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Abstract Meta-analytic structural equation modeling
(MASEM) combines the ideas of meta-analysis and structural
equation modeling for the purpose of synthesizing correlation
or covariance matrices and fitting structural equation models
on the pooled correlation or covariance matrix. Cheung and
Chan (Psychological Methods 10:40–64, 2005b, Structural
Equation Modeling 16:28–53, 2009) proposed a two-stage
structural equation modeling (TSSEM) approach to
conducting MASEM that was based on a fixed-effects model
by assuming that all studies have the same population corre-
lation or covariance matrices. The main objective of this
article is to extend the TSSEM approach to a random-effects
model by the inclusion of study-specific random effects.
Another objective is to demonstrate the procedures with two
examples using the metaSEM package implemented in the R
statistical environment. Issues related to and future directions
for MASEM are discussed.
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Structural equation modeling (SEM) is a popular statistical
technique in the social, behavioral, and educational sciences.
Part of its popularity is due to its flexibility in testing pro-
posed or hypothesized models. The proposed models can be
path models, confirmatory factor-analytic models, or general
structural equation models that include latent and observed
variables. Complex theories can be formulated as testable
hypotheses in the form of structural equation models. The
proposed models can be empirically tested by the use of a

likelihood ratio (LR) statistic and various goodness-of-fit
indices, and the estimated standard errors (SEs) can be used
to test the significance of the parameter estimates.

Although SEM is very powerful for testing theories and
hypothesized models, several unresolved issues still remain.
One of these is that most researchers only compare a small
number of models (MacCallum & Austin, 2000). Overall,
researchers rarely consider alternative models. Also, the
statistical power of rejecting incorrect models in SEM may
not be high enough when the sample sizes are small. Due to
this confirmation bias, the reported models in the literature
may not be the correct (or the best) models. When a pool of
empirical studies use similar variables, researchers may want
to compare and synthesize these findings. It is difficult to
address this issue in the current SEM framework.

In the behavioral sciences, meta-analysis is widely used as
a statistical approach to synthesize research findings (e.g.,
Cooper, Hedges, & Valentine, 2009; Hedges & Olkin, 1985;
Hunter & Schmidt, 2004). It has been successfully applied in
various disciplines, including psychology, education, man-
agement, and the medical sciences. The limitations of syn-
thesizing findings in SEM can be effectively addressed by
combining SEM and meta-analysis—a technique widely
known as meta-analytic structural equation modeling
(MASEM; Cheung & Chan, 2005b).

MASEM combines the ideas of SEM and meta-analysis
by pooling studies in order to draw general conclusions
(Landis, 2013; Viswesvaran & Ones, 1995). MASEM has
frequently been used to synthesize studies using SEM in the
literature—for example, by testing the structural equivalence
of the social axiom across 40 societies (Cheung, Leung, &
Au, 2006), synthesizing 300 correlation matrices on
Schwartz’s theory of human values (Steinmetz, Baeuerle,
& Isidor, 2012), and testing a mediation model from compe-
tition to performance, with performance-approach and
performance-avoidance goals as specific mediators, across
474 studies (Murayama & Elliot, 2012).
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Different terms have been used for the techniques of com-
bining SEM and meta-analysis in the literature for the purpose
of fitting structural equation models to a pool of correlation or
covariance matrices—for instance, meta-analytic path analy-
sis (Colquitt, LePine, & Noe, 2000), meta-analysis of factor
analysis (G. Becker, 1996), SEM of a meta-analytic correla-
tion matrix (Conway, 1999), meta-analytical structural equa-
tion analysis (Hom, Caranikas-Walker, Prussia, & Griffeth,
1992), path analysis of meta-analytically derived correlation
matrices (Eby, Freeman, Rush, & Lance, 1999), path analysis
on the basis of meta-analytic findings (Tett & Meyer, 1993),
and model-based meta-analysis (B. J. Becker, 2009). In this
article, I will use the generic term MASEM to describe this
class of techniques.

Cheung and Chan (2005b, 2009) proposed a two-stage
SEM (TSSEM) approach to conducting fixed-effects
MASEM. Several distinct features define this approach: First,
multiple-group SEM is used to pool correlation or covariance
matrices in the first stage of the analysis. Therefore, goodness-
of-fit indices in SEM are available to test the homogeneity of
the correlation or covariance matrices. Then, weighted least
squares (WLS) are used to weigh the precision of the pooled
correlation or covariance matrix in fitting structural models in
the second stage of analysis. Thus, this approach allows differ-
ent elements of the pooled correlation matrix to be weighted
differently in fitting the structural models. Appropriate
goodness-of-fit indices and SEs can be obtained.

The main objective of this article is to extend the
fixed-effects TSSEM to a random-effects model. The second
objective is to demonstrate how the proposed methods can be
analyzed using the metaSEM package (Cheung, 2013b),
which is based on the OpenMx package (Boker et al., 2011)
implemented in the R statistical environment (R Development
Core Team, 2013). The rest of the article is organized as
follows. In the next section, the fixed-effects TSSEM is first
reviewed. Next, the model is extended to the random-effects
model. Two sample data sets from Digman (1997) and B. J.
Becker and Schram (1994) are used to illustrate the proce-
dures. Future directions in this line of research are discussed in
the final section. Although I focus mainly on the analysis of
correlation matrices, the techniques are readily applicable to
the analysis of covariance matrices.

Two-stage structural equation modeling

Two stages are used when conducting a TSSEM. In the first
stage, correlation matrices are pooled together. If a fixed-
effects model is used, the homogeneity of the correlation
matrices is tested. This test is known as the Q statistic in
meta-analysis. If a random-effects model is used, the degree
of heterogeneity of the correlation elements can be qualified
by I 2. In the second stage, the pooled correlation matrix is

used to fit the proposed structural models. In this section, I
will first present the fixed-effects models, and then extend
them to random-effects models.

