIC. It includes
the results of a series of Kolmogorov–Smirnov tests for dis-
tribution ordering used to check for the expected ordering of
survivor functions mentioned above, SHH < {SLH, SHL} and
SLL > {SLH, SHL}. The survivor ordering test can also be run in
isolation, using the siDominance function.

The sic function also performs a statistical analysis to
determine whether the positive and negative parts of the SIC

5 The additional adjective “effective” simply means that the salience
manipulation has an effect: Channel processing times should be faster
when the input is high salience. Here, we mean a particularly strong type
of faster, that the response times for the fast condition should stochasti-
cally dominate the response times for the slow condition: SH(t) ≤ SL(t) for
all ts, with SH(t) < SL(t) SH(t) < SL(t) for at least some t.

6 We will cover the sft functions together with the relevant theory and
definitions without detail regarding data formats; we address the format-
ting of data for use in sft in a later section.
7 The calculation of the SIC is based on the R function ecdf. Both the ecdf
function and the stepfun class are included in the stats package as part of
R (R Development Core Team, 2011). For details on these or any other
function or class in R, we suggest the use of the help function.
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are significantly different from zero. Currently, the only sta-
tistical test of the SIC is based on the generalization of the two-
sample Kolmogorov–Smirnov test, as described in Houpt and
Townsend (Houpt & Townsend, 2010b).8 This test performs
two null-hypothesis tests to separately assess the positive-
going deviations from SIC(t) = 0 and the negative-going
deviations from SIC(t) = 0. The first test for whether the
largest positive value of the SIC (D+) is significantly different
from zero is a one-sided test with H0 :D

+ ≤ 0 andHa :D
+ > 0;

the result of this test is reported as sic$positive, with both the
test statistic value and exact p-value returned. The second test
is a one-sided test for whether the largest negative value (D−)
is significantly different from zero, with H0 : D

− ≥ 0 and Ha :
D− < 0. The result of this test is reported as sic$negative, with
both the test statistic value and exact p-value reported.

There is also a separate function,mic.test, for performing a
two-tailed test of the MIC value under the null hypothesis that

MIC = 0 against the alternative hypothesis thatMIC ≠ 0. There
are two options. IfART = TRUE the adjusted rank transform
test (ART; Reinach, 1960; Sawilowsky, 1990), a nonparamet-
ric test, is used. If ART = FALSE, then an ANOVA is used.
Like the sic function,mic.test takes response times from each
of the salience conditions as input. It then returns the exact
p-value and test statistic from the chosen test.

Example 1 demonstrates the use of the sic function applied
to data simulated from a serial-AND model. The survivor
dominance tests all indicate proper ordering, meaning that
the SIC shape should be interpretable. Both D+ and D− are
significant, indicating that the SIC has both positive and
negative parts. Both coactive and serial-AND models predict
significant positive and negative parts, so we also check MIC,
which is not significantly different from zero. These results
would lead us to reject parallel processes and serial-OR
models in favor of a serial-AND model (Fig. 8).

8 Some researchers have attempted to apply bootstrapping for hypothesis
testing with the SIC. However, there are problems with that approach.
One can estimate pointwise confidence intervals, then check the confi-
dence interval at each point to see whether it includes zero. If one were to
conclude that the function is significantly nonzero, the type I error rate
would be much higher without appropriate correction. With a large
number of estimated points on the SIC, a correction based on the as-
sumption that each test is independent (e.g., Bonferroni) would make it
nearly impossible to find a significant value of the SIC. Determining the
appropriate correction on the basis of the true dependencies among the
points is possible, but it is more straightforward to simply treat the SIC as
a function for hypothesis testing. Bootstrapping tests are possible for
hypotheses about the function, but asymptotic tests (such as the Houpt
and Townsend, 2010b, test) are usually (always?) more powerful. On the
basis of these issues, we have decided not to include bootstrap tests for
SIC and C(t) measures in either the package or this article.

Coactive

Fig. 7 Survivor interaction contrast prediction for the Poisson- and
diffusion-based information summing coactive models
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Fig. 6 Survivor interaction contrast predictions for parallel and serial
models with AND and OR stopping rules, assuming selective influence
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Fig. 5 An example of survivor functions with the order implied by
effective selective influence. HH indicates that both targets are processed
relatively fast—that is, are high salience. HL indicates that one target is
high salience and the other is low salience; LH and LL follow the same
scheme. Note that the relationships SHH < SHL, SHH < SLH, SLL > SHL, and
SLL > SLH are implied by selective influence but a specific ordering
relationship between SHL and SLH is not implied
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The capacity coefficient

The capacity coefficients are based on the comparison of per-
formance with multiple sources with a baseline calculated from
performance with each single source of information. These
functions can indicate variations in workload capacity, as well
as dependencies among source processing times. Although a
capacity coefficient could be defined for any stopping rule, the
most commonly used are the OR capacity coefficient
(Townsend&Nozawa, 1995) and the AND capacity coefficient
(Townsend & Wenger, 2004). The baseline for comparison is
based on the assumptions that processing of multiple sources is
unlimited-capacity, independent, and parallel (UCIP).

OR processes

In an OR process, the probability that a response has not yet
been made (the survivor function of the response times) is the
probability that a target has not yet been detected on any
channel. If wewrite SAB(t) for the survivor function of response
times when both A and B are present targets and SA(B)(t) for the
survivor functions of the channel completion times on Awhen
the B target is present (and likewise for B in the presence of A),
then, assuming the sources are independent,

SAB tð Þ ¼ SA Bð Þ tð Þ � SB Að Þ tð Þ:

With the additional UCIP assumptions, the completion
time distribution of A is unchanged regardless of whether B
is present or not, SA(B)(t) = SA(t), and likewise for B, SB(A)(t) =
SB(t). This is a situation commonly termed context invariance
or context independence of the response time distributions. It
follows from context invariance that a UCIP model predicts
that the survivor function when both targets are present is
equal to the product of the survivor functions for each target
in isolation:

SAB tð Þ ¼ SA tð Þ � SB tð Þ:
The argument holds more generally; under the UCIP as-

sumption, the survivor function for any number of targets is
the product of the survivor function for each of those targets in
isolation:

S1…n tð Þ ¼ ∏
i¼1

n

Si tð Þ:

For both statistical reasons (cf. Houpt & Townsend, 2012)
and interpretability (cf. Townsend & Ashby, 1983; Townsend
& Eidels, 2011; Townsend&Nozawa, 1995), the OR capacity
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Fig. 10 Plot of a simulated unlimited-capacity coefficient from running
the capacity.and function in Example 3
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Fig. 9 Plot of a simulated limited-capacity coefficient from running the
capacity.or function in Example 2
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Fig. 8 Plot of a simulated serial-AND survivor interaction contrast from
running the sic function in Example 1
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coefficient is defined using cumulative hazard functions,
H(t).9 To get from survivor functions to cumulative hazard
functions, one simply needs to take the natural logarithm,
log[S(t)] = −H(t). Thus, because log(xy) = log(x) + log(y),
the cumulative hazard function for the UCIP processing of n
sources is

H1…n tð Þ ¼ −log S1…n tð Þ½ � ¼ −log ∏
i¼1

n

Si tð Þ
� �

¼
X
i¼1

n

Hi tð Þ:

The OR capacity coefficient is defined as a ratio of a
participant’s actual performance when all sources are present,bH1…n tð Þ , to performance predicted from a UCIP system:

COR tð Þ ¼
bH1…n tð ÞXn

i¼1
bHi tð Þ

: ð3Þ

The denominator is the estimated cumulative hazard
function for the UCIP model, derived from the response
times for each process in isolation, and the numerator is
the actual, observed performance with n target
sources.10

On the basis of Eq. 3, when the observed performance on all
sources is equal to the UCIP model prediction, thenCOR(t) = 1,
and we can interpret the throughput for the system as
exhibiting unlimited workload capacity. COR(t) < 1 implies
worse performance than the UCIP model, and we interpret
this performance as the system exhibiting limited workload
capacity. This indicates that there are limited processing
resources, there is inhibition among the subprocesses, or
the items are not processed in parallel (e.g., the items may
be processed serially). COR(t) > 1 implies better perfor-
mance than the UCIP model, in which case we interpret
the throughput as exhibiting super workload capacity. This
indicates that there are more processing resources available
per process when there are more sources of information,
there is facilitation among the subprocesses, or the items
are not processed in parallel (e.g., the items may be
processed coactively).

