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Abstract Workload capacity, an important concept in many
areas of psychology, describes processing efficiency across
changes in workload. The capacity coefficient is a function
across time that provides a useful measure of this construct.
Until now, most analyses of the capacity coefficient have
focused on the magnitude of this function, and often only in
terms of a qualitative comparison (greater than or less than
one). This work explains how a functional extension of prin-
cipal components analysis can capture the time-extended in-
formation of these functional data, using a small number of
scalar values chosen to emphasize the variance between par-
ticipants and conditions. This approach provides many possi-
bilities for a more fine-grained study of differences in
workload capacity across tasks and individuals.

Keywords Workload capacity - Race model - Response
times - Principal components analysis - Systems factorial
technology

Introduction

From simple experiments with multiple stimulus dimensions
to complex multitasking environments, changes in cognitive
processes due to increases in workload are important in many
areas of cognitive psychology. To assess the effect of

D. M. Burns (BX) - J. T. Townsend

Psychological and Brain Sciences, Indiana University,
1101 E 10th St, Bloomington, IN 47405, USA
e-mail: devburns@indiana.edu

J. W. Houpt
Wright State University, 313F Fawcett Hall, 3640 Colonel Glenn
Hwy, Dayton, OH 45435, USA

M. J. Endres

Neurobehavioral Research, Inc., 1585 Kapiolani Blvd Ste 130,
Honolulu, HI 96814, USA

@ Springer

workload, a standard approach is to measure performance on
each part, such as a single stimulus dimension or a single
subtask, and then compare it with performance when all com-
ponents are present. Often, the analysis of these data is limited
to a qualitative judgment of whether performance on each
individual part is better than, worse than, or the same as when
all components are present. While informative, this measure is
relatively limited, particularly when attempting to compare
workload across different combinations of parts. In this article,
we discuss the workload capacity coefficient, C(f) (Townsend
& Nozawa, 1995; Townsend & Wenger, 2004). This rigorous,
model-based measure of processing efficiency is unlike the
same, better, or worse judgment from traditional workload
analyses in that C(7) is a function of time and can be as complex
as the data collected. The additional complexity of the measure
offers advantages over the traditional measures, but it can also
be overwhelming; it can be preferable to describe data in terms
of a few summary variables. The focus of our present work is
the application of a functional principal components analysis
(fPCA) to summarize workload capacity coefficient data with
a small number of variables while preserving the largest
amount of information contained in those data.

The basic idea of workload capacity is to compare per-
formance with a common baseline model, the unlimited-
capacity, independent, parallel model (UCIP). To reify this
model, consider a task in which the participants must decide
whether any stimulus is presented and they can be shown an
audio cue, a visual cue, or both simultaneously. The baseline
model predicts that performance in the combined condition
will be a simple parallel race between the two single condi-
tions. C(¢) is a comparison of that predicted performance
with the participants’ performance on trials with both audio
and visual cues, and it will show whether they were faster or
slower than predicted for each observed reaction time. Be-
cause the predicted UCIP performance is based on an indi-
vidual participant and his or her performance in the single-
target conditions, C(¢) can be used to compare performance
across tasks and individuals in a normalized way.
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The capacity coefficient has already proven informative in
a wide variety of applications. Neufeld, Townsend, and Jetté
(2007) demonstrated its application in the study of cognitive
functioning of anxiety-prone individuals, as well as with
respect to memory search in schizophrenia. In the field of
information fusion, Hugenschmidt, Hayasaka, Peiffer, and
Laurienti (2010) used capacity analyses as a finer grained
evaluation method in the study of multisensory integration.
Workload capacity has also been used to analyze age-group
differences in visual processing (McCarley, Mounts, &
Kramer, 2007), to test implications of various hypotheses on
visual selective attention (Gottlob, 2012), and many more
disparate avenues of psychological investigation (e.g., Blaha
& Townsend, 2008; Donnelly, Cornes, & Menneer, 2012;
Ingvalson & Wenger, 2005; Von Der Heide, Wenger, Gilmore,
& Elbich, 2011; Yang, Houpt, Khodadadi, & Townsend,
2011). C(?) functions have even been analyzed parametrically
using the linear ballistic accumulator model of Eidels, Donkin,
Brown, and Heathcote (2010).