Fixed-effects models

The two classes of models in meta-analysis are fixed-effects
and random-effects models (see, e.g., B. J. Becker, 1992,
1995; Hedges & Vevea, 1998; Schmidt, Oh, & Hayes, 2009).
Fixed-effects models are used for conditional inferences
based on the selected studies, and are intended to draw
conclusions on the studies included in the meta-analysis.
These models usually, but not always, assume that all studies
share common effect sizes (cf. Bonett, 2009; Shuster, 2010,
for different views). In the context of MASEM, applying a
fixed-effects model assumes that the population correlation
matrices are the same for all studies.

Stage 1 analysis Under the assumption of homogeneity of
correlation matrices, the correlation or covariance matrix in
the ith study can be decomposed as a correlation matrix (Pi)
and a diagonal matrix of standard deviations (Di) by

Σi θð Þ ¼ DiPiDi ð1Þ

As is discussed by Cheung and Chan (2005b), Di is
required in order to correctly apply the statistical theory of
analysis of the covariance matrix to the analysis of the
correlation matrix. To obtain a pooled correlation matrix
under the assumption of homogeneity, we may impose the
constraints of PFixed = P1 = P2 = ... = Pk, whereDimay vary
across studies. When there are incomplete correlation co-
efficients, the missing correlations are excluded from the
constraints.

This approach has several advantages. First, missing or
incomplete correlation elements can easily be handled by the
maximum likelihood estimation (MLE) method (Allison,
1987; Muthén, Kaplan, & Hollis, 1987). When the missing
mechanism is missing completely at random (MCAR) or
missing at random (MAR), the parameter estimates using
MLE are unbiased and efficient. Second, as is shown in
Eq. 1, the Stage 1 analysis of the TSSEM approach does not
need to estimate the sampling covariance Vi of the correlation
coefficients Pi. Thus, the TSSEM approach is very stable and
accurate. In contrast, it is necessary to estimate the sampling
covariance matrix of the correlation coefficients under the
conventional generalized least squares (GLS) approach (e.g.,
B. J. Becker, 1992). For example,Vi is a 10×10 matrix if Pi is
a 5×5 correlation matrix. Vi is treated as fixed in the GLS
approach. Treating Vi as known values may affect the accu-
racy of the estimation, especially when the sample sizes are
small. Thus, the GLS approach does not perform well empir-
ically (see the simulation results in Cheung & Chan, 2005b,
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2009). Third, the asymptotic covariance matrix bVFixed ofbPFixed

that indicates the precision of the estimates is routinely avail-
able after the analysis. The SE may be used to test the signif-
icance or to construct the approximate confidence intervals
(CIs) of the pooled correlation or covariance matrices. Fourth,
besides testing the assumption of the homogeneity of correla-
tion matrices with an LR statistic, many goodness-of-fit indi-
ces, such as RMSEA and SRMR, may also be used to test the
close or approximate fit of the homogeneity of the correlation
matrices.

If the scales of the measurements are comparable across
studies, researchers may want to synthesize the covariance
matrices rather than the correlation matrices (e.g., Beretvas
& Furlow, 2006). By testing the covariance matrices, re-
searchers may test the measurement properties of the models
across studies. Cheung and Chan (2009) showed that the
TSSEM approach can be easily extended to synthesize co-
variance matrices by

Σi θð Þ ¼ Si; ð2Þ
where Si is the sample covariance matrix in the ith study. To
obtain a pooled covariance matrix, we may impose the
following equality constraint: SFixed = S1 = S2 = ... = Sk. If
there are incomplete covariances, they are excluded from the
equality constraints.

Stage 2 analysis When dealing with correlation or covari-
ance matrices, it is easier to transform the correlation or
covariance matrices into vectors. Suppose that we have a
symmetric matrix.

X ¼
1
2 4
3 5 6

24 35̇:
Wemay define r = vechs(X) = [2 3 5]T and s = vech(X) =

[1 2 3 4 5 6]T, which stack the lower triangle elements of the
matrix by column major. Since the diagonal elements in a
correlation matrix are always 1, elements in the diagonals are
always excluded.

After the Stage 1 analysis, on the basis of a fixed-effects

model, a vector of the pooled correlation matrix bρFixed ¼
vechs bPFixed

� �
and its asymptotic sampling covariance ma-

trix bVFixed are estimated. Many researchers treat bρFixed as if it
were an observed covariance matrix and use it to fit structural
equation models. Cheung and Chan (2005b, 2009) identified
several issues with this practice. One of them is that the
pooled correlation matrix is analyzed as if it were a covari-
ance matrix, so the LR statistics and the SE of the parameter
estimates may be incorrect (Cudeck, 1989). Another issue is
that the sampling variability of the estimated correlation

matrix bVFixed has not been properly taken into account when
the pooled correlation matrix is treated as the observed
correlation matrix.

As it is likely that correlations will be missing, elements
of the pooled correlation matrix may be based on different
sample sizes. The third issue is that different researchers use
different methods to determine the sample size in fitting the
structural equation models. These include the arithmetic or
geometric means for medium and the largest values of the
sample sizes. However, these suggestions are all ad hoc and
without strong statistical support. More importantly, using
different sample sizes may lead to different SEs, test statis-
tics, and goodness-of-fit indices.

To solve the aforementioned problems in the Stage 2
analysis, Cheung and Chan (2005b, 2009) proposed using
WLS to fit the structural equation models. Suppose that the
proposed structural model on the population correlation vec-
tor in the Stage 2 analysis is ρ(γ)—that is, the population
correlation vector ρ is a function of the unknown parameters
γ. The discrepancy function F bγð Þ is

F bγ� �
¼ ρFixed−ρ bγ� �h iT

V−1
Fixed ρFixed−ρ bg� �h i

: ð3Þ

ρFixed and VFixed are taken from the Stage 1 analysis.
Since they are treated as observed or fixed values in the
Stage 2 analysis, no hats appear with either ρFixed or VFixed

in Eq. 3. This approach is generally known as WLS or the
asymptotically distribution-free method (Browne, 1984).