An alternative measure of capacity is based on the differ-
ence of cumulative hazard functions:

COR tð Þ ¼ bH1…n tð Þ−
X
i¼1

n bHi tð Þ: ð4Þ

Although this form is nonstandard, the variance function of
the estimator can easily be calculated, unlike in the standard
ratio form, thereby enabling a direct statistical test of COR(t)
(see Houpt & Townsend, 2012. for details). The qualitative
workload capacity interpretations of Eq. 4 are the same as
Eq. 3, but the reference value is now 0 rather than 1 (e.g.,
COR(t) = 0 is unlimited capacity, etc.).

OR capacity in R

The Nelson–Aalen estimator of the cumulative hazard
function (Aalen, Borgan, & Gjessing, 2008) can be
calculated using the estimateNAH function in the sft
package. It takes the response times as input and, if
desired, will also take an array indicating whether the
participant was correct on each trial to adjust the esti-
mate for incorrect responses. The estimateUCIPor func-
tion returns an estimate of a participant’s cumulative
hazard function when all targets are present, assuming
UCIP processing, based on performance on each of the
single-target conditions. It takes a list as input, in which
each element is an array of the response times for each of the
single-target conditions. An additional list with the correct
indicators for each condition can also be included. If the correct
indicators are included, the estimates will be adjusted to ac-
count for incorrect responses (see Houpt & Townsend, 2012,
for details). For both estimateNAH and estimateUCIPor, if
the correct indicators are not provided, the function assumes
that all of the response times correspond to correct trials. Both
estimateNAH and estimateUCIPor return estimated cumula-
tive hazard functions; however, estimateUCIPor returns an
estimate of the cumulative hazard function if each subprocess
is estimated using estimateNAH and the subprocesses are
combined according to a UCIP-OR model.

The OR capacity coefficient and related statistical test
(Houpt & Townsend, 2012) can be calculated using the
capacity.or function. It takes as input a list containing arrays
of response times from each condition (first the condition with
all target sources present, then each of the single-target source
conditions) along with an optional list of correct indicators to
use with the estimateNAH and estimateUCIPor functions.
The function also includes an indicator, ratio, for whether to
return the standard OR capacity coefficient (Eq. 3) or the
difference variant of the capacity coefficient (Eq. 4).

The capacity.or function returns an approxfun object
representing the standard ratio OR capacity coefficient ratio
function (optional argument ratio = TRUE, which is the

9 For details on the hazard function and its use in cognitive psychology,
see Chechile (2003).
10 We have not accounted for the additional time taken by nonperceptual,
non-decision-related processes, such as motor movements, in this deriva-
tion. This additional time would complicate the derivation, but it has only
a limited effect on the capacity coefficient predictions when the variance
of the additional time contributes relatively little to the variance of the
response time, which is reasonable for human data (Townsend & Honey,
2007). In particular, the extent to which the additional time changes
capacity estimates scales with the variance of the base time, leading to
underestimates of OR capacity (Townsend & Honey, 2007) and overes-
timates of AND capacity (Townsend & Eidels, 2011).

316 Behav Res (2014) 46:307–330



default) or the difference variant (ratio = FALSE) and
the outcome of the ucip.test for OR processing. The
ucip.test function returns the statistic value (a z-score)
and p-value from a two-tailed test of the null-hypothesis
of UCIP performance from Houpt and Townsend

(2012). Note that if ratio = FALSE, capacity.or also
reports the variance of the difference variant. If the
reported p-value is less than your chosen type I error
α level (e.g., .05), at least one of the UCIP assumptions
has failed (Fig. 9).

AND processes

In an AND process, the probability that a response was made
(the CDF of the response times) is the probability that a target
has been detected on all channels. If we write FAB(t) for the
CDF of response times when both A and B are present targets
and FA(B)(t) for the CDF of the channel completion times on A
when the B target is present (and likewise for B in the presence
of A), then, assuming that the sources are independent,

FAB tð Þ ¼ FA Bð Þ tð Þ � FB Að Þ tð Þ:

As part of the UCIP assumptions, the CDF of an individual
target detection time is assumed to not change with respect to
the presence of the other source, FA(B)(t) = FA(t), and likewise
for B, FB(A)(t) = FB(t). Hence,

FAB tð Þ ¼ FA tð Þ � FB tð Þ:

More generally, for n sources of information,

F1…n tð Þ ¼ ∏
i¼1

n

Fi tð Þ:
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Like the OR capacity coefficient, we take the natural log-
arithm of both sides to obtain capacity coefficient predictions.
Because the ANDmodel is in terms of the CDF rather than the
survivor function, this results in a cumulative reverse hazard
function, log[F(t)] = K(t).11 Hence, the UCIP prediction for an
AND task with n sources is

K1…n tð Þ ¼ log F1…n tð Þ½ � ¼ log ∏
i¼1

n

Fi tð Þ
� �

¼
X
i¼1

n

Ki tð Þ:

The AND capacity coefficient is defined as a ratio of the
participant’s actual performance when all sources are present,bK1…n tð Þ , to his predicted performance if he satisfied the UCIP
assumptions,

CAND tð Þ ¼
Xn

i¼1
bKi tð Þ

bK1…n tð Þ
: ð5Þ

The numerator is the estimated cumulative reverse
hazard function for the UCIP model, derived from the
response times for each process in isolation, and the
denominator is the actual performance. The UCIP pre-
diction is in the numerator for CAND(t), so that the
interpretation of values relative to one is consistent with
COR(t). Note that this is because relatively larger cumu-
lative hazard functions [H(t)] indicate faster processing,
while relatively larger cumulative reverse hazard func-
tions [K(t)] indicate slower processing.

As with Eq. 3, unlimited capacity is exhibited by the
system when CAND(t) = 1. CAND(t) < 1 implies worse
performance than the UCIP model, interpreted as limited
workload capacity. This indicates that there are limited
processing resources, there is inhibition among the sub-
processes, or the items are not processed in parallel
(e.g., the items may be processed serially). CAND(t) > 1
implies better performance than the UCIP model, interpreted
as super workload capacity. This indicates that there are more
processing resources available per process when there are
more processes, there is facilitation among the subprocesses,
or the items are not processed in parallel (e.g., the items may
be processed coactively).

As with the OR capacity coefficient, there is also a differ-
ence variant:

CAND tð Þ ¼ bK1…n tð Þ−
X
i¼1

n bKi tð Þ: ð6Þ

Again, this version allows the variance function of the
estimator to be more easily calculated, enabling a direct sta-
tistical test of the null hypothesis CAND(t) = 0 (Houpt &
Townsend, 2012). The interpretation of Eq. 6 remains the
same as Eq. 5, but the reference value is now 0 rather than 1
(e.g., CAND(t) = 0 is unlimited capacity, etc.).

AND capacity in R

The estimator of the cumulative reverse hazard function de-
veloped in Houpt and Townsend (2012) can be calculated
using the estimateNAK function in the sft package. It takes
the response times as input and, if desired, will also take an
array indicating whether the participant was correct on each
trial to adjust the estimate for incorrect responses. The
estimateUCIPand function returns an estimate of a partici-
pant’s cumulative reverse hazard function for processing all
targets, assuming UCIP processing, based on performance in
each of the single-target conditions. It takes a list as input, in
which each element is an array of the response times for each
of the single-target conditions. An additional list with the
correct indicators for each condition can also be included.
For both estimateNAK and estimateUCIPand, if the correct
indicators are not provided, the function assumes that all of the
response times correspond to correct trials.

