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Abstract Crowdsourcing systems like Amazon’s Mechanical
Turk (AMT) allow data to be collected from a large sample of
people in a short amount of time. This use has gamered consid-
erable interest from behavioral scientists. So far, most experi-
ments conducted on AMT have focused on survey-type
instruments because of difficulties inherent in running many
experimental paradigms over the Internet. This study investigat-
ed the viability of presenting stimuli and collecting response
times using Adobe Flash to run ActionScript 3 code in conjunc-
tion with AMT. First, the timing properties of Adobe Flash were
investigated using a phototransistor and two desktop computers
running under several conditions mimicking those that may be
present in research using AMT. This experiment revealed some
strengths and weaknesses of the timing capabilities of this
method. Next, a flanker task and a lexical decision task
implemented in Adobe Flash were administered to participants
recruited with AMT. The expected effects in these tasks were
replicated. Power analyses were conducted to describe the num-
ber of participants needed to replicate these effects. A question-
naire was used to investigate previously undescribed computer
use habits of 100 participants on AMT. We conclude that a Flash
program in conjunction with AMT can be successfully used for
running many experimental paradigms that rely on response
times, although experimenters must understand the limitations
of the method.
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Recently, there has been significant interest in conducting
behavioral science research on Amazon’s Mechanical Turk
(AMT,; www.mturk.com). AMT is an online system in
which requesters can open accounts and post a wide variety
of tasks online, called human intelligence tasks, or HIT.
Workers then browse the available HITs, and requesters can
pay workers to complete the HITs.

AMT was not created with behavioral science in mind,
but it is in many ways suitable for such applications. Mason
and Suri (2012) provided a general guide for using AMT in
behavioral research and emphasized some benefits of online
experimentation using AMT. First, AMT provides a stable
pool of participants, in contrast to undergraduate participant
pools in which the supply of participants varies over the
course of the semester or may be very limited at smaller
universities. Second, AMT workers are diverse, as com-
pared with undergraduate research pools. They come from
a broad range of ages, ethnicities, economic backgrounds,
and countries of origin. This allows for investigations of
groups not present in undergraduate research pools or con-
venience samples, as well as generalizations of psycholog-
ical phenomena to populations very different from
undergraduate participant pools and to environments other
than the lab. Heavy reliance on undergraduate research
pools has drawn criticism that much of behavioral science
is actually based on an unusual minority of the world’s
population (e.g., Henrich, Heine, & Norenzayan, 2010). It
is possible for individual requesters to send messages
through AMT to workers that have previously worked for
them and optionally include monetary bonuses with the
messages. This allows for the use of performance incentives.
Using these features, an experimenter could also develop
multiple-component studies spanning multiple days or even
deploy a demographic survey and then use the results to
recruit a stratified or intentionally biased sample of AMT
workers to represent a particular population. An additional
benefit of AMT is the low cost of participant recruitment,
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since many AMT workers participate for reasons other than
monetary compensation. Finally, data collection can be very
rapid. Buhrmester, Kwang, and Gosling (2011) received
between 5.6 and 40.5 responses per hour to a set of surveys
posted on AMT.

Most behavioral research currently listed on AMT uses
survey-type instruments. This is not without cause: In a survey
design, instruments can be written in HTML and posted
directly on AMT, or they can be hosted using a ready-made
commercial survey package like Qualtrics (e.g., Goodman,
Cryder, & Cheema, in press; Paolacci, Chandler, & Ipeirotis,
2010), allowing a paper-and-pencil study to be converted to an
experiment on AMT in a matter of hours. Many research
questions do not lend themselves to a survey format, however.
Of specific interest in this article are those paradigms that
involve the collection of response times (RTs) from partici-
pants pressing keys in response to visual stimuli. Such para-
digms have been instrumental in investigating a wide range of
phenomena in the domains of perception, memory, attention,
language, reasoning, problem solving, decision making, and
movement control (Meyer, Osman, Irwin, & Yantis, 1988).
Hewson, Laurent, and Vogel (1996) envisioned that the
Internet would allow for collecting RTs from large and diverse
participant pools in online experiments. A few such experi-
ments have successfully collected data from many thousands
of participants (e.g., Halberda, Ly, Wilmer, Naiman, &
Germine, 2012; Owen et al., 2010). These experiments did
not use a system like AMT but, rather, used elaborate dedi-
cated Web sites operating over a period of months. There is
currently no easy route when it comes to collecting RTs
online, since HTML provides no mechanism with which to
do this. However, with the right approach, it is possible for
experiments that gather RTs to enjoy the same benefits from
AMT as survey research. The aim of the set of experiments
presented here is to establish a method that experimenters can
use with AMT to administer experimental stimuli and accu-
rately collect RTs, despite the possibly large variation in the
software, hardware, and computer use habits of AMT users.

A technology used for capturing RTs from AMT experi-
ments must run inside of a Web browser, rather than being
an external program downloaded by the worker. The AMT
policies (AMT FAQ, 2012) prohibit requesters from requir-
ing workers to download stand-alone software in order to
complete a HIT. This precludes the use of standard stimulus
presentation software that an experimenter would use in a
lab. However, the policy allows requesters to use plug-ins
and other rich media technology that run inside a Web
browser. It is likely beneficial for experimenters to choose
a rich media technology that is already ubiquitous. AMT
experimental samples have some benefits over other types
of samples, but they also score relatively high on measures
of Internet and computer experience, understanding, and
knowledge (Behrend, Sharek, Meade, & Wiebe, 2011). A
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technology that, for example, requires a particular operating
system, is used only by more advanced users, or is used only
in offices could both reduce the size of the pool of possible
participants and further bias it toward tech-savvy partici-
pants. Adobe’s Flash fits these criteria of running inside the
Web browser and ubiquity: Adobe claims that Flash Player
is installed on over 98 % of Internet-connected computers
(Adobe Developer Connection, 2012).

A suitable technology must have accurate timing, but it is
not clear how accurate the timing must be. Flash Player runs in
a virtual machine, which means programs running in Flash
Player are isolated from system components like device
drivers. This allows for information security and consistency
across Web browsers and operating systems, but it also means
that timing measurements must go through another layer
separating an experimenter’s program from the hardware that
runs it. Several articles have described timing properties of
Flash (e.g., Houben & Wiers, 2008; Reimers & Stewart, 2007;
Schmidt, 2001), but the experiments were conducted using
Flash Players based on an older virtual machine (AVM1).
Newer versions of Flash Player support the new language
ActionScript 3, and code written in ActionScript 3 runs on
AVM2, a virtual machine that runs up to 10 times faster than
AVMI (Grossman & Huang, 2009).