When data are missing in the Stage 1 analysis, the esti-
mated correlation coefficients with missing data will be less
precise, with larger sampling variances and covariances. The
logic ofWLS estimation is to weight the correlation elements
by the inverse of its sampling covariance matrix. Different
weights are put into different elements in the pooled corre-
lation matrix, depending on their precisions. Cheung (2010)
shows that this WLS estimation function in SEM is related to
the fixed-effects meta-analysis. This approach also automat-
ically handles the sample size issue: Since the discrepancy
function weights the correlation elements by their precision,
the choice of sample size in the Stage 2 analysis does not
affect the chi-square test and the estimated SEs computed.
By using the WLS estimation function, parameter estimates
with appropriate SEs, test statistics, and goodness-of-fit in-
dices can be obtained in the Stage 2 analysis.

One potential criticism of using WLS as the estimation
method is that large samples (at least 1,000) are usually
required. Many simulation studies have shown that WLS
performs badly in small samples (e.g., Curran, West, &
Finch, 1996). Since MASEM is usually based on many
studies, the resultant sample sizes are reasonably large. On
the basis of simulations conducted by Cheung and Chan
(2005b, 2009), the Stage 2 analysis using WLS estimation
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was found to perform very well for ten studies with N = 100
per study. Thus, a total sample of 1,000 should be reasonable
enough for the WLS estimation method.

Extension to categorical moderators When studies are
heterogeneous, it is questionable to pool them with a
fixed-effects model. One approach would be to group
the studies into relatively homogeneous subgroups
(Cheung & Chan, 2005a). If categorical study charac-
teristics are present, such as intervention types in clin-
ical studies and conditions in experiments, we can clas-
sify the studies into groups and conduct a fixed-effects
TSSEM for each group. Instead of having one pooled
correlation matrix, we might have several pooled corre-
lation matrices, and proposed models could be fitted
against the pooled correlation matrices.

Random-effects models

Random-effects models assume that the population correlation
matrices may vary across studies, by assuming that the selected
studies are random samples from a larger population. Suppose

that the model at the population is ρRandom = vechs[P(γ)].
Because of the random effects, each study has its own study-
specific random effects,

ρi ¼ ρRandom þ ui; ð4Þ
where ρi and ui are the population correlation vector and the
study-specific random effects in the ith study, respectively.

Stage 1 analysis A random-effects model for the correlation
vectors ri = vechs(Ri) in the ith correlation matrix Ri is

ri ¼ ρRandom þ ui þ ei; ð5Þ
where Cov(ui) = T2 is the variance component of the study-
specific random effects, and Cov(ei) = Vi is the known
sampling covariance matrix in the ith study. Vi can be esti-
mated using the model in Eq. 1 (see Cheung & Chan, 2004).

To fit the model above, B. J. Becker (1992) proposed a
method-of-moments approach to obtain the parameter esti-
mates and their SEs. Cheung (in press-b) showed how SEM
can be used to conduct multivariate meta-analysis with the
MLE method. The log-likelihood of the ith study under a
random-effects meta-analysis is

log l ρRandom;T
2

� � ¼ –
1

2
p log 2πð Þ þ log T2 þ Vi

�� ��þ ri–ρRandomð ÞT T2 þ Vi

� �–1
ri–ρRandomð Þ

n o
; ð6Þ

where p is the number of elements in ri (Hardy & Thompson,
1996). The parameter estimates are obtained by maximizing
the sum of the log-likelihoods of all studies. Since the di-
mensions of ri may vary across studies, missing effect sizes
are handled automatically. One advantage of using the MLE
estimationmethod is that the parameter estimates are unbiased
and efficient when the missingness is either MCAR or MAR.

When conducting a meta-analysis, we may quantify the
degree of heterogeneity in effect sizes by the use of I 2, proposed
by Higgins and Thompson (2002). The general formula is

I 2 ¼ bτ2
bτ2 þev ; ð7Þ

where bτ2 is the estimated heterogeneity and ev is the “typical”
within-study variance. The I 2 can be interpreted as the propor-
tion of the total variation of the effect size that is due to the
between-study heterogeneity. Higgins and Thompson proposed
to estimate ev as
ev ¼ n−1ð Þ

Xn
i¼1

1
.
vi

Xn
i¼1

1
.
vi

 !2

−
Xn
i¼1

1
.
v2i

ð8Þ

where n is the number of studies. As a rule of thumb, I 2s of
25 %, 50 %, and 75 % can be considered to indicate low,
moderate, and high heterogeneity (Higgins, Thompson, Deeks,
& Altman, 2003). A multivariate version of I 2 has been devel-
oped by Jackson, White, and Riley (2012). An alternative ap-
proach is to calculate an I 2 on each of the effect sizes (correlation
coefficients) in MASEM. That is, there will be five I 2s when
five correlation coefficients are in the pooled correlation matrix.
This gives an idea on how the heterogeneity spreads across the
correlation elements.

Stage 2 analysis After the Stage 1 analysis with a random-
effects model, a vector of the pooled correlation matrixbρRandom and its asymptotic sampling covariance matrixbVRandom are estimated. The discrepancy function is the same
as that under a fixed-effects model—that is,

F bγ� �
¼ ρRandom ¼ −ρ bγ� �� �T

V−1
Random ρRandom ¼ −ρ bγ� �� �

ð9Þ

As in Eq. 3, ρRandom and VRandom are treated as observed
values in Eq. 9. It should also be noted that the estimated

variance component bT2
does not directly enter into the

discrepancy function in the Stage 2 analysis. Since VRandom
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is estimated after controlling for the random effects, it has
already taken the random effects into account. Thus,VRandom

is usually larger than VFixed from a fixed-effects model. The
SEs of the parameter estimates from a random-effects model
are also usually larger than those from a fixed-effects model.