The AND capacity coefficient and related statistical test
(Houpt & Townsend, 2012) can be calculated using the
capacity.and function. It takes as input a list containing arrays
of response times from each condition, along with an optional

11 For details on the reverse hazard function and its use in cognitive
psychology, see Chechile (2011).

Fig. 11 Double factorial paradigm simple visual detection task design.
High salience of the dots is a higher contrast level against the black
background than for the low salience contrast level, which is closer to
threshold detection levels. In this task, the light from the lower dot is one
source, and the light from the upper dot is the second source
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list of correct indicators to use with the estimateNAK and
estimateUCIPand functions. The function assumes that the
first item in the list corresponds to the condition with all
targets present, and each subsequent item corresponds to a
single-target condition. The function also includes an indica-
tor, ratio, for whether to return the standard AND capacity
coefficient (Eq. 5) or the difference variant of the capacity
coefficient (Eq. 6).

The capacity.and function returns an approxfun object
representing the AND capacity coefficient ratio function (op-
tional argument ratio = TRUE, which is the default) or the
difference variant (ratio = FALSE) and the outcome of the
ucip.test for AND processing. Note that if ratio = FALSE,
capacity.and also reports the variance of the capacity

coefficient difference variant. If the p-value is less than your
predetermined type I error α level, at least one of the UCIP
assumptions has failed (Fig. 10).

Additional R functionality

To run the statistical test without returning the additional
approxfun objects for the capacity coefficient and variance,
the ucip.test function is available. Like the capacity coefficient
functions, it takes as input a list of response time arrays and a
list of correct indicator arrays, with the first element correspond-
ing to the all-targets-present trials. The function also has a flag
to indicate whether to test the data against UCIP OR processing
(OR = TRUE) or UCIPAND process (OR = FALSE).
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There are also parametric methods for analyzing the capac-
ity coefficient, based on fitting the linear ballistic accumulator
model (Brown&Heathcote, 2008) to the data. The procedures
are outlined in Eidels, Donkin, Brown, and Heathcote (2010).
We hope to add this functionality to the sft package in the near
future.

The joint use of the SIC and C(t)

When the experimental manipulations selectively influence
the intended process, the SIC gives a clear indication of the
architecture and stopping rule of a system. When selective
influence fails, such as would occur if there were interactions
between the processes, it is more difficult to draw conclusions
from the SIC alone. Eidels et al. (2011) demonstrated that
under some levels of interaction between processes, the SIC
from one type of model can mimic the SIC signature of
another model. For example, they simulated a parallel-AND
model with facilitation that produces a SIC that was indistin-
guishable from the serial-AND SIC (Fig. 6, top right).

While this mimicry may be problematic when attempting
to use the SIC in isolation, Eidels et al. (2011) also showed
that the capacity coefficient can help to discriminate among
model possibilities. Because the capacity coefficient compares
performance with an unlimited-capacity, independent, parallel
baseline, facilitatory parallel systems will be relatively faster
and, thus, exhibit super-capacity relative to the UCIP baseline.
In contrast, unlimited-capacity, independent, serial processes
(also referred to as the standard serial model) are relatively
slower and exhibit limited-capacity coefficient values.
Consequently, when a partially negative, partially positive
SIC is observed and the MIC is zero, the capacity coefficient
can be used to distinguish between facilitatory parallel and
independent serial processes. For full details on the use of the
SIC with the capacity coefficient, refer to Eidels et al. (2011),
particularly Figs. 3 and 4.

Although the SIC and capacity coefficient can be used
together to analyze processing characteristics, it is important
to remember that any combination of underlying characteris-
tics is possible. For example, it is possible to have a limited-
capacity, facilitatory, parallel, exhaustive process.Whether the
capacity coefficient will indicate super, unlimited, or limited
capacity will depend on the relative degree of facilitation and
workload capacity limitation. The form of the SIC will also
depend on the degree of facilitation, ranging from all negative
to nearly all positive. Nonetheless, the degree of facilitation
does not in any way cause the architecture (or vice versa), just
as the facilitation and architecture are distinct from the under-
lying workload capacity.

Clearly, the interpretation of the data is more difficult when
there are interactions among the processes, so whenever pos-
sible, it is best to use experimental factors that selectively
influence the intended processes. When there is selective

influence, the SIC forms in Fig. 6 will hold regardless of the
workload capacity level.

Designing experiments for SFT

While all the SFT measures defined herein can be used indi-
vidually, Townsend and Nozawa (1995) developed a single
experimental paradigm integrating all the manipulations nec-
essary to utilize both the SIC and C(t) measures on a single set
of data. This experimental design is known as the double
factorial paradigm (DFP). There are two critical types of
manipulations that make up the DFP: manipulation of work-
load and manipulation of salience. The name double factorial
is a reference to the use of a full factorial combination of the
two manipulations, with each manipulation incorporating at
least two levels of each factor. In this section, we will illustrate
two types of DFP designs for experiments with and without
distractors in the stimuli. Example designs are shown in
Figs. 11, 12, and 13.

The first manipulation needed in the DFP is a workload
manipulation. This manipulation is necessary to assess the
workload capacity of the system or the information through-
put as the number of sources or targets increases. In a taskwith
n possible sources of information (e.g., n = 4 letters in a word,
as in Houpt & Townsend, 2010a), there are two critical levels
of workload needed for the capacity coefficient: one condition
in which all n sources/targets are presented simultaneously
(e.g., all four letters presented as a word or letter string) and n
conditions in which each of the sources/targets are presented
individually (e.g., each single letter presented individually, for
a total of four single-source conditions). The latter condition is
necessary for formulating the UCIP model predictions in the
capacity coefficients (Eqs. 3 and 5), while the former is
needed to compare actual performance with the UCIP
prediction.

In its purest form, the workload manipulation is a change in
the absolute number of physical items in the stimulus, such as
the number of items in a visual search display or the number of
features present in a face or an object. However, there are
times when it is not possible to have the pure absence of some
stimulus characteristic, such as hierarchical forms wherein the
global configuration would not exist without the local features
or when the experimental question demands the use of
distractors in order to assess the information contained in the
stimuli, like separable or integral dimensions. Workload in
these cases can be considered a manipulation of the number of
target information sources against either neutral nontarget or
even distractor information. No matter the class of stimuli
used, it is important that the aforementioned two condition
types are present: a condition in which participants respond to
all target sources together and all individual target conditions
for estimating the UCIP model prediction.
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The salience manipulation is needed to assess the process-
ing architecture and stopping rule with the SIC (andMICwhen
needed). This manipulation changes the processing speed for
the different targets or sources of information. The variation of
the processing rates of each source of information enables
inferences about the spatiotemporal arrangement of those sub-
processes (i.e., the architecture) based on the measurement of a
single response time. Often, the choice of salience manipula-
tion will depend on the task and the use of distractors in the
class of stimuli. We will review below some example manip-
ulations previously used in tasks with and without distractors.
Regardless of the design, however, the choice of physical
salience manipulation must meet the assumption of selective
influence; that is, each manipulation must affect only the speed
of processing of one of the subprocesses of interest.

Example DFP without distractors

Figure 11 illustrates a DFP experimental design for a simple
visual detection task in which there are only targets and no
possible distractor information from Eidels and Townsend
(2009). This is a variation on the original DFP design by
Townsend and Nozawa (1995), in which participants were
asked to make responses about the detection of one or more
dots of light presented in a dark environment. In this task, the
workload manipulation is the presence or absence of two
possible targets: a dot above fixation and a dot below fixation.
When a target is absent, it is not replaced by a distractor, so the
workload in this task, corresponding to the physical information
in the stimulus, directly translates to the number of possible
targets. With two possible targets, each of which could be
present or absent, the whole task has three possible target
workload levels: 0 (target absent), 1 (single target present), or
2 (double/redundant target present). The two single-target con-
ditions provide the data for the UCIP prediction in the capacity
coefficient, and the double-target-present, also called
redundant-target, condition provides the data to be compared
with the UCIP prediction in the capacity coefficients.