The large amount of data contained in capacity functions
can be a great boon to research but, at times, can also be
somewhat unwieldy. Figure 1 shows some example capacity
functions drawn from experimental data. Consider the graph
on the left: A purely qualitative analysis would have trouble
characterizing either function as exclusively greater than or
less than one and would completely miss other interesting
aspects of the data, such as the negative slopes of the
functions and the distance between them. These aspects
can be seen fairly easily with only two functions, but when
more conditions and participants are used, as in the graph on
the right, we need a more formal method for finding and
characterizing the important differences between the func-
tions. This difficulty in comparing large numbers of func-
tions has led to the capacity coefficient being used most
often with smaller data sets using only a handful of partic-
ipants and conditions. To harness the functionality of this
measure for experiments involving larger numbers of

participants, it would be desirable to have a rigorous way
of quantitatively comparing capacity functions.

In this article, we demonstrate the use of a functional
extension of PCA (e.g., Ramsay & Silverman, 2005) for
capacity functions. This approach describes the capacity
coefficient using a small number of values (often only two
or three) while emphasizing the variation in capacity results
across individuals and conditions. These values can be used
to efficiently and quantitatively compare the data of any
number of participants and conditions, allowing the capacity
coefficient to be effective in a broader variety of contexts.
The next section describes the fundamentals of fPCA,
followed by a brief primer on the capacity coefficient. We
will then present data collected in a recent psychological
study to walk through the specific methods and demonstrate
the use of fPCA for capacity analysis.

Functional principal components

As was previously mentioned with regard to workload capac-
ity, using entire functions as pieces of data can provide much
greater power than using a point estimate such as the mean.
However, analyzing functional data also brings its own chal-
lenges. Previously basic properties and relationships such as
greater than become messier when functions are compared,
and it can be harder to get an intuitive -level feel for high-
dimensional data. These issues call for new tools to both
explore and analyze functional data. Fortunately, many previ-
ously useful techniques can be easily extended to work with
entire functions, rather than isolated data points, and consid-
erable work has already been done in this regard.

Ramsay and Silverman (2005) described a variety of
these techniques for analyzing functional data (see also
Ramsay, Hooker, & Graves, 2009). Our focus here is on
the functional adaptation of PCA, which we refer to as
fPCA. This procedure lends itself well to the analysis of
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high-dimensional data, allowing researchers to explore
sources of variation as well as hidden invariants in their
data. Also, fPCA provides a good feel for the complexity of
a data set by establishing how many components are re-
quired to adequately describe the entire corpus of results.
The main idea is that given a set of functional data, this
procedure will return a number of “principal component™
functions describing trends in the data and will report how
much of the variance in the data can be explained by each
one. A piece of functional data can be approximated by a
linear combination of these components (which are func-
tions as well), each multiplied by some scalar. This scalar is
called the “score” for a particular datum on that component
and has a conceptual interpretation of how much of that
component is in that datum. Often, these components will
have meaningful interpretations, such as a component that
emphasizes early values and depresses later ones, and our
list of scores will give us an intuitive (yet mathematically
justified) understanding of how much this shape is repre-
sented in each of our pieces of data (remember, each piece
of data is itself a function). To place this discussion on
firmer ground, first let us describe the details of fPCA, and
then we can proceed to its implementation for describing
workload capacity.

The theory behind fPCA is a structural extension of stan-
dard PCA. Here, we give a brief overview of this theory, with
a walk-through of an implementation of this theory for our
purposes following in a later section. The goal is to describe a
set of multivariate data using as small a basis as possible. In
standard PCA, the number of dimensions of the data is finite,
whereas fPCA extends the theory to infinite dimensional data:
functions. In place of the finite dimensional vectors that form
the basis in standard PCA, fPCA uses basis functions. Thus,
each function in the data is described as a linear combination
of the basis functions. The goal is to capture the variation in
the data by assigning each piece of functional data a vector of
weights for a modest number of basis functions. The compo-
nents are chosen so that these weights will maximally distin-
guish the data.