Illustrations with the metaSEM package

The fixed- and random-effects TSSEM discussed in this
article was implemented in the metaSEM package. This
section demonstrates how to conduct the analyses in R.
The tssem1() and tssem2() functions are used to
conduct the Stage 1 and Stage 2 analyses, respectively.
To conduct a fixed-effects TSSEM, users may specify
the method = "FEM" argument in tssem1(), where-
as a random-effects TSSEM may be specified via the
method = "REM" argument. When categorical vari-
ables are present, the cluster argument may be used
to specify a fixed-effects TSSEM on each group.

The tssem2() function is used to fit structural equation
models in the Stage 2 analysis. This function automatically
handles whether a fixed- or a random-effects model is used
in the Stage 1 analysis. When a pooled correlation matrix is
used to fit structural equation models, it is important to
ensure that the diagonals of the model-implied correlation
matrix are fixed at 1. This nonlinear constraint can be im-
posed by specifying the diag.constraint = TRUE ar-
gument in the tssem2() function. When nonlinear con-
straints are present, SEs are not reported in OpenMx since
the SEs are not accurate. Likelihood-based CIs (LBCI) are
generally recommended as a better alternative to CIs based
on the SEs (Cheung, 2009). We may request the LBCI by
specifying the intervals = ”LB” argument in the
tssem2() function.

The structural models in the Stage 2 analysis are speci-
fied via the reticular action model (RAM) formulation
(McArdle & McDonald, 1984). The RAM model involves
three matrices: A, S, and F. The A matrix specifies the
asymmetric path (regression coefficients) from the inde-
pendent variables to the dependent variables, whereas the
S matrix specifies the symmetric paths (variances and co-
variances) of the variables. The F matrix is used to select
the observed variables.

Two sample data sets, from Digman (1997) and B. J.
Becker and Schram (1994), are used below to illustrate the
proposed procedures on confirmatory factor analysis (CFA)
and multiple regression analysis, respectively. These exam-
ples should be general enough for readers to be able to
extend the techniques to more complicated models. The
updated R code, outputs, and explanations are available at
the author’s website.

Data set from Digman (1997)

Method

Digman (1997) reported 14 correlation matrices among the
five-factor model. He proposed that agreeableness (A), con-
scientiousness (C), and emotional stability (ES) were loaded
under a higher-order factor, called “Alpha,” that represents
socialization, whereas extraversion (E) and intellect (I) were
loaded under another higher-order factor, called “Beta,” that
represents personal growth. Figure 1 depicts the higher-order
model with the corresponding elements labeled in the RAM
formulation. The sample sizes of these 14 studies vary from
70 to 1,040. In Digman’s article, he further grouped the
studies under younger versus older participants. The data
set was stored as Digman97 in the metaSEM package,
where the correlation matrices and sample sizes were stored
as Digman97$data and Digman97$n respectively.

To conduct the Stage 1 analysis with a fixed-effects mod-
el, we may use the following syntax:

fixed1 <- tssem1(my.df = Digman97$data, n =
Digman97$n, method = "FEM"); summary(fixed1)

After specifying the two-factor model via the RAM
formulation—for example, A1, S1, and F1—we may
use the following syntax to conduct the Stage 2
analysis:

fixed2 <- tssem2(fixed1, Amatrix = A1,
Smatrix = S1, Fmatrix = F1, diag.constraints =
TRUE, intervals = "LB"); summary(fixed2)

Results

In this section, the results for the fixed-effects TSSEM are
presented by pooling all studies together. Since the homoge-
neity of the correlation matrices is questionable, I further
present the results from treating the sample type as a cate-
gorical moderator (see Cheung & Chan, 2005a). Finally, I
report the results for the random-effects TSSEM. Because

Fig. 1 A higher-order five-factor model
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the results based on the fixed-effects models are also ques-
tionable, I will only interpret the parameter estimates on the
basis of the random-effects model. Results related to the
similarities and differences between the fixed- and random-
effects models are discussed as well.

Fixed-effects model The goodness-of-fit indices for the
Stage 1 analysis based on a fixed-effects TSSEM approach
were χ2(130, N = 4,496) = 1,499.73, p < .001, CFI =
0.6825, RMSEA = 0.1812, and SRMR = 0.1750. On the
basis of the test statistic and the goodness-of-fit indices, the
assumption of homogeneity of the correlation matrices was
rejected.As an illustration, I continued to fit the structuralmodel
on the basis of the pooled correlation matrix. The goodness-of-
fit indices for the Stage 2 analysis were χ2(4, N = 4,496) =
65.06, p < .001, CFI = 0.9802, RMSEA = 0.0583, and
SRMR = 0.0284. The proposed model fits the data well.

Since the structural model was fitted on the basis of the
pooled correlation matrix and its asymptotic covariance ma-
trix, whether the correlation matrices were homogeneous had
little impact on the model fit of the structural models.
Readers should be cautious in interpreting the results of the
Stage 2 analysis when the homogeneity of the correlation
matrices is rejected in the Stage 1 analysis.