When a target is present in Fig. 11, it can occur at one of two
contrast levels, as illustrated by the lighter and darker gray dots,
representing higher and lower contrast levels, respectively. This
is the manipulation of target salience. The high-contrast dots
are well above detection threshold levels, appearing very bright
to the participants, resulting in short detection response times.
The lower contrast level results in slower detection because it is
not as bright as the high-contrast level. Note that this low
contrast does not need to be at the participant’s absolute detec-
tion threshold; it only needs to be low enough to produce longer
response times relative to the high-contrast dots, in accordance
with the selective influence assumption. In fact, it is desirable to
find a lower contrast level here that will order the response time
distributions according to selective influence but that still re-
sults in high detection accuracy.

When the workload manipulation is combined with the
salience manipulation, there are multiple redundant-target
stimuli. In this dot task with two salience levels and two
targets, there are four redundant-target stimuli that provide
the data for computing the SIC.

Note that the stimuli in Fig. 11 can be used for both AND
and OR decision rules, depending on the predetermined stim-
ulus–response assignment structure. If participants are asked
to respond when they detect the presence of any dot, the
response rule is OR, because they can correctly respond
“yes” when presented with the top dot alone, the bottom dot
alone, or both dots together. If participants are asked to re-
spond “yes” only when they detect two dots on the screen,
they are following an AND stopping rule; they can respond
“yes” correctly only when the top and bottom dots are
presented (upper left quadrant of Fig. 11 only) and must
respond “no” when zero or one dot is presented. Note that
the decision rule for this task is not dependent on the salience
manipulation of the targets.

Example DFP with distractors

The DFP can be modified for use on tasks involving distractors
in lieu of the presence/absence manipulation. There are two
ways in which distractor information can be conceptualized in
the DFP framework: as an uninformative placeholder for the
absence of a target (especially when true absence is not possible)
or as another source of information about the appropriate re-
sponse. The use of distractors is particularly critical for tasks in
which a pure absence manipulation is not possible, such as a
global–local object discrimination task. An example of a hierar-
chical forms DFP design used by Johnson et al. (2010) is
illustrated in Fig. 12; we note here that the use of distractor
information is critical in this task, because a global object cannot
exist without the local objects. Figure 12 illustrates a design in
which the distractor is simply a placeholder: A single distractor
dash is used to signify the absence of a target and provides a
baseline shape from which the salience manipulation (the
“pointy-ness” of the arrowhead) can be defined (high is more
pointy [a more pronounced arrowhead], while low is less pro-
nounced and more similar to the dash). The assumption here is
that because the distractor has only a single value, it provides
minimal competing information during the task. Thus, the
single-target conditions (global right arrow with local dashes
and global dash composed of local right arrows) provide the
single-target conditions for the UCIP prediction in C(t), and the
redundant arrow conditions (global right arrows composed of
local right arrows) provide the all-targets condition for C(t), as
well as the four redundant target stimuli (HH, HL, LH, LL) for
the SIC and MIC calculations. In Johnson et al., participants
were asked to make an OR decision similar to the above dot
detection task: respond “yes” when you see any right-pointing
arrows, global or local or both, and respond “no” only when you
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see no right-pointing arrows (the dash composed of dashes). But
just as in the dot detection task, this same set of stimuli could be
utilized in an AND decision task, where “yes” responses are
only to the redundant global–local right-pointing arrows.

Distractors can also be conceptualized as a second source of
information and can be manipulated (number and salience) just
as the target sources are. Such manipulation is critical for
experiments addressing questions about the nature of informa-
tion in multidimensional stimuli, such as whether the dimen-
sions are integral or separable (Garner, 1974; Garner &
Felfoldy, 1970). Manipulations of distractors are needed for
modeling classification or discrimination tasks, for example,
and variable distractors play a key role in visual and memory
search tasks. Figure 13 illustrates a way to use distractors as
additional, possibly competing, information sources with the
global–local arrows. In this design, rather than the absent target
being a single neutral nontarget dash, the nontarget distractors
are left-pointing arrows that can also vary in salience. The task
here could be an OR decision (respond “yes” if there are any
right-pointing arrows, global, local, or both) or AND (respond
“yes” only when both the global and local arrows are pointing
right). Interestingly, in this example, when there is an AND
decision on the redundant right-pointing arrows, there is a
corresponding OR decision being made about the left arrows.
When there is an OR decision on the right arrows, there
is a corresponding AND decision on the redundant left
arrows. Additionally, for assessing response biases and
counterbalancing the experiment, the experimenter can lever-
age this to provide instructions emphasizing the AND or OR
rule for the right or left arrows simply by changing the
experimenter-made assignment of arrow direction to target/
distractor class or response key. Because both the targets and
distractors are manipulated in their number and salience, it is
possible to model both types of stimuli with the SFT measures
to enumerate the processing characteristics of both the targets
and the distractors, although we cannot say whether or not the
same mechanisms are engaged in both cases.

Stimulus rates and contingencies

Consideration must be given early in the DFP design process
to the presentation rates for each stimulus or stimulus type
(redundant/double targets, single targets, target absent, etc.), in
order to minimize or eliminate two sources of bias that can
arise from stimulus contingencies. It is possible that correla-
tions between different target sources and/or between target
and nontarget items can be introduced through the rates of
presentation for the target and nontarget features/stimuli/
sources. Participants can often, even implicitly, pick up on
such correlations, which can then bias task performance. Of
particular concern to the present effort is that, within the DFP,

it is not possible to eliminate all nonzero contingencies, as we
will illustrate below. Thus, as experimenters, we must be
aware of these correlations, particularly if they provide any
advantage to redundant target conditions, because such ad-
vantages have been shown to affect the size of the redundant-
signals effect and influence the comparison between parallel
and coactive models (Mordkoff & Yantis, 1991). As we
discuss the possible contingencies, we will review the stimu-
lus rates for the DFP that will minimize the amount of rate-
based contingencies present in target detection tasks and
target/distractor discrimination tasks.

The statistical relationships between the various targets and
nontargets are called interstimulus contingencies (ISCs), which
can result in stochastic dependencies in the form of
interchannel cross talk between the information sources.
Mordkoff and Yantis (1991) have described mathematical
expressions that can be used to derive the ISCs that may be
present in an experimental design. ISC computations are based
on the difference between the conditional probability of one
stimulus element, given a second element, and the base rate of
the first stimulus element. In general, it is desirable for all
potential ISCs in an experimental design to be 0, so that there
is no potential for biasing performance on the basis of
the presence or absence of a particular stimulus element.
That is, knowing that a target or nontarget is present in one
channel should give you no information about whether or not
a target is present in the other channel. For a full discussion of
the influence ISCs can have on race model performance and
model identification, refer to Mordkoff and Yantis.

For our discussion of ISCs and to foreshadow the
coding scheme for the sft package, we will use the following
notation:

A The first source of information to be processed.

B The second source of information to be processed.

A2 High-salience target stimulus on first source.

A1 Low-salience target stimulus on first source.

A0 No stimulus on first source of information.

A−1 Distractor stimulus on first source of information.

Using this notation, the ISC between a nontarget and a
target element is given by

ISC A0⇒B1
� � ¼ P B1jA0

� �
−P B1

� �
or

ISC B0⇒A1
� � ¼ P A1jB0

� �
−P A1

� �
:

There are two ISCs of interest in the basic detection DFP
illustrated in Figs. 11 and 12: the relationship between a target
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in one channel and a nontarget element in the other and the
relationship of the target elements to each other. The ISCs of
interest are

ISC A0⇒B1
� � ¼ P B1jA0

� �
−P B1

� �
ISC B0⇒A1

� � ¼ P A1jB0
� �

−P A1
� �

ISC A1⇒B1
� � ¼ P B1jA1

� �
−P B1

� �
ISC B1⇒A1

� � ¼ P A1jB1
� �

−P A1
� �

The first two lines give the interstimulus contingencies of a
target appearing in one channel, given that a target is not
present in the other. Similarly, the third and fourth lines are
the interstimulus contingencies of a target appearing in one
channel, given that a target is present in the other.