When we extend PCA from a multivariate context into
the functional domain, the primary difference is that when,
formerly, we would sum variable values, we now must
integrate function values. Thus, following the notation of
Ramsay and Silverman (2005), when finding the first com-
ponent in the multivariate case, we solve for the weight
vector (3 in the weighted sum

fltlzzlgjlxij»i:lv-nvN (1)
J

s0 as to produce the largest possible mean square N ! > 13
In this case, x; represents the value of dimension j for
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observation i. This maximization is subject to the constraint
that >, /3]21 = 1. The difference for the functional case is that

we are now combining weight and data functions using inte-
gration rather than summation:

fir = 1By (s)xi(s)ds. (2)

Likewise, we now choose our weight function 3; to
maximize the continuous analogue of the mean square:

S =y S () ()

1
Our constraint on the weight function now takes the form
[ 5,(s)*ds = 1. These equations are all that are needed to
find the first component, but to find any subsequent com-
ponents, we must ensure that they are orthogonal to all

previous components. In the multivariate case, this con-
straint is represented for the mth component as

> BBy = 0,% (4)
J

This constraint is also straightforwardly extended to the
continuous domain as [ 4, (s)8,,(s)ds = 0.

Computationally solving for these component functions
can be done in a number of different ways, but in all cases,
we must convert our continuous functional eigenanalysis
problem into an approximately equivalent matrix
eigenanalysis task. The simplest way to do this is to
discretize our observed functions by using a fine grid. A
perhaps more elegant method is to express our functions as a
linear combination of basis functions (such as a Fourier
basis). We can now form a matrix of the coefficients for
each basis function for each observed function and use that
to compute the component functions.

The same techniques for choosing the number of basis
functions to represent the data in PCA can be used in fPCA.
For example, in many cases, there is a clear “elbow” in the
eigenvalues associated with each of the bases, where after
the first few eigenvalues, the addition of more bases pro-
vides very little additional descriptive power (see Fig. 2 for a
scree plot using our data). A more rigorous decision could
be made on a point-wise basis using model comparison
methods such as AIC (cf. Yao, 2007). Because the eigen-
values give a direct measure of the percent of variance
accounted for (Ramsay & Silverman, 2005), this approach
allows the researcher to choose the basis that retains large
amounts of variance while eliminating bases that account for
only small additional amounts of variance.

Often, a rotation of the bases is useful in making the
components more interpretable, just as in PCA. When a
set of components is rotated, it still accounts for the same
total amount of variance in the data, but the individual
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Fig. 2 A scree plot showing the amount of variance accounted for by
each eigenfunction, ordered from highest to lowest

contributions of the components will change. If we form a
matrix B whose rows are our selected principal component
functions, the goal of a rotation procedure is to find a
rotation matrix 7 that will give us a new matrix of compo-
nent functions 4 = TB. Because 7 is a rotation matrix, the
sum of the squared values of 4 will remain constant across
all rotations. One of the most popular methods for picking a
rotation matrix is called varimax rotation, which maximizes
the sum of the variance of these squared values, thereby
forcing them to be strongly positive, strongly negative, or
close to zero. This has the effect of choosing component
functions that have a more concentrated and, therefore, more
visible effect on the data, while still describing the same
total amount of variance with the chosen number of com-
ponents. This strategy is perhaps even more important for
fPCA, since continuous component functions can have com-
plicated effects spread out across the time domain. Concen-
trating the effects of these components into smaller regions
makes it easier to identify the salient features in the data.
An additional step that is often necessary when
conducting an fPCA is to register the data so that they can
be compared across the same time frame. In some applica-
tions, this just means subtracting the median time from all
data points, but in other applications, it might also be ap-
propriate to stretch or shrink the time scales of individual
data functions so that they all begin and end at the same
time. Often, it is also beneficial to smooth the functional
data, especially if the function is based upon a relatively
small amount of data. In this case, as with any application of
smoothing, precautions should be taken to avoid over-
smoothing and flattening out important features in the data.
These decisions will depend on the kind of data being
analyzed and the goals of the analysis. More specific guide-
lines have been discussed by Ramsay and Silverman (2005).