Fixed-effects model with a categorical moderator The 14
studies were grouped into the results from older and younger
participants (sample in R). We may use the following code
to conduct the Stage 1 and Stage 2 analyses on the older and
younger participants:

fixed1.cluster <- tssem1(Digman97$data,
Digman97$n, method = "FEM", cluster = sample);
summary(fixed1.cluster); fixed2.cluster <-
tssem2(fixed1.cluster, Amatrix = A1, Smatrix =
S1, Fmatrix = F1, diag.constraints = TRUE,
intervals.type= "LB");Summary(fixed2.cluster)

The goodness-of-fit indices of the Stage 1 analysis for the
older and younger participants were χ2(80, N = 3,658) =
823.88, p < .001, CFI = 0.7437, RMSEA = 0.1513, and
SRMR = 0.1528, and χ2(40, N = 838) = 344.18, p < .001,
CFI = 0.7845, RMSEA = 0.2131, and SRMR = 0.1508,
respectively. The assumption of the homogeneity of the
correlation matrices in these two samples was rejected.

As an illustration, the structural models were still fitted.
The goodness-of-fit indices of the Stage 2 analysis for the
older and younger participants were χ2(4, N = 3,658) =
21.92, p < .001, CFI = 0.9921, RMSEA = 0.0350, and
SRMR = 0.0160, and χ2(4, N = 838) = 144.87, p < .001,
CFI = 0.9427, RMSEA = 0.2051, and SRMR = 0.1051,
respectively. The proposed model appears to fit the data well in
the older participants, but not in the younger participants.
However, it should be noted again that the fit indices ignored
the rejection of the homogeneity of the correlation matrices in

the Stage 1 analysis. Moreover, two improper solutions were
obtained (an estimated factor loading of 3.28 and an estimat-
ed error variance of –9.82) in the younger participants. Thus,
the results for the younger participants should not be trusted.

Random-effects model Since five variables were present,
this led to a total of ten correlation coefficients in each study.
If a random-effects model was fitted, the variance compo-
nent of the random effects would include 55 elements. As not
enough data were present to estimate the full variance com-
ponent, a diagonal matrix was used to estimate the variance
component. This option can be requested by specifying the
RE.type = "Diag" argument in tssem1(). The Stage 1
and Stage 2 random-effects TSSEM can be conducted via the
following commands:

random1 <- tssem1(Digman97$data, Digman97$n,
method="REM",RE.type="Diag");summary(random1);
random2 <- tssem2(random1, Amatrix = A1,
Smatrix = S1, Fmatrix = F1, diag.constraints =
TRUE, intervals = "LB")

It should be noted that goodness-of-fit indices are not avail-
able in the Stage 1 analysis under the random-effects model. The
range of the I 2 index—the proportion of total variance that could
be explained by the between-study effect—was from .84 to .95.
This indicates huge between-study heterogeneity. A random-
effects model is therefore preferred to a fixed-effects model.

The pooled correlation matrix based on the random-
effects model was used to fit the two-factor CFA in the
Stage 2 analysis. The goodness-of-fit indices for the pro-
posed model were χ2(4, N=4,496) = 8.51, p < .001, CFI =
0.9776, RMSEA = 0.0158, and SRMR = 0.0463. The
proposed model fits the data very well.

The results support Digman’s (1997) higher-order factor
structure. All standardized factor loadings were very high,
ranging from 0.57 to 0.77. There is one difference between
Digman’s proposal and the present findings, however:
Digman argued that the factors were uncorrelated because
they were the fundamental factors. The results show that the
two factors were moderately correlated, with a correlation
of .39 and a 95 % LBCI of .30 to .49.

Data set from B. J. Becker and Schram (1994)

Method

B. J. Becker and Schram (1994) used five samples to measure
the correlations among SAT (math), SAT (verbal), and spatial
ability. Since B. J. Becker and Schram divided the data between
male and female participants, this led to a total of ten indepen-
dent samples. B. J. Becker and Schram synthesized the corre-
lation matrices and fitted a regression model by using SAT
(math) as the dependent variable and SAT (verbal) and spatial
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ability as the predictors. Figure 2 shows the regression model
with the corresponding elements in the RAM formulation. The
sample sizes vary from 18 to 153. The data set was stored as
Becker94 in the metaSEM package. The syntax to conduct
the analyses was similar to the examples listed for
Digman’s (1997) data set; they are not repeated here.
Readers may refer to the online supplementary materials
for the details http://courses.nus.edu.sg/course/psycwlm/
Internet/metaSEM/masem.html.

Results

First, the results for the fixed-effects TSSEM will be
presented by pooling all studies together and treating gender
as a categorical moderator. Then I present the results for the
random-effects TSSEM. Since the random-effects model
was more appropriate, I only interpret the parameter esti-
mates based on the random-effects model.

Fixed-effects model The goodness-of-fit indices of the Stage
1 analysis were χ2(27, N = 538) = 62.50, p < .001, CFI =
0.7943, RMSEA = 0.1565, and SRMR = 0.2011. On the
basis of the test statistic and the goodness-of-fit indices, the
hypothesis of the homogeneity of the correlation matrices was
rejected. As an illustration, I will continue to fit the structural
model on the basis of the pooled correlation matrix. Since the
regression model is saturated, the test statistic is 0.

Fixed-effects model with a categorical moderator The ten
studies were grouped into studies with female and male partic-
ipants. The goodness-of-fit indices of the Stage 1 analysis for
the female and male participants were χ2(12, N = 235) =
42.41, p < .001, CFI = 0.7116, RMSEA = 0.2327, and
SRMR = 0.2339, and χ2(12, N = 303) =16.13, p = .1852,
CFI = 0.9385, RMSEA = 0.0755, and SRMR = 0.1508,

respectively. The homogeneity of correlation matrices seem
adequate in the male participants, but not in the female partic-
ipants. Since the sample sizes were not large, we should be
cautious in concluding that the data were homogeneous. As an
illustration, I continued to fit the structural models.

Random-effects model Since three variables were present,
this led to a total of three correlation coefficients in each
study. If a random-effects model were fitted, a total of 6
elements would be included in the variance component of
the random effects. Since there were only ten studies, a
diagonal matrix was used to fit the variance component.