After the release of AVM2-based software, Neath, Earle,
Hallett, and Surprenant (2011) revisited the topic of chro-
nometric experimentation in Flash. They found that RTs
collected in a program implemented using Flash were still
less accurate than those collected by MATLAB and Octave
using Psychtoolbox. Additionally, no software can yield
perfect timing accuracy, because the hardware does not
allow for it. Plant and Turner (2009) investigated the timing
abilities of commodity computer hardware. They found de-
lays of up to 54 ms in monitors, 34 ms in keyboards, 49 ms
in mice, and even 37 ms in speaker systems. Not only did
the magnitude of timing errors vary by model of device, but
their distributions also varied by device, precluding a solu-
tion of simply subtracting a constant value from measure-
ments. Furthermore, neither equipment cost nor any other
obvious factor translated to better timing abilities.
Fortunately, perfect timing is not necessary. Brand and
Bradley (2012) used a simulation to argue that even in a
nonrobust experimental design, the amount of increased
error due to technical variance that could be expected for a
Web experiment over that of a lab-based experiment would
not reduce statistical power substantially and that large
sample sizes available on the Internet could provide an
overall increase in statistical power.

The aim of Experiment 1 in this study was to describe the
timing accuracy of an experiment developed in Adobe Flash
under various conditions of computer use. This experiment
was important in order to establish that the software and
method are capable of accurate RT measurement before one
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can expect to use it to replicate prior RT work. Specifically,
it was hypothesized that timing accuracy in Adobe Flash
meets the theoretical requirements necessary to detect a
difference in RTs between experimental conditions with a
small effect size. The aim of Experiment 2 in this study was
to empirically determine whether the flanker effect, a classic
effect in cognitive research, can be found using a Flash-
based experiment posted on AMT and, if so, what consid-
erations must be given to the sample size. Even if
Experiment 1 revealed that the program implemented in
Adobe Flash has accurate timing measurements, it would
be conceivable that some aspect of the AMT system or
AMT workers could make replication of laboratory findings
difficult. Experiment 2 addressed this concern. It was hypoth-
esized that the results of Experiment 2 would replicate a three-
way interaction described by Nieuwenhuis et al. (2006,
Experiment 1). Experiment 3 replicated a lexical decision
task, in order to generalize the success or failure of the method
described in this article beyond a single task. Specifically, it
was hypothesized that the results of Experiment 3 would
replicate a two-way interaction described by Lupker, Pera,
and Davis (2008, Experiment 1b). The particular tasks used
in Experiments 2 and 3 were chosen because both tasks had
been well established in the cognitive science literature, both
had manipulations that resulted in large classic effects on RTs
that were expected to be easy to replicate, and the specific
implementations of both tasks had effects on RTs that were
smaller than the classic effects. In addition to the timing
experiment and the two replications using AMT workers,
some previously unexplored characteristics of AMT workers
are described. When designing experiments to run on AMT,
experimenters may want to take into consideration factors like
the types of devices their participants are using or the envi-
ronments their participants are currently in. These concerns
were addressed through a questionnaire administered to the
participants in Experiments 2 and 3.

Experiment 1

Experiment 1 investigated the timing accuracy of an Adobe
Flash-based speeded decision task. It used an external
timing apparatus for comparison of timing measurements,
and it did not use human participants. The focus of the
experiment was on the accuracy of stimulus presentation
times, which is the major source of variability introduced by
Flash into the RT measurements. The accuracy of keypress
detection is addressed in the discussion.

Method

Experiment 1 was programmed in ActionScript 3 and com-
piled in Abode Flash Professional CS5.5. The frame rate for

the Flash file was set to 60.00 FPS. On each trial, a white dot
was presented inside a text field against a black background.
When a keypress was detected by an event listener, the
system time was captured by calling the Date() class in
ActionScript, the contents of the text field were changed to
no characters, the system time was again captured, and
setTimeout() was used to call a function with a 1,000-ms
delay. The function that was called by setTimeout() replaced
the contents of the text field with the next item from an
array, which in this experiment was always a dot. The
system time was again captured. The difference between
these two captured times—nominally, 1,000 ms—served
as an interstimulus interval (ISI). Another function was
called with a 100-ms delay. This second update did not
visually change the stimulus, because it remained a dot.
This function was included so that the ActionScript code
used in this experiment would match the ActionScript code
used for Experiment 2.

A phototransistor was placed on the monitor over the
location of the dot. In this manner, the phototransistor
detected the onset and offset of the stimuli while the exper-
iment ran. It was monitored via the line-in jack on a laptop
computer, which was continuously sampled at 8000 Hz.
This allowed the timing information recorded by the Flash
program to be compared with the intended presentation
parameters and also to the high-resolution timing measured
by the phototransistor.

In addition to the recording apparatus, two computers
were used for testing. Because of the wide varieties of
operating systems, processors, and Web browsers and the
fact that new versions of each are released several times per
year, it is not possible to exhaustively test the effect of each
variety of each system component. Rather, two systems
were used that could reasonably represent typical configu-
rations. In 2012 and late 2011, most AMT workers used
either Chrome or Firefox to access AMT (Simcox, 2012).
Nearly half of AMT workers used Windows 7, although
older versions of Windows also remained popular at the
time of that data collection. We assumed that many users
of outdated Windows versions have already upgraded or
will upgrade soon. Because Linux was a rarity among
AMT workers, we opted to include OSX as a second oper-
ating system choice. All OSX systems and most Windows
systems ship with Intel processors, so both test systems used
processors from the popular Intel Core series.

System 1 was a Dell Vostro running Windows 7
Enterprise Service Pack 1 on a 3.30-GHz Intel Core i3
processor with 4 GB of RAM. The display used with system
1 was a Samsung SyncMaster 740 N LCD display with a
60-Hz frame rate, common for computer displays and the
default rate for Windows 7. The Web browser used for
testing system 1 was Chrome 23.0.1271.97 m with Flash
Player version 11.5.31.5. The stand-alone Flash player was
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version 11.5.502.110. The software used to generate re-
source load on the CPU and RAM was Prime95 v27.7 build
2 (Woltman, 2012). System 2 was an Apple iMac model
11.3 running OSX 10.6.8 on a 2.8-GHz Intel Core i5 pro-
cessor with 16 GB of RAM. The display in this system is an
integrated LCD panel running at a 60-Hz frame rate. The
Web browser used for testing system 2 was Firefox 14.0.1
with Adobe Flash Player 11.1.102.55. The stand-alone Flash
player was version 11.3.300.268. Prime95 v27.7 build 2 was
used to generate load. Both systems were tested under four
conditions of resource load: low, medium, high, and maxi-
mum. In the low-load condition, the Flash program was the
only window running in Firefox, with no other application
software running. In the medium-load condition, the Flash
program executed while Prime95 ran two processing threads
of the torture test, an intense computational task. In the high-
load condition, the number of threads running a torture test
was increased to four. The medium- and high-load condi-
tions were intended to mimic possible loads that occur if
participants ran other software on their computers while
participating in the experiment. In the maximum-load con-
dition, Prime95 was instructed to use all system RAM to run
four threads of the torture test, the process priority of
Prime95 was manually raised, and the process priority of
Flash Player was manually lowered. This was intended to
force errors in timing to occur. The maximum-load condi-
tion was run to determine whether timing measurements
collected by ActionScript could detect errors in presentation
times controlled by ActionScript. If it were possible to
detect errors in timing, it would allow experimenters to
determine whether any participants are likely to have expe-
rienced inaccurate timing during the experiment by screen-
ing their data sets for participants with unusually high
variability in the ISIs.