There are two commonly utilized task structures for the
target detection DFP design that will exhibit ISC = 0 for all of
the above ISCs of interest. In one structure, which we refer to as
the equal category rates design, we first consider the four trial
types within the DFP design: redundant targets (AiB j, where i,
j ∊ {1, 2}), single targets on the first source (AiB0, where i ∊
{1, 2}), single targets on the second source (A0B j, where j ∊ {1,
2}), and target-absent trials (A0B0). We set the base rate of
presentation of each stimulus type to be equal, with i, j ∊ {1, 2}:

P AiBj
� � ¼ P AiB0

� � ¼ P A0Bj
� � ¼ P A0B0

� � ¼ :25:

This makes the unconditional probabilities of each target
P[Ai] = P[B j] = .5. The relevant conditional probabilities in
this task, with i, j ∊ {1, 2}, are

P BjjAi
� � ¼ :5

P AijBj
� � ¼ :5:

Thus, all the target ISC values are 0.
Note that in the equal category rate design, while the four

types of trials are presented with equal likelihood, the rates for
each individual stimulus in the design (i.e., the individual
stimuli that incorporate the salience manipulations) are not
equal. Rather, the rates for the individual stimuli depend on
the number of stimuli that fall into the four trial categories;
because there are different numbers of stimuli in each catego-
ry, the individual rates vary by category. Assuming that the
stimuli within a category are presented with equal likelihood,
this design results in individual stimulus rates of

P A2B2
� � ¼ P A2B1

� � ¼ P A1B2
� � ¼ P A1B1

� � ¼ 1

16

P A2B0
� � ¼ P A1B0

� � ¼ P A0B2
� � ¼ P A0B1

� � ¼ 1

8

P A0B0
� �¼ 1

4
:

A second possible DFP design, which we refer to as the
equal stimulus rates design, starts by assuming that all nine
individual stimuli in the DFP target detection design are
presented equally, P AiBj

� � ¼ 1
9 for i, j = 0, 1, 2, rather than

basing the rate on the trial type categories. In this case, the
unconditional probability of each target is P Ai

� � ¼ P Bj½ � ¼ 2
3 ,

and the relevant conditional probabilities, again with i, j ∊
{1, 2}, are

P BjjA0
� � ¼ 2

3

P AijB0
� � ¼ 2

3

P BjjAi
� � ¼ 2

3

P AijBj
� � ¼ 2

3

Thus, the ISC values are all 0. Note that ISC = 0 holds if we
break down all the probabilities by the stimulus level, high (2)
or low (1), in which case all the unconditional and conditional
probabilities are equal to 1

3 .
Potential ISCs in an experiment must be further bal-

anced out with nontarget-driven decision biases that may
be present in the task, which can also be determined
through contingency information (Mordkoff & Yantis,
1991). Where ISCs concern the statistical relationship be-
tween the identity (target/nontarget) information from each
source (and do not consider the assignment of each stimu-
lus to a response rule), nontarget-driven decision biases are
concerned with the influence that the presence of a nontar-
get in the stimulus may have on biasing the decision
process for a given task. These biases are captured in the
computation of nontarget response contingencies (NRCs).
The NRC is computed as the difference between the con-
ditional probability of a “target present” response given a
particular nontarget item and the baseline proportion of
“target present” trials in the experiment. That is,

NRC Nð Þ ¼ P þjN½ �−P þ½ �;

where P[+] is the unconditional probability of a “target
present” trial and P[+|N] is the conditional probability of a
“target present” trial given the presence of a nontarget
stimulus item.

For the DFP target detection designs, we want to consider
the NRCs for two stopping rules, OR and AND, using the two
common designs outlined in the previous section. In the equal
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category rates design, in which P[AiB j] = P[AiB0] = P[A0B j] =
P[A0B0] = .25, for the OR stopping rule,

POR þ½ � ¼ 3

4

POR þjA0
� � ¼ POR þjB0

� � ¼ 1

2

NRC A0
� � ¼ NRC B0

� � ¼ 1

2
−
3

4
¼ −1

4
:

And for the AND stopping rule,

PAND þ½ � ¼ 1

4
PAND þjA0

� � ¼ PAND þB0
� � ¼ 0

NRC A0
� � ¼ NRC B0

� � ¼ 0−
1

4
¼ −1

4
:

Thus, for both stopping rules, we see by the negative NRC
values that in the DFP detection design, the presence of a
nontarget trial is correlated with a “target-absent” response.

Now consider the equal stimulus rates design in which all
nine stimuli are presented at equal rates. Starting again with
the OR stopping rule,

POR þ½ � ¼ 8

9

POR þjA0
� � ¼ POR þB0

� � ¼ 2

3

NRC A0
� � ¼ NRC B0

� � ¼ 2

3
−
8

9
¼ −2

9
:

And for the AND stopping rule,

PAND þ½ � ¼ 4

9
PAND þjA0

� � ¼ PAND þjB0
� � ¼ 0

NRC A0
� � ¼ NRC B0

� � ¼ 0−
4

9
¼ −4

9
:

Table 2 Channel codes for double factorial paradigm target detection designs

Trial Type Source 1 Source 2 sft Data Coding Trial Rates

Channel1 Channel2 OR AND

Redundant targets High target High target 2 2 1
9

1
16

High target Low target 2 1 1
9

1
16

Low target High target 1 2 1
9

1
16

Low target Low target 1 1 1
9

1
16

Single target A High arget Absent 2 0 1
9

1
8

Low target Absent 1 0 1
9

1
8

Single target B Absent High target 0 2 1
9

1
8

Absent Low target 0 1 1
9

1
8

Target absent Absent Absent 0 0 1
9

1
4

Trial rates are the proportion of the total trials recommended for minimizing the nontarget response contingencies (see the text for details). The OR task is
based on the equal stimulus rate design, and the AND task is based on the equal category rate design.

Fig. 12 Global–local arrow stimuli in the target present/absent double
factorial paradigm design from Johnson Blaha, Houpt, and Townsend
(2010). Arrow salience is defined relative to the neutral dash that points
neither left nor right. The low-salience right-pointing arrows have smaller
arrowheads and are harder (longer RT) to distinguish from the dash than
are the high-salience right-pointing arrows with the more pronounced
arrowheads
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Again, for both the OR and AND decision rules, we
see negative NRC values, implying that the presence of
a nontarget trial is correlated with a “target-absent”
response.

Thus, we can see that for DFP target detection designs,
whether your workload manipulation is target absence or the
presence of a nonvarying distractor, the DFP designs that
exhibit ISC = 0 consistently produce an NRC that is nonzero.
It is critical, then, for NRC to be minimized in a DFP design,
and as our results show, this can be dependent on the stopping
rule chosen for the experiment. In Table 2, we highlight a
good choice of stimulus rates for both the OR and AND
stopping rules that will minimize NRC, according to the above
computations.

In addition to stopping rule, the NRC value is also depen-
dent on the total number of stimuli in an experiment. Consider
the target/distractor discrimination task illustrated in Fig. 13,
in which the distractor arrows are also varying in their sa-
lience. This design contains the same four trial type categories
(redundant targets, single targets on the first source [global
arrows], single targets on the second source [local arrows],

and target absence or, in this case, double distractors).
However, a key difference between this design and the target
detection with distractors in Fig. 12 is the total number of
stimuli; each category in this design contains 4 stimuli, for a
total of 16 stimuli in the experiment instead of 9. It follows
that the equal category rates design and equal stimulus rates
design are essentially the same. Thus, for either an OR or an
AND decision rule, utilizing P AiBj

� � ¼ 1
16 for i, j = ±1, ±2 as

the likelihood of any individual stimulus will produce rele-
vant ISC values of 0. Under this choice of stimulus rate,
NRC ¼ −1

4 , indicating a negative nontarget decision bias
in either type of task. Thus, for target/distractor discrim-
ination with variable distractors, the stimulus rates that
exhibit ISC = 0 and minimize NRC are the same for
both the OR and AND tasks. We have listed this in Table 3,
showing the same choice of stimulus rates for OR and AND,
unlike in Table 2, which has different recommendations for
OR and AND tasks.