The capacity coefficient

The workload capacity coefficient (Houpt & Townsend,
2012; Townsend & Nozawa, 1995; Townsend & Wenger,
2004) is a functional measure based upon a comparison of
observed performance with the predicted performance of a
baseline model. The baseline model assumes unlimited-
capacity, independent, parallel processing of each of the
information sources. In brief, this is a model where separate
sources of information are processed simultaneously (in
contrast to serial processing) and without influencing each
other. The unlimited-capacity assumption means that each
individual channel is processed at the same speed regardless
of how many other channels are also being processed (but
the system as a whole might still slow down with increased
workload if exhaustive processing is required).

The basic idea is to estimate how fast a participant might
respond when all sources are present if he or she followed
the baseline model assumptions. This estimate is based on
his or her response times for each source of information
when all other sources are absent. Those times can be
combined to determine how long the baseline model will
take to process all sources at once, which is then compared
with how quickly the participant actually responds in that
condition. The result is then a measure of performance
targeted at how well the participant uses the sources togeth-
er, controlling for variations in performance due to the
possibly unequal difficulty of each of the sources.

Formally, under the assumption of the baseline model,
performance when all sources are processed together is
equal (in the sense outlined below) to the summed perfor-
mance of each source presented in isolation. In particular, if
the participant can respond as soon as any one of the sources
is completely processed (i.e., an “OR” stopping rule), the
probability that he or she has not finished by time ¢ is the
product of the probabilities that each source is not yet
completed. In terms of the cumulative distribution function,
F(t) =Pr{T <1},

m

1 — Fycip—or(t) = H (1-Fi(1)), (5)
i-1

where F(f) denotes the processing of each of the m sources

in isolation. If the participant responds only when he or she

has processed all sources of information (i.e., an “AND”

stopping rule), the probability of finishing is the product of

the probabilities that each source is finished,

m

Fucip—anp(t) = H Fi(1). (6)

Taking the log transform of Eqs. 5 and 6 gives this
relationship in terms of the cumulative hazard function (a
measure of how much work has been done by a certain time)

@ Springer
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and the cumulative reverse hazard function (which can be
thought of as a measure of how much work is left to be
done), respectively:

Hycip—or(t) = ZHi(t) (7)

m
i—1
m
Kucip—ann(t) = ZKi(t) (8)
i1

Houpt and Townsend (2012) showed that using the
Neslon—Aalen estimator for the cumulative hazard function,
one can obtain an unbiased and consistent estimator of the
baseline model performance. Let 7; be the jth element of the
ordered set of response times for the condition of interest
and Y(¢) be the number of responses that have not yet
occurred. The Neslon—Aalen estimator for the cumulative
hazard function is given by
~ 1

H(t) = Tz;t YTy 9)

The estimate of the baseline cumulative hazard function
for OR processing of m sources and the estimator of its
point-wise variance given in Houpt and Townsend (2012)
are

ﬁUCIP(t) = Xm: Z Y(z)(lT(l)) (10)

i—1 70 <t J
J

~ 1
VAR[Huer|() =D 3 (11)
=T (Y(l) (Tj(‘>))

Houpt and Townsend (2012) also derived analogous es-
timators for AND processing. With the same notation and
G(f) equal to the number of responses that save occurred by

time ¢,

VAR|Rucre (1) = Emj ) — (14)

The capacity coefficient for OR processes (when process-
ing terminates as soon as any source is processed) was

@ Springer

originally defined by Townsend and Nozawa (1995). With

H indicating a cumulative hazard function estimated from a
participant’s response times in a particular condition, 7 indi-
cating a condition in which the participant responds only to
source i, and 7 indicating the condition in which all sources
of information are present,

—~ ~

i, i,
or(t) == == .
Hycp Y0 Hi(t)

The cumulative hazard function can roughly be
interpreted as the amount of work completed by a given
time (e.g., Townsend & Ashby, 1978). If a participant has
more work completed by a particular time when all sources
are present than would be predicted by the baseline model,
the capacity ratio would be above one. This case is referred
to as super-capacity. If the participant has completed less
work when all sources are present than what would be
predicted by the baseline, the ratio would be below one,
referred to as limited capacity.