In a no-browser condition, the Flash program was exe-
cuted in a stand-alone Flash Player rather than within a Web
browser. Flash Player runs in a sandbox, so the browser and
operating system both exist between Flash Player and the
hardware. Versions of Flash Player used in browsers must
conform to the browser’s specifications, such as Chrome’s
Pepper Plugin API. Numerous anecdotes on discussion fo-
rums suggest that timing issues can arise when running a
Flash program inside a Web browser that were not seen
when running it in the stand-alone player. The no-browser
condition was run to determine whether such a difference
could be detected.

One hundred trials were run in each condition, and the first
author served as the operator. It is critical to note that the tests
here are intended to determine whether the magnitudes of
timing errors make replications of chronometry experiments
plausible. They are not intended to determine the effects of all
possible variables. There is a virtually unlimited array of
possible hardware and software configurations that could be
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used to run Flash and, hence, could be used by AMT workers.
In addition, the types of loads that could be running on an
AMT worker’s system are many, and the combination of
ActionScript functions used here is one of many possible
approaches to present stimuli, measure time, and record re-
sponses in ActionScript.

Results and discussion

The ISIs were all intended to be 1,000 ms. For the ISIs on
each trial in each condition, the time elapsed as measured by
the phototransistor output and the time elapsed as measured
by the ActionScript output were recorded. Deviation from
1,000 ms in the phototransistor measurements represents
error in presentation duration. Differences between the
ActionScript measurements and the phototransistor mea-
surements indicate error in the Flash application’s ability to
accurately record stimulus presentation duration. Histograms
of the measurements of the ISIs from ActionScript and from
the phototransistor are presented in Fig. 1. The means, stan-
dard deviations, minimum values, and maximum values of
both measures, along with two-sided paired #tests and 95 %
ClIs of the differences, are listed in Table 1. Although the focus
of the comparisons is between the ActionScript measure-
ments and the phototransistor measurements using two
representative computer systems, a statistical comparison
of these data between system 1 and system 2 is provided as
supplemental material.

As can be seen in the histograms in Fig. 1, times mea-
sured by the phototransistor fall into bins that are multiples
of the 16.7-ms refresh rate. This is what should be expected
if timing is imperfect, because when a key is pressed, the
display cannot change instantly. Rather, the stimulus must
remain at least until the display is updated at the next screen
refresh. The low-load, medium-load, and high-load condi-
tions were intended to represent typical computer use. In
these three conditions collapsed across the two systems, a
combined total of 80.5 % of intervals fell on the correct 1,000-
ms screen refresh. Another 19.2 % of the intervals in these
conditions deviated from 1,000 ms by a single screen refresh,
and the remaining 0.3 % deviated by two refreshes. When the
interval was less than 1,000 ms, the stimulus prior to the
interval disappeared later than intended after the keypress,
and when the interval was greater than 1,000 ms, the next
stimulus appeared a refresh later than intended. It is also
possible for both delays to happen on any individual trial,
resulting in a 1,000-ms interval. It is unlikely that the variance
in either process is multiple refreshes in these conditions,
though, because that would result in a wider distribution.

It was not until load was abnormally high, in the
maximum-load condition, that many outliers occurred and
a wider distribution resulted. Levene’s test was used to
compare the variances in the low-load and the maximum-
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Fig. 1 Histograms of durations of interstimulus intervals for each condition, as measured by the phototransistor and by the ActionScript code. The
x-axis is the measured duration in milliseconds

load conditions. The maximum-load condition had greater phototransistor measurements, F(1, 198) = 7.82, p = .006,
variance than the low-load condition in both the and the ActionScript measurements, F(1, 198) = 7.93, p =
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Paired differences

Phototransistor values

Actionscript values

Condition

Table 1 Durations of interstimulus intervals (in milliseconds) for each system in each condition

System
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1(99)

Min Max Mean SD Min Max Mean SD SEM 95 % Cl

SD

Mean

UL

LL

<.001

16.93
11.74
11.54
10.75
—0.45

11.76

9.29
5.51
5.13
4.82
—53.46
-1.12

3.50
0.12
0.12
0.12
0.75

0.

5.42
4.93
4.42
5.06

200.06

11
7

7
6

1,004
1,019

987
985
985
985
69

2.35

1,003
1,001

1,020
1,016

1,000
1,000

5.98
4.59
4.74
4.78
81.31
8.71
4.86
4.99
5.09

13.13

Stand-alone 1,014

System 1

<.001

7.76
7.26
7.00
33.77

4.04

1,008
1,008
1,007
1,017

Low load

System 1

<.001

1,019

4.43

1,002
1,001

1,016

999
999
999
984
999
999
999
999

Medium load
High load

System 1

<.001

1,018

4.68
183.38

1,016

System 1

.655
147
<.001

91
5

1,935
1,017

1,027
1,009
1,000
1,000
1,000

1,191

1,815

Max load

System 1

0.32
6.35
7.63
9.20
-1.43

1.56
10.08

00

3.99
8.66
7.86
7.54

1251.00

1000
967
984
984
784

4.93
11.75

1,018

1,009
1,008
1,008
1,008
1,012

Stand-alone

System 2

5.28
5.63
6.43

—428.53

1.00
0.00
0.00

0.

11
10
10

1,018

1,018

Low load

System 2

<.001

9.59
9.97

69.72

1,018

1,016 8.66

Medium load
High load

System 2

<.001

1,034
13,144

8.50

1,255.10

1,017

System 2

156

00

207

1,092

Max load

System 2

.005. This suggests that if a substantial number of inaccurate
trials are present for a participant, the problem can be
detected by using ActionScript to measure the duration of
the ISI for each trial. Experimenters could determine cutoffs
at which they could exclude participants whose equipment
generated too many inaccurate intervals.

For both systems, the longer ISIs measured by ActionScript,
when compared with the phototransistor (as shown in Table 1),
were offset by shorter stimulus display durations measured by
ActionScript than measured by the phototransistor.
Additionally, the recorded stimulus presentation time always
occurred immediately after detection of the keypress, despite
the fact that actual presentation took place in intervals of screen
refreshes. There are a couple of factors that contributed to these
timing shifts. One factor was detected postexperiment through
a combination of observing the output of different variations of
the ActionScript code and profiling Flash Player during execu-
tion using the aid of the advanced telemetry features of Adobe
Scout. Much of the variation in the ActionScript intervals was
narrowed down to the setTimeout() method taking slightly
longer than the specified interval to run. As a result, some code
modifications were explored. In one modification, a 990-ms
interval was requested from setTimeout(), followed by a loop
that constantly queried the system time until 1,000 ms had
passed and then executed the code to update the display. This
method resulted in an average ActionScript-recorded interval
of M = 1,000.2 ms (SD = 0.84 ms) and in higher CPU
utilization (3 % vs. 1 % on system 2) immediately before
stimulus presentation than did setTimeout() alone. The second
factor involved in the timing shift is that Flash operates in a
security sandbox at a nominal frame rate that is set prior to
compiling the project, and the resulting program does not have
the ability to synchronize its refresh schedule with the actual
refresh time of the user’s monitor. No matter how accurately
ActionScript requests a screen update, it does not know the
exact time that the display actually changes.