Importantly, across DFP designs that have been developed
in the published literature, we know of no possible DFP
stimulus rate structure in which the ISC values are all 0 and

Table 3 Channel codes for double factorial paradigm target–distractor discrimination designs

Trial Type Source 1 Source 2 sft Data Coding Trial Rates

Channel1 Channel2 OR &
AND

Redundant targets High target High target 2 2 1
16

High target Low target 2 1 1
16

Low target High target 1 2 1
16

Low target Low target 1 1 1
16

Single target A High target High distractor 2 −2 1
16

High target Low distractor 2 −1 1
16

Low target High distractor 1 −2 1
16

Low target Low distractor 1 −1 1
16

Single target B High distractor High target −2 2 1
16

High distractor Low target −2 1 1
16

Low distractor High target −1 2 1
16

Low distractor Low target −1 1 1
16

Target absent/redundant distractors High distractor High distractor −2 −2 1
16

High distractor Low distractor −2 −1 1
16

Low distractor High distractor −1 −2 1
16

Low distractor Low distractor −1 −1 1
16

Trial rates are the proportion of the total trials recommended for minimizing the nontarget response contingencies while maintaining interstimulus
contingencies equal to zero (see the text for details).
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there is simultaneously an absence of nontarget-driven deci-
sion bias (i.e., NRC = 0). However, considering the above
results, we can see that it may be possible to choose the
stimulus rates so as to minimize the nontarget-driven decision
bias. This choice may be dependent on both the choice of
stopping rule and the total number of stimuli in the experi-
ment. For the OR stopping rule in the detection task with nine
stimuli, the NRC value is lower for the equal stimulus rates
design, where the presentation rates of all nine stimuli are
equated. But for the AND stopping rule in the detection task
with nine stimuli, the NRC value for the equal category rates
design is lower, so equating the presentation of the stimulus
types, rather than individual stimuli, will minimize the
nontarget-driven decision bias. When the task switches to
one with variable distractors, the OR and AND designs min-
imizing NRC utilize the same presentation rates. Bear in mind
that if you choose to use or develop a DFP design for another
type of task or decision rule (same–different, go/no-go,
categorization/classification, etc.), you will want to utilize
the above equations for ISC and NRC to optimize your
stimulus presentation rates so as to minimize the possible
biases in your design. Again, the reader is referred to
Mordkoff and Yantis (1991) for additional details on stimulus
contingencies.

The effect of ISC and NRC on performance and model
interpretation can be determined by manipulating both types
of contingencies and measuring the changes of the response
times in the condition(s) of interest (like the redundant target

condition). As of yet, theoretical work relating the influence of
nonzero ISC or nonzero NRC values to the SFT measures is
lacking, but it is an important topic of future research.

DFP data for sft

The sft package has additional tools that allow for analyzing
multiple participants and conditions at once, as long as the data
are in the proper format. The basic format is a data frame with
six (or more) variables: subject, condition, correct, RT,
Channel1, Channel2, . . . , Channeln. Each row in the data frame
corresponds to a single trial. Subject and condition are used by
the program only to group data, so any coding scheme can be
used. Correct is a logical variable indicating whether the partic-
ipant correctly responded on that trial. RT is the time the partic-
ipant took to respond on a given trial. Each channel column
indicates the level of the stimulus presented for a particular
source. The possible values are ±2, ±1 or 0, where 2 indicates
high salience, 1 indicates low salience, and 0 indicates there was
no information presented for that source. Positive values indicate
that target information was presented on that source, while
negative values indicate distractor information. Because the
focus of SFT is on analyzing multiple sources of information,
at least two channels are required, but any number is possible.
The group SIC analysis in sicGroup is currently limited to two
channels, but the capacity function, capacityGroup, is capable
of analyzing data with more than two channels.

These variables will be sufficient to complete an SFT
analysis of a DFP experiment with two targets/sources of
information (i.e., two channels to be modeled). Additional
variables may be included in your data frame, particularly
any additional metadata like gender, age, trial number, testing
session number, and so forth. But these variables will be
ignored by the sft functions.

Let us consider how the arrow stimuli from Fig. 12 would
be coded, as summarized in Table 2. For the global–local
arrows, two channels are needed, with Channel1 coding the
global arrow information and Channel2 coding the local arrow
information. On either channel, the target-absent condition
(the dash pointing neither right nor left) is given the value 0,
the high-salience arrows are given a value of +2, and the low
salience arrows are coded by +1. This same coding scheme
can be utilized for any DFP design with target present/absent
as the workload manipulation. Note that in Table 2, we have
given the recommended coding scheme for the sft package, as
well as the recommended trial rates for minimizing NRCs in
the designs while maintaining ISC = 0.

Now let us consider an alternative DFP design where the
target-absent condition is replaced by a distractor stimulus
containing competing information. The recommended sft data
coding and trial presentation rates are summarized in Table 3.

Fig. 13 Global–local arrow stimuli in the target versus distractor dis-
crimination double factorial paradigm design where targets are right-
pointing arrows and distractors are left-pointing arrows. Arrow salience
is defined by the relative sizes of the arrowheads, which makes the
direction harder (longer response time) or easier (shorter response time)
to determine
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For the arrows design in Fig. 13, this means that when a target
right-pointing arrow is not present, rather than a dash, the
global or local arrow is a left-pointing arrow, containing
distractor directional information. With two salience levels
for both target and distractor stimuli, this design implements
the ±1, ±2 coding scheme described above.

For an experimental design with more than two channels, n
channels can be identified by creating aChannelα variable for
each α in α = 1, 2, …, n. For example, in a four-channel
experiment, like the four-letter words studied by Houpt and
Townsend (2010a), the values on the channels should be
coded in four variables: Channel1, Channel2, Channel3, and
Channel4. It is important that, for however many channels are
coded, the channel variables must be listed numerically and
consecutively, following the naming convention outlined
herein. Note also that as of this publication, only the capacity
functions are capable of analyzing more than two channels;
the SIC functions, sic and sicGroup, are capable of analyzing
only the two-channel DFP data. Extensions to additional
numbers of factors (e.g., 2 × 2 × 2) or additional numbers of
levels per factor (e.g., 3 × 3) are possible, since the theory and
measures can extend to n sources of information; we will add
the appropriate extensions to the sft package as such theory is
developed and published.

A set of sample data is included in the sft package, called
dots. These data, from Eidels and Townsend (2009), include
response time and accuracy from nine participants that com-
pleted two versions of the DFP task with the dots stimuli
illustrated in Fig. 11. Stimuli were either two dots, one above
fixation and one below, a single dot above fixation, a single
dot below fixation, or a blank screen. The salience manipula-
tion was the contrast level of the dots, such that each dot was
shown at either high or low contrast when present. In the OR
decision task, participants were asked to respond “yes” if
either of the dots was present; in the AND decision task, they
were asked to respond “yes” only when both dots were pres-
ent. More details of the task are available in Eidels and
Townsend (2009) or Houpt and Townsend (2010b).

The dots data is a data frame containing the six required
variables: subject, condition, correct, RT, Channel1,
Channel2. Subject is a character vector indicating the partic-
ipant identifier code; here, we have two letter codes for each of
the 9 participants. Condition is a character vector indicating
which version of the task (OR or AND) the data are from.
Correct is a logical vector indicating whether the response on
each trial was correct (TRUE or 1) or not (FALSE or 0). RT is
the numeric vector of response times.Channel1 andChannel2
are numeric vectors indicating the stimulus level for the two
dots, with Channel1 giving the value for the upper dot and
Channel2 giving the value for the lower dot. There were no
distractors in this task, so there are three possible values for

Channel1 and Channel2: 0 = target absent, 1 = target present
at low contrast, and 2 = target present at high contrast.

The rows in the dots data frame are the individual trials of
the experiment. That is, all data from every trial by every
participant are included. This is critical for estimating the full
response time distributions for the SFT analyses.

We do not include the extensive output here. Instead, we
encourage readers to install the sft package and familiarize
themselves with the functionality using the dots data.