The I 2 indices for the correlations between spatial and
math, verbal and math, and spatial and verbal were .00, .81,
and .23, respectively. These indicate that the heterogeneity in
the correlation between spatial and math was trivial, whereas
the heterogeneity was largest in the correlation between verbal
and math. A random-effects model was therefore preferred to
a fixed-effects model. The regression coefficients (and their
95 % LBCIs) from spatial and verbal to math were 0.30 (0.21,
0.37) and 0.37 (0.21, 0.53), respectively. The error variance
for math was .73, meaning that the R2 was (1 – .73) or .27.

Discussion

The parameter estimates, their 95 % LBCIs, and the widths
of the CIs are listed in Tables 1 and 2. As we can see from the
tables, there is no systematic relationship between the pa-
rameter estimates from the fixed- and the random-effects
models. However, the CIs of the random-effects model are
usually larger than those of the fixed-effects model. The SEs
and CIs of the fixed-effects model are underestimated when
the assumption of the homogeneity of effect sizes is not
valid. The same findings have always been observed in
conventional meta-analysis (e.g., Hedges & Vevea, 1998).

Another observation is that the Stage 2 analysis fits the
proposed models well, even when the assumption of homoge-
neity of the correlation matrices is clearly violated in the Stage
1 analysis. This occurs because the Stage 2 analysis mainly
uses the pooled correlation matrix as the input. Information on
the heterogeneity of the correlation matrices is not incorporated
under the fixed-effects model. Researchers should be cautioned
that the fit indices in the Stage 2 analysis may bemisleading if a
fixed-effects model is incorrectly applied to a pool of hetero-
geneous correlation matrices. This article has demonstrated
how a random-effects TSSEM can be applied when the as-
sumption of homogeneity of the correlationmatrices is not met.

Conclusion and future directions

This article has reviewed the basic ideas of MASEM. More
specifically, the TSSEM approach was introduced andFig. 2 A multiple regression on mathematical performance
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Table 1 Parameter estimates and their 95 % likelihood-based confidence intervals in the Stage 2 analyses of Digman (1997)

Estimate Lower Bound Upper Bound Width of CI

Fixed-Effects Model

Amatrix[1,6] A loaded on Alpha 0.5626 0.5324 0.5929 0.0604

Amatrix[2,6] C loaded on Alpha 0.6051 0.5751 0.6353 0.0602

Amatrix[3,6] ES loaded on Alpha 0.7191 0.6886 0.7503 0.0617

Amatrix[4,7] E loaded on Beta 0.7820 0.7191 0.8559 0.1368

Amatrix[5,7] I loaded on Beta 0.5509 0.4994 0.6023 0.1029

Smatrix[1,1] Error variance of A 0.6835 0.6485 0.7165 0.0680

Smatrix[2,2] Error variance of C 0.6338 0.5964 0.6693 0.0729

Smatrix[3,3] Error variance of ES 0.4829 0.4370 0.5258 0.0888

Smatrix[4,4] Error variance of E 0.3885 0.2674 0.4829 0.2155

Smatrix[5,5] Error variance of I 0.6965 0.6372 0.7506 0.1134

Smatrix[7,6] Factor correlation between Alpha and Beta 0.3626 0.3184 0.4065 0.0881

Fixed-Effects Model for Older Participants

Amatrix[1,6] A loaded on Alpha 0.5125 0.4769 0.5484 0.0715

Amatrix[2,6] C loaded on Alpha 0.5500 0.5149 0.5854 0.0705

Amatrix[3,6] ES loaded on Alpha 0.7321 0.6956 0.7701 0.0745

Amatrix[4,7] E loaded on Beta 0.9675 0.8680 1.1096 0.2416

Amatrix[5,7] I loaded on Beta 0.4305 0.3692 0.4869 0.1177

Smatrix[1,1] Error variance of A 0.7373 0.6993 0.7726 0.0733

Smatrix[2,2] Error variance of C 0.6974 0.6573 0.7349 0.0776

Smatrix[3,3] Error variance of ES 0.4640 0.4070 0.5162 0.1092

Smatrix[4,4] Error variance of E 0.0639 –0.2320 0.2466 0.4785

Smatrix[5,5] Error variance of I 0.8147 0.7629 0.8637 0.1008

Smatrix[7,6] Factor correlation between Alpha and Beta 0.3491 0.2921 0.4032 0.1112

Fixed-Effects Model for Younger Participants

Amatrix[1,6] A loaded on Alpha 0.7476 0.7007 0.7947 0.0940

Amatrix[2,6] C loaded on Alpha 0.9120 0.8732 0.9515 0.0783

Amatrix[3,6] ES loaded on Alpha 0.6772 0.6260 0.7275 0.1015

Amatrix[4,7] E loaded on Beta 0.1524 0.0154 0.3417 0.3263

Amatrix[5,7] I loaded on Beta 3.2898 1.5252 209.3000 207.7748

Smatrix[1,1] Error variance of A 0.4410 0.3684 0.5091 0.1406

Smatrix[2,2] Error variance of C 0.1683 0.0946 0.2376 0.1430

Smatrix[3,3] Error variance of ES 0.5414 0.4707 0.6081 0.1374

Smatrix[4,4] Error variance of E 0.9768 0.8833 0.9994 0.1161

Smatrix[5,5] Error variance of I –9.8226 –488,900 –1.3113 488,899

Smatrix[7,6] Factor correlation between Alpha and Beta 0.1171 0.0108 0.2750 0.2642