Stimulus presentation times have so far been the focus of
this experiment, but RT collection also depends on the accu-
racy of a second component: the detection of the keypress.
Some researchers have used highly accurate electronic devices
to press keyboard keys at known intervals and compared the
known time with the time that the computer recorded the
keypress (e.g., Neath et al., 2011; Plant & Turner, 2009).
This method reveals the keypress timing accuracy of the
combination of the hardware and software. Because keypress
timing error is already an established phenomenon in the
literature and is not unique to Web-based experiments, we
sought to determine the accuracy of Adobe Flash in collecting
keypress times when keyboard hardware was removed as a
factor. Accuracy of keypress detection was assessed using a
macro implemented in Logitech Profiler 5.10 (Logitech
International S.A., Romanel-sur-Morges, Switzerland). The
macro recorded the operator’s responses to one run of the
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100-trial experimental task. The macro was played back 25
times on system 1 while E-Prime 2.0 (Psychology Software
Tools, Pittsburgh, PA) recorded keypress times and the exper-
iment was idle in Chrome in the background. The recorded
timings of the keypresses in each of the runs were very similar,
with an average interitem correlation of .999949 and a pooled
standard deviation of 0.76 ms, demonstrating that the macro
was capable of reproducing a series of responses with very
high reliability. The 25 runs in E-Prime were averaged in order
to serve as a “known” value of the time of each keypress in the
series. The macro was then run in each condition. The abso-
lute value of the difference between the known and measured
time for each keypress was calculated. The average error for
trials was 0.26 ms in the low-load condition, 0.37 ms in the
medium-load condition, and 0.31 ms in the high-load condi-
tion. The average error for the no-browser condition was
3.22 ms by the measure described above, and the macro
terminated over 200 ms more slowly in the no-browser con-
dition than in the other conditions. This discrepancy was small
yet reproducible, but its cause is unknown. Because AMT
workers cannot be required to run programs outside of their
Web browser, it is not an issue that would arise in the course of
an AMT Web experiment. In the maximum-load condition,
inferences about the accuracy of keypress timing were not
made because the stimulus presentation could not keep pace
with the macro.

Because neither Logitech Profiler nor E-Prime runs on
system 2, an identical macro was compiled in the C pro-
gramming language and was executed on system 2 while
Firefox ran the experimental task. Twenty-five runs were
recorded to create a known value, analogous to the known
value calculated for system 1. The measurements in the 25
runs had an average interitem correlation of .999981 and a
pooled standard deviation of 0.46 ms, demonstrating that the
macro was capable of reproducing a series of responses with
very high reliability on system 2 as well. The 25 runs were
averaged in order to serve as a “known” value of the time of
each keypress in the series. As was expected, the known
values collected under system 1 and the known values
collected under system 2 were nearly identical and correlat-
ed with a Pearson’s » exceeding .999999.

As with system 1, the macro was then run in each
condition on system 2. The absolute value of the difference
between the known and measured times for each keypress
was calculated. The average error for trials was 0.39 ms in
the low-load condition, 0.40 ms in the medium-load condi-
tion, and 0.64 ms in the high-load condition. The average
error for the no-browser condition was 0.41 ms. In the
maximum-load condition, inferences about the accuracy of
keypress timing were not made, because the stimulus pre-
sentation could not keep pace with the macro.

The results of the keypress timing data suggest that the
amount of RT measurement error attributable to Flash’s

detection of keypresses reported by the operating system is
negligible. Plant and Turner’s (2009) finding that keyboards
themselves can introduce error is important to consider, but
there is no reason to expect that a Web experiment using
Adobe Flash would have less accurate detection of keypresses
than a lab-based experiment using standard stimulus presen-
tation software and a keyboard as an input device.

The inability of ActionScript to detect the actual display
time of the stimulus means that RTs measured in a Flash-
based experiment using the approach here will not be quite
as accurate as those measured using a software package that
can synchronize presentation to the refresh of the monitor.
However, this is unlikely to be a problem for most experi-
mental paradigms running under most conditions.
Measurement error of the magnitude seen here falls well
within the bounds considered by Brand and Bradley (2012)
in their investigation of statistical power using simulated
Web experiments. In their simulations, they found that a
random 10- to 100-ms delay on each trial resulted in only
1 % loss of statistical power when detecting a manipulation
that results in a 20-ms difference in response times. This is
because the error due to technical variance is small, as
compared with variance in human RT distributions. The
measurement error found here also falls within the bounds
considered by Ulrich and Giray (1989). Ulrich and Giray
demonstrated mathematically that, contrary to what people
may intuitively expect, a clock that quantizes RTs in 32-ms
intervals could detect the effect of a manipulation that re-
sults in a 20-ms change in RT about as well as a perfect
clock could detect the same effect. Thus, the method used in
this experiment should be able to reliably detect a difference
in RTs between conditions that is at least as small as 20 ms.
With only a 1 % loss in statistical power for a 20-ms
difference, it seems likely that an even smaller difference
could be detected with a reasonable amount of power.
However, neither Ulrich and Giray nor Brand and Bradley
investigated differences smaller than 20 ms. Brand and
Bradley showed that with typical human RT distributions,
20 ms corresponded to what Cohen (1988) described as a
small effect size.

Experiment 2

Here, we replicated the flanker task described by Nieuwenhuis
etal. (2006, Experiment 1). In this task, the participant rapidly
categorizes a series of target stimuli that appear in a known
position in a visual display, while ignoring the rest of the
display. These stimuli are arrows pointing left or right, and
the participant responds by pressing a key with their corre-
sponding left or right hand. On congruent trials, targets are
surrounded by stimuli (flankers) that are identical to the target.
On incongruent trials, the flankers point in the opposite
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direction as the target. The incongruence causes conflict,
which results in longer RTs and increased error rates.
Incongruence on a particular trial can also influence a partic-
ipant’s response to the next trial in the sequence. When a
sequence of trials contains two consecutive incongruent trials,
the slowing effect of conflict is diminished on the second of
the two incongruent trials. This phenomenon is called conflict
adaptation, and it results in a two-way interaction effect in the
data. Nieuwenhuis et al. found that the conflict adaptation
effect was present only for trials that required the same re-
sponse key as the previous trial, represented by a three-way
interaction effect in the data.

Method
Participants

A listing (HIT) was posted on the AMT Web site looking for
adult English speakers to participate in an experiment in
exchange for $0.70. The HIT specified that participants must
be free of distractions and must have a recent version of
Adobe Flash Player. Using the requester interface of AMT,
qualifications were set for the HIT. These qualifications
made it so the HIT was set to be visible and available only
to those participants whose location was identified by
Amazon as “United States,” who had completed at least 50
prior tasks on AMT, and whose prior work on AMT had
been accepted by requesters at least 95 % of the time.
Although we are not aware of any empirical investigations
into the effects of these qualifications, AMT recommends
the use of qualifications in order to reach high-quality
workers (The Mechanical Turk Blog, 2012). The listing
was visible until all of the posted HITs had been accepted
(approximately 5 h). Upon clicking the link in the HIT,
participants saw a screen describing the nature of the re-
search and were taken to Experiment 2 if they consented to
participate.