General notes on design

Since the emergence of the DFP in 1995, the design has been
adapted from the original detection task (similar to Fig. 11) to
target discrimination (e.g., Ingvalson & Wenger, 2005; Johnson
et al., 2010), same–different judgments (Perry, Blaha, &
Townsend, 2008), categorization (Fifić, Nosofsky, &
Townsend, 2008; Fifić & Townsend, 2010), memory search
(Townsend & Fifić, 2004), and visual search (Fific, Townsend
& Eidels 2008) and has been applied across a variety of stimuli
such as alpha-numeric characters, faces, and novel visual objects.
It is possible that with a good choice of workload and salience
manipulations, any type of perceptual or cognitive decision-
making task on any class of stimuli can be adapted to a DFP
design. Note that while we have illustrated the DFP with visual
cognitive stimuli and tasks, DFP is not limited to the visual
modality. For example, Altieri and Townsend (2011) utilized
the DFP to analyze audiovisual speech perception using a design
in which one source of information was the visual stimulus of a
personmouthing a word and the other source of information was
the auditory stimulus of the spoken word.

Whatever the task, stimulus class, and modality, there are
some key things to keep in mind about the choices of both the
workload and salience manipulations:

Workload Manipulation

1. Workload refers to the number of target sources,
which is sometimes the pure number of items in the
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display or the number of targets relative to a constant
load of distractors.

2. When using distractors, keep the number constant so
that only the number of target sources is varying.

3. When modeling both targets and distractors, have bal-
anced conditions of fixed numbers of distractors, rela-
tive to varying numbers of targets and fixed numbers
of targets, relative to varying numbers of distractors.

4. Context, background, or noise may be added to a
stimulus but should be held constant across all con-
ditions in the design so as not to add another source of
information competing with the target sources.

5. The workload manipulation should be independent of
or orthogonal to the salience manipulation so that the
same physical manipulation is not being used to in-
fluence both the presence of a target and the speed of
processing of that target.

Salience Manipulation

1. The manipulations of stimuli to affect the relative
processing speeds should exhibit effective selective
influence, so that a single physical manipulation of
the stimulus affects only the speed of one subprocess
at a time.

2. Salience is a relative manipulation in that the low-
saliencemanipulation should result in slower process-
ing than is observed in the high-salience condition.
For example, a point of light near threshold is detect-
ed more slowly than a point of light well above
threshold in its brightness or contrast. Thus, there is
no absolute right or wrong amount/intensity of sa-
lience manipulation here, as long as the chosen factor
levels result in a strong ordering of the response time
distributions, Shigh(t) < Slow(t), without significantly
lowering accuracy.

3. Manipulations of target salience should be indepen-
dent of the stopping rule or decision criteria for a
given task.

4. The salience manipulation should be independent of
or orthogonal to the workload manipulation so that
the same physical manipulation is not being used to
influence both the presence of a target and the speed
of processing of that target.

In our explication of the SFTmeasures, particularly SIC, we
focused on the case of two targets or two processing channels,
for both clarity and tractability and because most of the studies
cited herein have utilized manipulations for only two sources of
information. Importantly, these measures are not limited to only
two targets and are scalable to n sources for a given task. For an
example of a three-factor SFT study (2 × 2 × 2 factorial), see
Perry et al. (2008). Work is currently under way to generalize

the SIC to more sources of information. As these advances and
others are published, they will be included in the R sft package.

Conclusion

SFT has been applied in a wide variety of psychological
studies, from basic psychophysical tasks (C.-T. Yang et al.,
2011), visual cognition (Zehetleitner, Krummenacher, &
Müller, 2009), aural cognition (Altieri & Townsend, 211),
and memory (Townsend & Fifić, 2004), to more complex
tasks in social psychology (H. Yang, Houpt, Khodadadi, &
Townsend, 2011), developmental psychology (Von Der
Heide, Wenger, Gilmore, & Elbich, 2011), and clinical psy-
chology (Johnson et al., 2010; Neufeld, Townsend, & Jetté,
2007). Despite this diverse range of applicability, the use of
SFT is fairly limited within psychology. One major factor
contributing to its lack of use is the difficulty in translating
from the complex mathematical derivations (Houpt &
Townsend, 2010b, 2012; Townsend & Nozawa, 1995;
Townsend & Wenger, 2004) to applied settings. By develop-
ing a package for the popular data analysis software R (R
Development Core Team, 2011), we hope to alleviate this
difficulty.

In addition to making the basic tools of SFT more accessi-
ble, the sft package can also serve as a repository for related
code as new advances to the methodology arise. For example,
forthcoming work on the use of functional principal compo-
nents analysis with the capacity coefficient (Burns, Houpt, &
Townsend, 2013) will soon be added to the sft package.

Acknowledgements This work was supported by AFOSR grant
10RH07COR to the late D. W. Repperger and P. R. Havig. We would like
to thank ChrisMyers for his comments on an early version of themanuscript.

References

Aalen, O. O., Borgan, Ø., & Gjessing, H. K. (2008). Survival and event
history analysis: A process point of view. New York: Springer.

Altieri, N., & Townsend, J. T. (2011). An assessment of behavioral
dynamic information processing measures in audiovisual speech
perception. Frontiers in Psychology, 2, 1–15.

Blaha, L. M. (2010). A dynamic Hebbian-style model of configural
learning. PhD, Indiana University, Bloomington, Indiana.

Brown, S. D., & Heathcote, A. (2008). The simplest complete model of
choice response time: Linear ballistic accumulation. Cognitive Psy-
chology, 57, 153–178.

Burns, D. M., Houpt, J.W., & Townsend, J. T. (2013). Functional principal
components analysis of workload capacity functions. Behavior Re-
search Methods, 1-10. doi:10.3758/s13428-013-0333-2

Burns, D. M., Pei, L., Houpt, J. W., & Townsend, J. T. (2009). Facial
perception as a configural process. Poster presented at: Annual
Meeting of the Cognitive Science Society.

Chechile, R. A. (2003). Mathematical tools for hazard function analysis.
Journal of Mathematical Psychology, 47, 478–494.

328 Behav Res (2014) 46:307–330

http://dx.doi.org/10.3758/s13428-013-0333-2


Chechile, R. A. (2011). Properties of reverse hazard functions. Journal of
Mathematical Psychology, 55, 203–222.

Donders, F. C. (1969). On the speed of mental processes. InW. G. Koster
(Ed. & Trans.), Acta psychologica (pp. 412–431). Amsterdam:
North-Holland Publishing Company.

Donnelly, N., Cornes, K., & Menneer, T. (2012). An examination of the
processing capacity of features in the Thatcher illusion. Attention,
Perception, & Psychophysics, 74, 1475–1487.

Dzhafarov, E. N. (2003). Selective influence through conditional inde-
pendence. Psychometrika, 68, 7–26.

Dzhafarov, E. N., & Gluhovsky, I. (2006). Notes on selective influence,
probabilistic causality, and probabilistic dimensionality. Journal of
Mathematical Psychology, 50, 390–401.

Dzhafarov, E. N., Schweickert, R., & Sung, K. (2004). Mental architec-
tures with selectively influenced but stochastically interdependent
components. Journal of Mathematical Psychology, 48, 51–64.

Eidels, A., Donkin, C., Brown, S. D., & Heathcote, A. (2010). Converg-
ingmeasures of workload capacity.Psychonomic Bulletin & Review,
17, 763–771.

Eidels, A., Houpt, J. W., Pei, L., Altieri, N., & Townsend, J. T. (2011). Nice
guys finish fast, bad guys finish last: Facilitatory vs. inhibitory interaction
in parallel systems. Journal of Mathematical Psychology, 55, 176–190.

Eidels, A., & Townsend, J. T. (2009). Testing response time predictions of
a large class of parallel models within or and and redundant signals
paradigm. Presented at the 2009 Annual Meeting of the Society of
Mathematical Psychology. Amsterdam, Netherlands.

Fifić, M., Little, D. R., & Nosofsky, R. M. (2010). Logical-rule models of
classification response times: A synthesis of mental-architecture,
random-walk, and decision-bound approaches. Psychological Re-
view, 117, 309–348.