Townsend and Wenger (2004) defined the analogous
measure for AND process (When processing terminates only
when all sources are processed) as

(15)

. IA(UCIP - Z;n:l I?i(t)
anp(t) = ——= = .
K, K,

(16)

The cumulative reverse hazard function has the opposite
interpretation of the cumulative hazard function. The larger
the magnitude of the cumulative reverse hazard function, the
more work there is left to be done. Thus, to maintain the
interpretation that values of the capacity ratio above one are
better than baseline, the ratio is inverted relative to Eq. 15. It
can be intuitively seen why these different stopping rules
require different capacity formulations. In an OR task where
any single source is sufficient to respond, we expect perfor-
mance to get faster as more sources are added. If, however,
all sources need to be completed to respond, as in an AND
task, we expect to see participants slow down as more items
are added. The above equations ensure that these two dif-
ferent tasks are placed on equal footing such that they can be
compared with one another.

Implementation

In this section, we describe the steps involved in performing
an fPCA on capacity data by using as an example the data
from Tipping and Bishop (1999). These data were collected
to get a response-time-based measure of the word superior-
ity effect: the finding that letters are processed more accu-
rately when they are part of a word than when they are
presented in isolation (Reicher, 1969; Wheeler, 1970). We
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were interested in how the processing capacity for identify-
ing a string of four characters would vary as a function of
the familiarity of the characters and the particular string.
Thus, we used words (W), pseudowords (P), random con-
sonant sequences (R), upside-down nonwords (U), and un-
familiar (Katakana) characters (K). To eliminate the extra
probabilistic information available in a word context, each
version of the task had a single target string and four
distractor strings in which a single character changed in
one of each of the positions. For example, in the word
condition, the target was “care,” with distractors “bare,”
“cure,” “cave,” and “card.”

Each version consisted of two parts. First, we measured
the participants’ response times to correctly identify the
target string from among the four distractor strings. Second,
the participants had to distinguish between each pair of
characters that differed between the target and a distractor.
For example, in the word condition, participants needed to
distinguish between “bare” and “care”; in the second part,
participants were required to distinguish between “b” and
“c.” Likewise, participants performed the single-letter task
for the other three characters as well. Capacity was then
computed as a ratio of full-string performance to the sum of
each of the four single-character conditions. To correctly
identify the target string, a participant needed to check each
character in the string, so this was an AND task. Thus, we
used the AND capacity coefficient (Eq. 16) composed of
reverse cumulative hazard functions. We will estimate K, (¢)
from the string conditions and IA(i,i € {1,2,3,4} from each
of the single-character conditions. To implement the fPCA,
we took the following steps (which can be seen in more
detail in our R code, included in the supporting documents):

1. Register the capacity curves by shifting the response
times for participants in each condition by their respec-
tive median target response times in that condition. The
location of features of the capacity coefficient can de-
pend on an individual’s overall response times. Some
participants may be slower or faster overall, in both
single-target and redundant-target conditions. To focus
on variations in capacity, we subtract each participant’s
median response time across the single and redundant
conditions so that the capacity curves will be better
aligned across participants.

2. Calculate the capacity function for each participant on
the basis of the shifted response times. To calculate the
OR capacity coefficient, estimate the cumulative hazard
function of a participant’s response times to stimuli with
all of the sources present, then divide that function by
the sum of each of the estimated cumulative hazard
functions for that participant’s response times to each
of the single-source conditions. To calculate the AND
capacity coefficient, sum the estimated cumulative

reverse hazard functions for a participant’s response
times for each of the single-source conditions, then
divide by the estimated cumulative reverse hazard func-
tion for all sources present. Uncertainty in the estimate
of the capacity coefficient can be quite large for regions
of time when there are only a few measured response
times. Thus, large deviations of the capacity functions
from the mean capacity are less meaningful in these
cases. To remove the effect of regions with high uncer-
tainty on the fPCA analysis, we replace the value of
each estimated capacity function in regions with high
uncertainty. There are at least a couple of possibilities
for this value, but we use the average value of the
capacity across all functions, so that there will be no
effect of the particular capacity function in that region
on the analysis. The AND capacity functions for the
word superiority data are shown in the right half of
Fig. 1.