One hundred participants accepted the HIT and complet-
ed Experiment 2 (58 female, 38 male, 4 unspecified gender).
Ages ranged from 18 to 70 years (M = 38, SD = 14).
Seventeen participants reported being currently enrolled as
university students. When asked for their highest level of
education, 5 reported no degree, 25 had completed second-
ary school, 21 had some college, 32 had a Bachelor’s
degree, 12 had a Master’s, and 5 had a Doctorate. Despite
setting the HIT to be available only to AMT workers in the
United States, 2 participants connected from non-US
Internet service providers. Ninety-seven reported a native
language of English, with 8 reporting fluency in a second
language. All participants reported accessing the experiment
from either a desktop computer (z = 36) or a laptop (n = 64)
with a screen size larger than 8 in. Sixty-six reported having
a keyboard with a number pad, although it was not used in
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this study. Twenty-one reported being regular players of
action video games. Ninety-two participants reported doing
nothing else during the experiment, while 5 reported listen-
ing to music and 3 reported watching television. Ninety-four
reported that they participated from their home. Forty-eight
reported being in a silent environment, 43 reported “occa-
sional noise,” 9 reported “frequent noise,” and none de-
scribed their current environment as “very loud.”
According to the user agent strings automatically supplied
by the participants’ browsers when they loaded the experi-
ment, 18 systems were running Windows XP, 16 Windows
Vista, 55 Windows 7, 1 Windows 8, and 10 OSX. Thirty-
three were using the Chrome Web browser, 51 were using
Firefox, and 16 were using Internet Explorer.

3

Procedure

The experimental session consisted of three components.
All participants first completed a flanker task, which is
described in this experiment. The flanker task was followed
by one of two lexical decision tasks: a replication of Lupker
et al.’s (2008) Experiment 1b, which is reported in
Experiment 3, or an alternative lexical decision task of the
same duration. The alternative lexical decision task was not
a replication of existing work and is not presented here. The
testing session then ended with a brief questionnaire.
Participants were informed that their responses to the ques-
tionnaire would not affect payment, in order to avoid biasing
results. According to the requester Web interface of AMT,
the combined time of informed consent, both experimental
tasks, the questionnaire, debriefing, and requesting payment
took participants an average of 17 min. The experimental
program loaded in its entirety by the time a participant
consented and then sent data back to the server only after
the questionnaire was completed. This ensured that the type
and speed of a participant’s Internet connection did not have
an impact on a participant’s experience or on data collection.
Although preloading the entire experiment at the beginning
and then transmitting the entire data set at the conclusion are
simple details of the program design, they are important. An
early pilot that communicated with the server between trials
resulted in less consistent stimulus presentation on slower
Internet connections.

The flanker protocol used in this study was designed to mimic
the protocol in Nieuwenhuis et al. (2006, Experiment 1), but with
a total of 8 rather than 17 blocks to keep the total experiment
duration in line with the experimental tasks typically seen on
AMT. On each trial of the flanker task, participants were
presented with “<<< <<<” or “>>>>>>" in white text against
a black background in the center of the window. After 100 ms,
either “<” or “>” appeared in the center of the existing stim-
ulus, resulting in four possible combinations of arrows, two of
which were congruent combinations of stimuli and two of
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which were incongruent. Each of the four possible combina-
tions occurred 10 times per block, resulting in a total of 320
trials. Participants were instructed to press the “A” key to
indicate that the center arrow pointed to the left or the “L”
key to indicate that it pointed to the right on each trial. Before
beginning the task, they were also shown two example
stimuli—one congruent and one incongruent—along with
the correct keypresses for these examples. Upon participants’
responses, a stimulus vanished, and the next stimulus
appeared 1,000 ms later. Participants were instructed to re-
spond as quickly and accurately as possible. Between blocks,
participants were shown the number of blocks remaining and
were prompted to press a button when they were ready to
continue to the next block. The task was programmed in
ActionScript 3 in a manner similar to that in Experiment 1.
As in Experiment 1, ActionScript recorded the system time
after each keypress and after each update of the text field.

Results and discussion

Before proceeding with the analysis of behavioral data, the
ability of Turkers’ computers to keep accurate timing was
gauged. To do this, the durations recorded by ActionScript
for each of the 1,000-ms ISIs from all participants were
calculated as in Experiment 1. Boxplots of the measure-
ments from each participant are shown in Fig. 2, ranked
from lowest to highest variance. These measurements are
not dependent on the participants’ RTs but, rather, on the
timing capability of their computers while they participate.
A total of 41 measurements, or 0.13 %, exceeded 1,034 ms.
The participant whose equipment showed the greatest vari-
ance had ISIs on 4.4 % of trials that exceeded 1,034 ms.
These data suggest that the equipment used by most partic-
ipants can operate with fairly consistent, although imperfect,
timing. Using this strategy of timing fixed-duration inter-
vals, experimenters could decide on criteria to exclude
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participants whose equipment had timing reliability poorer
than a chosen cutoff.

Overall error rates of each participant on the flanker task
were calculated. Most participants (n = 87) were below
20 % overall error rate, but 13 participants clearly stood
out with near-chance (n = 12) and above-chance (n = 1)
error rates. These 13 participants were excluded from the
ANOVA, but in an effort to understand the factors that may
influence the performance of AMT participants, their data
patterns were examined in more detail. One of these 13
participants had a 93 % error rate, which is exceedingly
unlikely to occur by chance (chance level is 50 %). A
reasonable explanation is that this participant had the key-
board keys backward when responding to the task and
would have achieved a 7 % error rate if the instructions
were to use the reversed keys. To attempt to explain the
cause of the elevated error rates (43 %—51 %) in the other 12
participants, error rates were recalculated as if the goal was
to respond to the flankers rather than the targets. If this had
been the goal, 11 of these 12 participants would have
achieved error rates under 20 %. The remaining participant
also had unusually high error rates in another task, unusually
short RTs, and no discernible pattern in responding. This
participant was probably not putting effort into the task.

Each trial was classified by congruency (if the target arrow
pointed the same direction as the flankers), the congruency of
the preceding trial, and response type (if the target arrow
pointed the same direction as the previous target arrow; rep-
etition vs. change). For the RT data, incorrect responses, re-
sponses following incorrect responses, responses shorter than
200 ms, responses greater than 2 SD over the participant’s
mean RT, and the first trial of each block were excluded from
analysis, for a total of 11.63 % of data that were excluded from
RT analysis. For the error rate analysis, only the first trial from
each block was excluded from analysis, on the basis that it
could not be categorized by previous trial type.