Fifić, M., Nosofsky, R. M., & Townsend, J. T. (2008). Information-
processing architectures in multidimensional classification: A valida-
tion test of the systems factorial technology. Journal of Experimental
Psychology: Human Perception and Performance, 34, 356–375.

Fifić, M., & Townsend, J. T. (2010). Information-processing alternatives to
holistic perception: Identifying the mechanisms of secondary-level
holism within a categorization paradigm. Journal of Experimental
Psychology: Learning, Memory, and Cognition, 36, 1290–1313.

Fific, M., Townsend, J. T., & Eidels, A. (2008). Studying visual search
using Systems Factorial Methodology with target-distractor similar-
ity as the factor. Perception & Psychophysics, 70, 583–603.

Garner, W. R. (1974). The processing of information and structure. New
York: Wiley.

Garner, W. R., & Felfoldy, G. L. (1970). Integrality of stimulus dimen-
sions in various types of information processing.Cognitive Psychol-
ogy, 1, 225–241.

Houpt, J. W., & Townsend, J. T. (2010a). A new perspective on visual
word processing efficiency. In S. Ohlsson & R. Catrambone (Eds.),
Proceedings of the 32nd annual conference of the cognitive science
society (pp. s1148–s1153). Austin, TX: Cognitive Science Society.

Houpt, J. W., & Townsend, J. T. (2010b). The statistical properties of the
survivor interaction contrast. Journal of Mathematical Psychology,
54, 446–453.

Houpt, J. W., & Townsend, J. T. (2011). An extension of SIC predictions
to the Wiener coactive model. Journal of Mathematical Psychology,
55, 267–270.

Houpt, J. W., & Townsend, J. T. (2012). Statistical measures for workload
capacity analysis. Journal of Mathematical Psychology, 56, 341–355.

Ingvalson, E. M., &Wenger, M. J. (2005). A strong test of the dual-mode
hypothesis. Perception & Psychophysics, 67, 14–35.

Johnson, S. A., Blaha, L. M., Houpt, J. W., & Townsend, J. T. (2010).
Systems factorial technology provides new insights on global–local
information processing in autism spectrum disorders. Journal of
Mathematical Psychology, 54, 53–72.

Link, S. W., & Heath, R. A. (1975). A sequential theory of psychological
discrimination. Psychometrika, 40, 77–105.

Miller, J. (1982). Divided attention: Evidence for coactivation with re-
dundant signals. Cognitive Psychology, 14, 247–279.

Mordkoff, J. T., & Yantis, S. (1991). An interactive race model of divided
attention. Journal of Experimental Psychology. Human Perception
and Performance, 17, 520–538.

Neufeld, R. W., Townsend, J. T., & Jetté, J. (2007). Quantitative response
time technology for measuring cognitive-processing capacity in clinical
studies. In R. W. Neufeld (Ed.), Advances in clinical cognitive science:
Formal modeling and assessment of processes and symptoms (pp. 207–
238). Washington, D. C: American Psychological Association.

Perry, L., Blaha, L. M., & Townsend, J. T. (2008). Reassessing the archi-
tecture of same-different face judgments. Journal of Vision, 8, 88.

R Development Core Team. (2011). R: A language and environment for
statistical computing [Computer software manual]. Vienna, Austria.
http://www.R-project.org

Ratcliff, R., & Smith, P. L. (2004). A comparison of sequential sampling
models for 2-choice response. Psychological Review, 3, 333–367.

Reinach, S. G. (1960). A nonparametric analysis for a multiway classifi-
cation with one element per cell. South African Journal of Agricul-
tural Science, 8, 941–960.

Repperger, D. W., Havig, P. R., Reis, G. A., Farris, K. A., McIntire, J. P.,
& Townsend, J. T. (2009). Studies on hazard functions and human
performance. The Ohio Journal of Science, 109.

Sawilowsky, S. S. (1990). Nonparametric tests of interaction in experi-
mental design. Review of Educational Research, 60, 91–126.

Schwarz,W. (1989). A newmodel to explain the redundant-signals effect.
Perception & Psychophysics, 46, 498–500.

Schwarz, W. (1994). Diffusion, superposition, and the redundant-targets
effect. Journal of Mathematical Psychology, 38, 504–520.

Townsend, J. T. (1972). Some results concerning the identifiability of
parallel and serial processes. British Journal of Mathematical and
Statistical Psychology, 25, 168–199.

Townsend, J. T. (1974). Issues and models concerning the processing of a
finite number of inputs. In B. H. Kantowitz (Ed.), Human informa-
tion processing: Tutorials in performance and cognition (pp. 133–
168). Hillsdale, NJ: Erlbaum Press.

Townsend, J. T., & Altieri, N. (2012). An accuracy-response time capac-
ity assessment function that measures performance against standard
parallel predictions. Psychological Review, 119, 500–516.

Townsend, J. T., & Ashby, F. G. (1983). The stochastic modeling of elemen-
tary psychological processes. Cambridge: Cambridge University Press.

Townsend, J. T., & Eidels, A. (2011). Workload capacity spaces: A
unified methodology for response time measures of efficiency as
workload is varied. Psychonomic Bulletin & Review, 18, 659–681.

Townsend, J. T., & Fifić, M. (2004). Parallel and serial processing and
individual differences in high-speed scanning in human memory.
Perception & Psychophysics, 66, 953–962.

Townsend, J. T., & Honey, C. J. (2007). Consequences of base time for
redundant signals experiments. Journal of Mathematical Psychology,
51, 242–265.

Townsend, J. T., & Nozawa, G. (1995). Spatio-temporal properties of
elementary perception: An investigation of parallel, serial and coactive
theories. Journal of Mathematical Psychology, 39, 321–360.

Townsend, J. T., & Thomas, R. D. (1994). Stochastic dependencies in
parallel and serial models: Effects on systems factorial interactions.
Journal of Mathematical Psychology, 38, 1–24.

Townsend, J. T., & Wenger, M. J. (2004). A theory of interactive parallel
processing: New capacity measures and predictions for a response
time inequality series. Psychological Review, 111, 1003–1035.

Von Der Heide, R. J., Wenger, M. J., Gilmore, R. O., & Elbich, D. (2011).
Developmental changes in encoding and the capacity to process face
information. Journal of Vision, 11.

Yang, C.-T. (2011). Relative saliency in change signal affects perceptual
comparison and decision processes in change detection. Journal of
Experimental Psychology: Human Perception and Performance,
37, 1708–1728.

Behav Res (2014) 46:307–330 329

http://www.R-project.org/


Yang, C.-T., Chang, T.-Y., & Wu, C.-J. (2012). Relative change proba-
bility affects the decision process of detecting multiple feature
changes. Journal of Experimental Psychology: Human Perception
and Performance. Advance online publication

Yang, H., Houpt, J. W., Khodadadi, A., & Townsend, J. T. (2011). Reveal-
ing the underlying mechanism of implicit race bias. Poster presented
at: Midwestern Cognitive Science Meeting. East Lansing, MI.

Yang, C.-T., Hsu, Y.-F., Huang, H.-Y., & Yeh, Y.-Y. (2011b). Relative
salience affects the process of detecting changes in orientation and
luminance. Acta Psychologica, 138, 377–389.

Zehetleitner, M., Krummenacher, J., & Müller, H. J. (2009). The detec-
tion of feature singletons defined in two dimensions is based on
salience summation, rather than on serial exhaustive architectures.
Attention, Perception, & Psychophysics, 71, 1739–1759.

330 Behav Res (2014) 46:307–330


	Systems factorial technology with R
	Abstract
	Introduction
	The goals of SFT
	Architecture
	Stopping rule
	Stochastic dependence and selective influence
	Workload capacity

	The measures in SFT
	The survivor interaction contrast and mean interaction contrast
	SIC in R

	The capacity coefficient
	OR processes
	OR capacity in R
	AND processes
	AND capacity in R
	Additional R functionality

	The joint use of the SIC and C(t)

	Designing experiments for SFT
	Example DFP without distractors
	Example DFP with distractors
	Stimulus rates and contingencies
	DFP data for sft
	General notes on design

	Conclusion
	References