Random-Effects Model

Amatrix[1,6] A loaded on Alpha 0.5726 0.4737 0.6769 0.2032

Amatrix[2,6] C loaded on Alpha 0.5901 0.4905 0.6949 0.2044

Amatrix[3,6] ES loaded on Alpha 0.7705 0.6599 0.9043 0.2444

Amatrix[4,7] E loaded on Beta 0.6934 0.5626 0.8718 0.3093

Amatrix[5,7] I loaded on Beta 0.6401 0.5083 0.7864 0.2781

Smatrix[1,1] Error variance of A 0.6722 0.5418 0.7756 0.2339

Smatrix[2,2] Error variance of C 0.6518 0.5171 0.7594 0.2423

Smatrix[3,3] Error variance of ES 0.4064 0.1819 0.5645 0.3826

Smatrix[4,4] Error variance of E 0.5192 0.2394 0.6835 0.4442

Smatrix[5,5] Error variance of I 0.5903 0.3813 0.7416 0.3603

Smatrix[7,6] Factor correlation between Alpha and Beta 0.3937 0.3024 0.4903 0.1879

The Amatrix and Smatrix refer to the asymmetric matrix of regression coefficients and the symmetric matrix of variance and covariance elements,
respectively. Please refer to Fig. 1 for the corresponding elements.
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extended to a random-effects model. The illustrations demon-
strated how to conduct the fixed- and random-effects TSSEM
using the metaSEM package. This article has only demon-
strated the functions in the metaSEM package that are related
to TSSEM. In the package are other useful functions for
general meta-analysis using an SEM approach—for example,
univariate and multivariate meta-analysis (Cheung, 2008, in
press-b) and three-level meta-analysis (Cheung, in press-a).
Since a SEM approach is used to model meta-analytic data,
flexible constraints on the parameter estimates may be im-
posed. Besides the conventional ML estimation method, re-
stricted maximum likelihood (REML) may also be used to
conduct the analyses (Cheung, 2013a).

Since the common objective of a MASEM is to generalize
findings beyond the studies included in a meta-analysis, the
random-effects TSSEM proposed in this article should gener-
ally be recommended. Applications and methodological de-
velopment using a random-effects model are still limited in the
MASEM literature, and several open questions deserve atten-
tion for future research. I will address some of them below.

Distribution assumptions for the data

For most data analyses in the social and behavioral sciences,
the normality of the data is usually assumed for ease of analy-
sis. When there are reasons to question the validity of the

normality assumption, robust statistics may be used to adjust
for the nonnormality effect. Robust statistics are available in
multilevel modeling (Litière, Alonso, & Molenberghs, 2008;
Verbeke & Lesaffre, 1997), SEM (Yuan & Bentler, 2007), and
meta-analysis (Sidik & Jonkman, 2006). Applying robust sta-
tistics to MASEM, however, is more complicated. As is shown
in Eq. 5, MASEM has two variance components—Vi, the
known sampling covariance matrix in the ith study, and T2,
the variance component of the study-specific random effects.
Since raw data are usually not available in MASEM, the use of
the WLS estimation method in TSSEM does not automatically
correct for nonnormality. The effects of nonnormality onVi and
T2 and how to apply the robust statistics in MASEM still
remain unknown. Further research should address the effects
of nonnormality in MASEM.

Model selections and comparisons with fit indices

The proposed model follows a chi-square distribution only if
(1) the proposed model is correct; (2) the sample size is large
enough; and (3) the distribution assumption is correct. When
the proposed model is rejected, this could be attributed either
to model misspecification or to other violations of assump-
tions (e.g., Saris, Satorra, & van der Veld, 2009). Instead of
relying on the formal test statistic, many goodness-of-fit
indices—such as CFI, TLI, and RMSEA—have been

Table 2 Parameter estimates and their 95 % likelihood-based confidence intervals in the Stage 2 analyses of B. J. Becker and Schram (1994)

Estimate Lower Bound Upper Bound Width of CI

Fixed-Effects Model

Amatrix[1,2] Regression coefficient from spatial to math 0.3315 0.2577 0.4052 0.1475

Amatrix[1,3] Regression coefficient from verbal to math 0.2740 0.1966 0.3515 0.1550

Smatrix[1,1] Error variance on math 0.7831 0.7155 0.8424 0.1269

Smatrix[2,3] Correlation between spatial and verbal 0.1756 0.0918 0.2595 0.1677

Fixed-Effects Model for Female Participants

Amatrix[1,2] Regression coefficient from spatial to math 0.4103 0.3051 0.5147 0.2096

Amatrix[1,3] Regression coefficient from verbal to math 0.2691 0.1525 0.3859 0.2334

Smatrix[1,1] Error variance on math 0.7217 0.6131 0.8144 0.2013

Smatrix[2,3] Correlation between spatial and verbal 0.1705 0.0420 0.2989 0.2569

Fixed-Effects Model for Male Participants

Amatrix[1,2] Regression coefficient from spatial to math 0.2677 0.1659 0.3695 0.2037

Amatrix[1,3] Regression coefficient from verbal to math 0.2783 0.1750 0.3815 0.2065

Smatrix[1,1] Error variance on math 0.8242 0.7367 0.8953 0.1586

Smatrix[2,3] Correlation between spatial and verbal 0.1792 0.0685 0.2899 0.2213

Random-Effects Model

Amatrix[1,2] Regression coefficient from spatial to math 0.2954 0.2144 0.3741 0.1597

Amatrix[1,3] Regression coefficient from verbal to math 0.3717 0.2131 0.5296 0.3165

Smatrix[1,1] Error variance on math 0.7301 0.5903 0.8305 0.2402

Smatrix[2,3] Correlation between spatial and verbal 0.2029 0.1118 0.2942 0.1824

The Amatrix and Smatrix refer to the asymmetric matrix of regression coefficients and the symmetric matrix of variance and covariance elements,
respectively. Please refer to Fig. 2 for the corresponding elements.
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proposed to assess the approximate fit of the proposed model
(see Barrett, 2007, and the commentaries regarding the argu-
ments for and against the goodness-of-fit indices). Since
TSSEM is a special case of SEM, the arguments for and
against the goodness-of-fit indices can be directly applied to
TSSEM. Several issues require special attention, however:
First, TSSEM is usually driven by comparing several theoret-
ically meaningful models. Therefore, instead of evaluating
whether a particular model is appropriate for the data, a better
approach would be only to compare the relative fits of a
number of different a priori models. Second, TSSEM is usu-
ally based on a large set of divergent samples and a much
larger overall sample size than is conventional SEM. Thus, it
is likely that the large-sample requirement will not be difficult
to satisfy in the majority of TSSEM applications. It will be
critical for future work to study how best to evaluate model
specification in the context of TSSEM.