1000|0004 05830800808030760000000000006909900000890000080006000608000008746079920444000000000000s80000304

boxplots

Fig. 2 Durations of intervals recorded by ActionScript for each Turker, ordered by variance
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A pair of 2 (response type: repetition vs. change) x 2
(current trial type: congruent vs. incongruent) x 2 (previous
trial type: congruent vs. incongruent) factorial repeated
measures ANOVAs were conducted, one for RTs and one
for error rates. The three factors were all within-subjects
fixed effects, and participant was a random effect. The F-
values of the ANOVAs of these data and those reported by
Nieuwenhuis et al. (2006, Experiment 1) are listed in
Table 2, and the similarity between Nieuwenhuis et al.’s
results and the present results is clear in Fig. 3. Along with
the F statistics are computed p-values, partial omega-
squared effect size estimates, and 95 % confidence intervals
of the partial omega-squared effect size estimates. Partial

omega squared was chosen as an appropriate measure of
effect size to compare the data sets considered here because
its value is not biased by the differences in sample size (e.g.,
Fowler, 1985). The effect size confidence intervals were
calculated on the basis of Smithson’s (2001) iterative meth-
od of finding the bounds of the noncentrality parameter for
the noncentral F' distribution.

The ANOVAs showed main effects of current trial type
(flanker effect) on RTs and on error rates in both studies.
The two-way interaction effects of current trial type and
previous trial type in the RT and error rate data were found,
which is typically interpreted as evidence of conflict adap-
tation in this task. There was also a three-way interaction for

Table 2 Comparisons of effects found by Nieuwenhuis et al. (2006, Experiment 1) and effects found in present data

Factor Response times

Nieuwenhuis Present

F(1,13) p w? w? 95 % CI F(1,86) p w? w3 95 % CI

LL UL LL UL

Current trial type 153.1 <.001 0.910 0.777 0.956 163.42 <.001 0.649 0.536 0.734
Previous trial type 0 1.000 0.000 0.000 0.000 4.16 .045 0.035 0.000 0.156
Response type 0.1 157 0.000 0.000 0.252 0.03 .856 0.000 0.000 0.038
Current X previous 15.1 .002 0.485 0.120 0.739 29.30 <.001 0.243 0.110 0.394
Response x previous 7.8 .015 0.312 0.016 0.639 20.15 <.001 0.179 0.062 0.330
Current x response 11.1 .005 0.402 0.060 0.693 84.30 <.001 0.486 0.345 0.605
Current X response X previous 8.1 .014 0.321 0.020 0.645 52.21 <.001 0.368 0.221 0.506
Response repetition only
Current x previous 242 <.001 0.607 0.250 0.804 70.85 <.001 0.443 0.298 0.569
Response change only
Current X previous 0.1 157 0.000 0.000 0.252 6.18 .015 0.056 0.002 0.187

Error rates

Nieuwenhuis Present

F(1,13) p w? 3 95 % ClI F(1,86) p 3} @3 95 % CI

LL UL LL UL

Current trial type 21.9 <.001 0.582 0.219 0.791 62.63 <.001 0.412 0.266 0.544
Previous trial type 36.3 <.001 0.702 0.375 0.852 48.78 <.001 0.352 0.206 0.492
Response type 7 .020 0.286 0.007 0.623 15.22 <.001 0.139 0.038 0.288
Current x previous 24 <.001 0.605 0.248 0.803 44.62 <.001 0.331 0.186 0.474
Response x previous 7.8 .015 0.312 0.016 0.639 9.96 .002 0.092 0.014 0.235
Current X response 11.1 .005 0.402 0.060 0.693 45.26 <.001 0.335 0.189 0.477
Current X response X previous 9.8 .008 0.370 0.042 0.674 25.21 <.001 0.216 0.089 0.367
Response repetition only
Current X previous 28.7 <.001 0.649 0.305 0.825 57.70 <.001 0.392 0.245 0.527
Response change only
Current X previous 0.8 387 0.000 0.000 0.359 11.41 .001 0.106 0.020 0.250
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Fig. 3 Left: Reprinted from
Nieuwenhuis et al. (2006,
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current trial type, response type, and previous trial type in
both the RT and error rate data, because the conflict adap-
tation effect was significantly larger for response repetition
trials than for response change trials. These findings parallel
those of Nieuwenhuis et al. (2006, Experiment 1). In the RT
data, the size of the flanker effect was larger in Niecuwenhuis
et al.’s data than in the present data, although the size of the
three-way interaction effect was similar in both data sets.
Effect sizes in the two data sets may differ due to the
difference in populations. AMT workers are more diverse
in several ways than university undergraduates. They are also
participating in more varied, less controlled conditions than
lab participants. The effects of this are not necessarily obvi-
ous. For example, Paré¢ and Cree (2009) found that AMT users
rated images of objects as more familiar than did lab partici-
pants and suggested that the difference in familiarity ratings
was because AMT users were participating in a more familiar
environment than were lab participants.

A pair of 2 (current trial type: congruent vs. incongruent) x
2 (previous trial type: congruent vs. incongruent) factorial
repeated measures ANOVAs were conducted, one for RTs
and one for error rates, on data from only the response repe-
tition trials. Another pair of ANOVAs was conducted on data
from only the response change trials. The response repetition
trials showed a conflict adaptation effect, as evidenced by a
two-way interaction, in both the RT and error rate data, as in
Nieuwenhuis et al. (2006, Experiment 1). However, data from
the response change trials revealed a two-way interaction in
the RT and error rate data as well. These two-way interactions
in the response change trials were not found in Nieuwenhuis et
al. The interaction effect in the error rates for response change
trials was smaller than the interaction effect in the response
repetition trials, but it was in the direction consistent with
conflict adaptation. The interaction effect in the RTs of the
response change trials was smaller than the interaction effect
in the RTs of the response repetition trials, and it was in the
opposite direction of conflict adaptation. The emergence of

Incongruent  Congruent

Incongruent Congruent Incongruent Congruent

Previous Trial Type

Incongruent

these significant interactions in the present data may be related
to the fact that the participants in the present study were
generally slower and more accurate than the participants in
Nieuwenhuis et al., despite the similarities in the instructions
given to participants and stimulus presentation parameters
between the two experiments.

Planned contrasts described the magnitude of the overall
conflict effect and the magnitude of the conflict adaptation
effect in response repetition trials. The effect of conflict was
significant: Congruent trials received responses 111 ms faster
than incongruent trials (95 % CI [93 128]). On incongruent
trials on which the correct response was a repetition of the
previous response, the increase in RT due to the previous trial
being incongruent was 34 ms (95 % CI [23 44]).

To complement the effect size measures, a resampling
procedure was used to describe the required number of
participants needed to detect the three-way interaction in
the RTs. The effect size measures are useful for comparing
the two data sets with the same design, but less useful in
determining the sample sizes needed to detect effects. In a
one-way ANOVA that meets a standard set of assumptions,
estimating a required sample size from a measure of effect
size is as simple as refering to a table. However, repeated
measures from participants result in correlated measure-
ments that violate the assumption of independent observa-
tions. If the correlation is known, free software like
G*Power (Faul, Erdfelder, Lang, & Buchner, 2007) can
correct for it when estimating required sample size.
However, this correlation is generally not included when
reporting F-tests in published work. Furthermore, the pres-
ent experiment is a 2 X 2 x 2 repeated measures design,
resulting in multiple correlations, and there is no reason to
suppose that, for example, the effect of congruency results
in the same correlation at both levels of response type.