3. Subtract the mean capacity function across participants.
This is done in order to focus on the variation across
participants. The mean function can be analyzed on its
own to examine the absolute level of capacity, but this
analysis is concerned with relative performance. Note
that this mean is based on the individual calculated
functions, and not directly on pooling of the raw (or
shifted) response times. The mean function is shown in
Fig. 3, and the mean subtracted capacity functions are
shown in Fig. 4. These two figures allow for the sepa-
rate inspection of group-level trends and variability
between participants and conditions.

4. Calculate the representation of the capacity function in a
chosen basis space. Following Ramsay and Silverman
(2005), we use quartic B-spline basis with 25 equally
spaced knots. There are a number of alternative options

Mean C(t)

C()

1 FANN /le‘lm
P\N,J N

T T T T T
800 1000 1200 1400 1600
Time (Adjusted)

Fig. 3 The mean capacity function, averaged across participants and
conditions
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Fig. 4 Each of the mean centered capacity functions. Line color in-
dicates condition, and line type indicates the participant

at this point, such as using more or unequally spaced
knots or another basis. We have not found major effects
of these alternatives on the results. Some degree of
smoothing is also incorporated into this step, and one
should ensure that no major features in the original data
are lost in this new representation.

5. Determine the basis function that accounts for the larg-
est amount of variance in the data from the chosen basis
space, subject to the constraint that the integral of the
square of the function is 1 (following Eq. 2—4). The top
panel of Fig. 5 shows this component’s effect on the
mean function on the left and relative to the mean in the
center. Using a finite basis space, this step and the
following two can be performed by finding the
eigendecomposition of the matrix of coefficients de-
scribing each capacity function. Just as in multivariate
PCA, the eigenvalues correspond to the proportion of
variance accounted for by each eigenfunction. The
eigenfunctions in the new space are those functions
resulting from the linear combination of the original
basis functions with weights given by the eigenvectors.

6. Find the basis function that accounts for the largest
amount of variance in the data, subject to the constraints
in Step 4 and orthogonal to the already chosen bases.

7. Repeat Step 4 until the desired number of bases has
been chosen.

8. Apply a varimax rotation to the space. As was stated
above, the total variance accounted for does not change
with a rotation of the basis; however, by using a varimax
rotation, the loading values are forced to be more ex-
treme. As in multivariate PCA, the varimax rotation
often leads to better discriminability across participants
and more interpretable principal functions. Figure 6
shows the basis functions after a varimax rotation.

@ Springer

We now have a set of n basis functions to describe the
variance between our capacity functions, and for each par-
ticipant in each string type (word, nonword, etc.), we have n
weight values describing how much of each component is
needed to describe their performance. These weights them-
selves can be taken as a low-dimensional description of a
participant’s capacity in relation to the group.

fPCA for word superiority

This approach offers a new and interesting perspective on
the data from Houpt and Townsend (2010). Before the
varimax rotation (Fig. 5), the first principal function indi-
cates that the most variation across capacity functions is
accounted for by an overall increase (or decrease for nega-
tive factor scores) across time. This function has a larger
magnitude at earlier times, indicating that variation tapers
off with increasing time. The second principal function in-
dicates that a change of slope is the second most important
source of variation: Higher factor scores lead to more pos-
itive slopes of the capacity coefficient. Note that, even
before the varimax rotation, there are clear differences in
the factor scores across conditions.