Bayesian approach to MASEM

As discussed above, one of the limitations in model testing in
SEM is that the proposed model may not be exactly correct.
Using Digman’s (1997) higher-order factor structure as an
example, the proposed model hypothesizes no double loading
on the items and that the measurement errors are uncorrelated.
Under the conventional SEM framework, it is not possible to
free all of the possible loadings and covariances among the
error variances. Muthén and Asparouhov (2012; see also the
commentaries in that special issue) argued that a Bayesian
approach might be used to address some of these concerns
through the use of informative priors. As Bayesian statistics are
becoming more and more popular in SEM (Lee, 2007; Muthén
& Asparouhov, 2012) and meta-analysis (Smith, Spiegelhalter,
& Thomas, 1995; Sutton & Abrams, 2001), it may be feasible
to apply a Bayesian approach to MASEM. For example,
Prevost et al. (2007) showed how the Bayesian approach could
be used to synthesize correlation matrices with a random-
effects model. Since MASEM consists of two stages of analy-
ses, further research would investigate how the Bayesian ap-
proach could be integrated into the MASEM framework.

Individual patient data meta-analysis

In the area of medical sciences, the individual patient data
meta-analysis—that is, the synthesis of raw data rather than
summary statistics—is becoming popular (e.g., Riley,
Lambert, & Abo-Zaid, 2010; Stewart et al., 2012; Sutton,
Kendrick, & Coupland, 2008). A similar approach, termed
integrative data analysis, has also been proposed in psychol-
ogy (see Curran, 2009, in the special issue of Psychological
Methods). Many of the aforementioned issues in MASEM
can be addressed when raw data are available. Moreover, the
response variables can be continuous, categorical, count,

nominal, or a mix of these options. This will broaden the
usefulness of MASEM. The main obstacle, however, is that
raw data are usually not made publicly available in psychol-
ogy and in the behavioral sciences in general.

Inclusion of study characteristics

Study characteristics are usually included as predictors in
meta-analysis. The study characteristics may be used to
explain the heterogeneity of effect sizes. This is known as
mixed-effects meta-analysis or meta-regression (e.g.,
Borenstein, Hedges, Higgins, & Rothstein, 2009). In the
illustrations above, the studies were classified into two
groups for separate analyses. This approach, however, is
limited to categorical variables only. When the variables
are continuous—for example, year of publication and dura-
tion of intervention—reviewers may have to categorize them
into groups. This practice is not optimal, because informa-
tion will be lost in the categorization process.

Since two stages of analyses are used in TSSEM, contin-
uous covariates may be used in the Stage 1 or Stage 2
analyses. A multivariate meta-analysis may be conducted
in the Stage 1 analysis by using study characteristics as the
predictors. However, the pooled correlation or covariance
matrix depends on the values of the study characteristics. It is
not clear how the Stage 2 model could be fitted after the
Stage 1 analysis. If the Stage 1 analysis is conducted without
the study characteristics, it is still unclear how the study
characteristics could be used to model the Stage 2 analysis.
Further research may address how continuous study charac-
teristics can be used in MASEM.

Correcting for unreliability

There is some controversy onwhether it is necessary to correct
for attenuations or statistical artifacts in meta-analysis. Since
the measurements are liable to measurement errors, the ob-
served correlation coefficients are usually smaller than the
actual correlations. Rosenthal (1991) criticizes the use of
correction for attenuations because the corrected values are
different from the “typical research findings” and the
corrected values are not as useful as uncorrected values in
realistic settings. Other researchers—for example, Hunter and
Schmidt (2004), prefer to correct for attenuation before com-
bining them, whereas others suggest that combining the ob-
served correlation coefficients is sufficient.

Hunter and Schmidt (2004) identified 11 artifacts that
could be corrected before combining the correlation co-
efficients. These included sampling error, error of mea-
surement in the dependent and independent variables,
restriction of range, and so forth. However, it is unlikely
that the published articles would include all of the infor-
mation necessary for correction.
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One type of measurement error is unreliability, which can
be corrected by the equation

rCorrected ¼ rxyffiffiffiffiffiffi
rxx

p ffiffiffiffiffiffi
ryy

p ; ð10Þ

where rCorrected is the estimated corrected correlation for the
unreliability of measurements, rxy is the observed correlation
between variables x and y, and rxx and ryy are the estimated
reliabilities of variables x and y, respectively.

When item-level data are available, there is no need to
correct for the unreliability in MASEM. This is because both
CFA and SEM on the item-level data can account for the
measurement errors. When MASEM is conducted on the
composite scores, reviewers may need to decide whether to
apply the correction. By reviewing several published meta-
analyses, Michel, Viswesvaran, and Thomas (2011) recently
argued that substantive model conclusions are generally
unaffected by study artifacts and the related statistical cor-
rections in the psychological literature. Since Michel et al.’s
conclusions were based on real examples rather than on
computer simulation, further research may need to address
the effects of unreliability in MASEM.

To conclude, the TSSEM provides a valuable approach
for researchers conductingMASEM. Fixed- and the random-
effects models are based on different assumptions. The im-
plementation of these techniques in the package makes both
techniques accessible to applied researchers, who may then
choose the correct model to fit their research settings and
research questions.
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