The resampling procedure shows at a glance the results
obtained when small random samples of AMT users come
forth from the large number that are online at any given
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time, a situation assumed to occur in research using AMT.
For a concise and accessible discussion of the advantages
and criticisms of resampling methods, see Yu (2003). In
order to conduct the power analysis, the ANOVA model
described above was implemented in the R statistical com-
puting environment (R Developmental Core Team, 2011).
For each n from 2 to 50, n participants were randomly
sampled with replacement from the 87 participants in the
data set, and the model was fit to their RTs. This process was
repeated 10,000 times, and the proportions of the models in
which the three-way interaction was significant at alphas of
.05, .01, and .001 are plotted in Fig. 4. The results suggest
that a powerful analysis can be conducted on AMT using
sample sizes that are comparable to those used in laboratory
experiments.

Experiment 3

In a lexical decision task, the participant responds to a string of
letters, indicating whether the strings form real words (Meyer
& Roger, 1971). Lupker et al. (2008, Experiment 1b) used
four methods of constructing nonwords. They found that non-
words constructed by transposing letters of a base word are
responded to more slowly than nonwords constructed by
replacing letters of a base word. This effect was larger for
nonwords constructed by transposing consonants, as com-
pared with those constructed by transposing vowels.

Method

Participants

The last 30 participants who participated in Experiment 2
also participated in Experiment 3 (19 female, 10 male, 1

unspecified gender). Ages ranged from 18 to 70 years (M =
42, SD = 16).

[

Fig. 4 Statistical power of
three-way interaction as a
function of sample size and
significance criterion
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Procedure

On each trial, a fixation point appeared for 500 ms, followed
by an uppercase target that remained on the screen until
response. Participants were instructed to press the “L” key if
the target spelled a real English word or press the “A” key if
it was a nonword and were instructed to respond as quickly
and accurately as possible. The use of the left hand for non-
word and right hand for word (not counterbalanced) followed
the procedure of Lupker et al. (2008). Half of the 160 targets
that each participant saw were words. Of the nonwords, 20
were generated by transposing two nonadjacent vowels, 20 by
replacing two vowels with other vowels, 20 by transposing two
nonadjacent consonants, and 20 by replacing two consonants
with other consonants. Lists were counterbalanced across four
groups of participants so that each participant saw all word
stimuli and one nonword generated from each word. Further
details and theoretical considerations of the stimuli are
explained in Lupker et al.’s work; for this replication, it is
important only that their manipulations resulted in different
effect sizes. Each participant was randomly assigned to one of
the four counterbalancing groups when they loaded the Flash
file. This assignment method does not result in equal-sized
groups. Because data are collected from several participants
simultaneously and because clicking the link to the experiment
does not guarantee that a participant will complete or even begin
the experiment, there is no obvious way to ensure equal group
sizes. The task was programmed in ActionScript 3 in a manner
similar to Experiment 1 and Experiment 2, but with only one
stimulus presented on each trial.

Results and discussion

The data trimming and ANOVAs followed that in Lupker et
al. (2008, Experiment 1b), including the removal of the item
“CEMERONY.” Incorrect responses (7.7 % of the total
nonword trials and 2.7 % of the total word trials) and RTs
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greater than 1,500 ms (10.7 % of the total nonword trials
and 4.4 % of the total word trials) were excluded from the
RT analysis. The 1,500-ms cutoff affected more nonwords in
the present study than in Lupker et al. (12.7 % of nonword
trials). For both the subjects analysis and the items analysis,
a pair of 2 (alteration: transposition vs. replacement) x 2
(letter type: consonants vs. vowels) x 4 (counterbalancing
list) repeated measures ANOVAs with participants as a
random effect was conducted for RTs and for error rates for
nonword stimuli only. Additionally, a power analysis was
calculated. Words versus nonwords #-tests on RTs and error
rates were calculated by collapsing across items to determine
whether the classical lexical decision effect was present.

The initial word versus nonword comparison of RTs
showed that responses to words were faster (M = 821,
SD = 109, 95%CI[780 861]) than responses to nonwords
(M = 876, SD = 123, 95%CI[830 922]), #29) = 4.63,
p <.001, d = 0.85. This is the classical RT effect found in
lexical decision paradigms. Although the mean RT to words
found by Lupker et al. (2008, Experiment 1b) of 799 ms is
slightly shorter than the mean found here, it falls within the
95 % confidence interval. The comparison of error rates
showed that error responses were less common for words
(M=3.71,8D =2.75, 95%CI[1.68 3.73]) than for nonwords
(M=7.67,SD=06.32,95%CI[5.31 10.03]), (29) =3.83,p <
.001, d =0.70. In contrast, Lupker et al. found a higher error
rate of 7.7 % for word trials.

F-tests of the ANOVAs on RTs and error rates are
presented in Table 3, along with the corresponding F-values
found by Lupker et al. (2008, Experiment 1b). Computed p-
values, partial omega-squared effect size estimates, and
95 % confidence intervals for the partial omega-squared
values are presented. The ANOVA on the RTs showed main
effects of alteration and letter type and a significant interac-
tion of these factors. Similarly, for error rates, there were
main effects of alteration and letter type and a significant
interaction of these factors. Table 4 shows values from the
subject analysis ANOVA in milliseconds.

The difference in participant responses between the effect
of replacing letters in a stimulus versus transposing letters in
that stimulus to create nonwords is what Lupker et al. (2008)
called the “transposed-letter effect.” The effect is replicated
here in the error rate and RT data.

On the basis of the same reasoning as in Experiment 2, a
resampling procedure was used to describe the required
number of participants needed to detect the interaction effect
of alteration and letter type in the RTs. The ANOVA model
described above was implemented in the R statistical com-
puting environment (R Developmental Core Team, 2011).
For each n from 3 to 50, n participants were randomly
sampled with replacement from the 30 participants in the
data set, and the model was fit to their RTs. This process was
repeated 10,000 times, and the proportions of the models in

which the two-way interaction was significant at alphas of
.05, .01, and .001 are plotted in Fig. 5.

General discussion

The results of Experiment 1 showed that collecting RT mea-
surements from AMT workers using Adobe Flash should be
feasible, and the results from Experiment 2 and Experiment 3
provide evidence that the method is valid and useful. The data
obtained from participants using programs built in Adobe
Flash followed patterns that have previously been described
in lab-based experiments, demonstrating that, at least for some
paradigms, AMT is a valid source of RT data. Some others
may not be appropriate for administration in the manner
explored here or, at least, would require additional validation.
Because the experimenter does not have access to information
about screen refreshes and presentation time is not accurate to
the individual screen refresh, a paradigm that relies on priming
using extremely brief stimulus durations (i.e., one or two
refreshes, or 33 ms) would fall into this category. Because
fewer than half of participants reported being in a silent
environment, experimenters should be careful when using
auditory stimuli. Mayo, Aubanel, and Cooke (2012)
instructed participants recruited using AMT to listen to words
using headphones in a quiet environment but found signifi-
cantly lower accuracy than in laboratory participants.
Potentially, headphone requests may not eliminate the detri-
mental effects of a noisy background experienced by some
AMT workers. As another practical point, in the data here,
participants favored laptops over desktop computers. This
would pose a problem for an experimental paradigm that relies
on collecting RTs using the mouse as an input device.

In addition to technological considerations, the charac-
teristics of the population are important. The participants in
the present experiments were older than the participants in
the lab-based studies that these experiments were modeled
after and had a variety of educational backgrounds. These
sorts of differences have been described in past work on
AMT (e.g., Behrend et al., 2011; Berinsky, Huber, & Lenz,
2012), and here they likely had an effect on RTs and error
rates. At one point in AMT’s history, all workers were
American, but some surveys have found that most workers
now reside outside the United States (Ipeirotis, 2010), intro-
ducing more variability in language background and other
factors. While AMT’s requestor interface allows for selec-
tion of workers by country, the country on file with Amazon
sometimes does not match the country from which the
worker’s IP address originates. This occurred for 2 partici-
pants in the present data. Berinsky et al. found the same
occurrence in 5.8 % of their large sample of U.S. resident
participants recruited through AMT and speculated that
these participants might be traveling at the time. Rand
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Table 3 Comparison of effects found by Lupker et al. (2008, Experiment 1b) and effects found in present data

Subject analysis (F)

Factor Response times
Lupker Present
F(1, 16) P v} w?% 95 % CI F(1, 26) P v} w? 95 % CI
LL UL LL UL
Alteration type 18.66 <.001 0.495 0.142 0.694 118.26 <.001 0.807 0.640 0.873
Letter type 5.95 .027 0.216 0.000 0.507 19.95 <.001 0.404 0.132 0.602
Alteration x letter 7.84 .013 0.275 0.015 0.550 14.53 <.001 0.326 0.076 0.545
Factor Error rates
Lupker Present
F(1, 16) p ?} @3 95 % CI F(1, 26) P 0} @? 95 % CI
LL UL LL UL
Alteration type 12.62 .003 0.392 0.068 0.629 25.91 <.001 0.471 0.191 0.649
Letter type 17.28 <.001 0.475 0.125 0.681 9.60 .005 0.235 0.029 0.475
Alteration x letter 11.76 .003 0.374 0.057 0.617 8.02 .009 0.200 0.016 0.446
Item analysis (F3)
Factor Response times
Lupker Present
F(1, 75) P w? @? 95 % CI F(1, 75) P w3 @? 95 % CI
LL UL LL UL
Alteration type 58.04 <.001 0.760 0.481 0.855 64.71 <.001 0.695 0.463 0.799
Letter type 6.25 .015 0.226 0.001 0.515 10.09 .002 0.245 0.033 0.483
Alteration x letter 9.26 .003 0.315 0.029 0.577 11.71 .001 0.277 0.048 0.508
Factor Error rates
Lupker Present
F(1,75) p } @2 95 % CI F(1, 75) p v} @2 95 % CI
LL UL LL UL
Alteration type 46.11 <.001 0.715 0.406 0.827 85.86 <.001 0.752 0.550 0.837
Letter type 14.28 <.001 0.425 0.088 0.650 6.78 .011 0.171 0.007 0.420
Alteration x letter 24.42 <.001 0.565 0.210 0.737 8.57 .005 0.213 0.020 0.456

(2012) found that 97.2 % of AMT workers will self-report a
country of residence matching that of their IP address. Such
discrepancies between the countries of residence in
Amazon’s records, the countries of origin of a worker’s IP
addresses, and self-reported countries of residence could be

important in interpreting results.
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In the speeded forced choice tasks used here, it was easy
to determine which participants understood and followed
the rules. Several participants responded to the flankers
rather than the targets, but their error rates would have been
very low had responding to flankers been the goal; they

were not simply responding randomly or carelessly. In the
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participants who did respond to the targets, error rates on
both tasks used here were lower than those in the studies
that were replicated. In experimental designs with more
complicated instructions, requiring participants to pass a
comprehension quiz before they can move from the instruc-
tions to the experiment can improve data quality
(McDonnell, Domingo, & Gureckis, 2012).

In survey research on AMT, strategies of assessing partic-
ipants’ understanding and diligence have been well docu-
mented. Goodman et al. (in press) used two methods to
assess AMT workers’ attention to instructions. One method
was the use of instructional manipulation check tests:
multiple-choice questions that participants are likely to incor-
rectly answer if they do not fully read them. The second
method was the Cognitive Reflection Test, a set of simple
math questions that participants are likely to get wrong if they
respond with their first notion rather than actually calculating
the answers. They found that a student sample outperformed
AMT workers but that AMT workers and a community sam-
ple performed similarly. On the other hand, in 2010, Paolacci,
Changler, and Ipeirotis administered surveys with embedded
catch questions to AMT workers, students, and online discus-
sion board members. AMT workers were more likely than the
other groups to correctly answer the catch questions.

The fact that 100 participants were used in this experi-
ment is not meant to imply that such a large sample is
necessary to detect an effect. On the contrary, as can be
seen in Fig. 4, the evidence suggests that this was not the
case. In fact, it shows that, in order to reach significance at
an alpha of less than .05 and a beta of less than .05, only 15
randomly selected participants were actually needed. The
robustness of the findings with smaller sample sizes is
remarkable, considering the diversity of AMT workers as
compared with undergraduate student samples, the variety
of physical environments in which AMT workers participat-
ed, and the differences in the computer configurations of the
AMT workers.

@ Springer

11 16 21 26 31 36 a1 46 51
Sample size (resampled with replacement from 30 subjects)

Even if a small sample is sufficient for a conventional level
of power, a larger sample might be a more reasonable choice
when conducting research on AMT. The convention of a
power level of .80 (beta = .20) was proposed by Cohen
(1988) as a way of balancing the cost of failing to find an
effect that does exist with the cost of collecting sufficient
behavioral data to find the effect. However, Cohen
recommended adopting this power level as a default only
when investigators have no other basis for setting the desired
power level. The factors involved in research using AMT
provide a basis for reconsideration of this balance. In the
lab, setting up experiments like those used here is simple,
but running 100 participants imposes demands on equipment
availability and experimenter time. In contrast, translating an
in-lab experiment to an online experiment requires an initial
investment of time, while the marginal cost of running each
participant is low. Once the experiment is online, the price of
participant recruitment is low (e.g., Buhrmester et al., 2011),
the rate of data collection can be high (20 participants per hour
in this study), and participants provide their own equipment.
In Fig. 4, consider the effect of increasing the sample size from
12 to 21 participants. The increase in sample size allows for a
shift from an 18 % type II error rate down to 1 %, for an
additional $6.30 in participant payments.

Conclusion

The aim of this study was to validate the effectiveness of the
paired use of AMT and Adobe Flash in recruiting partici-
pants and conducting mental chronometry experiments. Our
results demonstrate that the performance of the pair is suf-
ficient to detect patterns of results previously established in
lab-based flanker and lexical decision experiments. Using
larger sample sizes than in the lab may not be necessary, but
it makes practical sense. When limitations are taken into
account in the design of an experiment, the benefits of using
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AMT for experimentation beyond survey-type designs can
be realized.
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