Roughly the same qualitative form is preserved for the
first two principal functions after the varimax rotation
(Fig. 6). The first component relates to a general increase
(or decrease) of the capacity coefficient, and the figure on
the right showing the scores gives a clear indication that
words and pseudowords are processed more efficiently than
in the other conditions. Nearly all participants had their
highest scores on the first component for words and
pseudowords and their lowest scores on upside-down non-
words and unfamiliar characters, although there were large
individual differences in overall magnitude and the spread
between conditions. Another interesting difference
highlighted in this figure is that the scores for random
consonant sequences were scattered across participants,
sometimes appearing at or near the top of that participant’s
performance, and sometimes at the bottom.

The second component indicates a change in the slope of
the function, lowering capacity for early times and elevating
it for later responses. The scores on this component are less
consistent across participants, so they may be an indicator of
important individual differences. Participants 6 and 9 have
high scores for pseudowords, with participants 1 and 2’s
scores for words being slightly lower. The majority of the
remaining scores are, at most, half the magnitude of those
four highest scores.

While the first component is easily interpretable in terms
of the underlying cognitive processes, the slope change
indicated by the second component is more difficult to
understand. Due to the lack of appropriate tools, assessment
of the capacity functions has been limited to overall higher-
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Fig. 5 The first three principal components of the capacity functions.
The left column shows the component functions, weighted by the
average magnitude of the factor score, compared with the mean. The
middle column shows the component function weighted by the average

versus-lower comparisons up to now, so there has been little
to no theoretical work on the more complex properties.
One of our goals with fPCA is to begin to explore the
possible connections between functional-level properties
of the capacity coefficient and attributes of the underly-
ing cognitive processes.

Discussion

Although using entire functions as pieces of data allows
a researcher to retain more power for analyses, func-
tions can be more difficult to interpret or describe.
Functional principal components analysis, or fPCA, pro-
vides a mathematically rigorous way of representing
functional data in a finite dimensional way. It offers
the advantage of allowing the researcher to choose the
number of components included so as to account for the
desired amount of variance and selects these compo-
nents in such a way as to maximally describe the
differences among the data.

magnitude of the factor score. The third panel shows the factor scores
for each participant’s capacity function in each version of the task
(word, pseudoword, random letters, upside down, and Katakana)

This approach is particularly well suited for doing a work-
load capacity analysis (Townsend & Nozawa, 1995). Because
the capacity coefficient describes changes in efficiency across
different reaction times, it is desirable to retain that structure
rather than collapsing across all values of time (e.g., taking the
mean). There are a number of applications (such as structural
equation modeling), however, where functional data cannot be
used as an input and the data must be represented by a set of
finite values. By using fPCA, we can use the scores for each
component to describe the way each participant’s capacity
function from each condition varies from the group mean.
Each component function will depart from the mean in differ-
ent ways for different values of time, perhaps emphasizing
early times while deemphasizing later ones. This can indicate
to a researcher which parts of the capacity function are most
useful in distinguishing among observers and/or conditions on
a given task.

While fPCA has many advantages, there are some short-
comings that we hope to address in future research. As we
have mentioned, little is know about the meaningfulness of
the features of the capacity functions. Thus, there may be
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Fig. 6 The first three principal components of the capacity functions
after a varimax rotation of the basis. The left column shows the
component functions, weighted by the average magnitude of the factor
score, compared with the mean. The middle column shows the

some principal functions that are clearly an important part of
the data, but we may not know how to interpret those
functions in terms of cognitive processing. While this is a
shortcoming, fPCA is also part of the solution. fPCA can
isolate the features that correspond to a particular task or
condition. We can then work from there to determine what
aspects of cognitive processing in that task or condition
gave rise to those features.

Another shortcoming of fPCA, inherited from PCA, is
that it is not a probabilistic model by nature. This limits the
possibilities for making judgments about the loading values.
One possible approach to address this shortcoming may be
to generalize probabilistic models such as probabilistic PCA
(Tipping & Bishop, 1999) to functions.

This approach to analyzing the capacity coefficient dif-
fers in many ways from traditional analyses. Most previous
work (e.g., Gottlob, 2012; Hugenschmidt et al., 2010;
McCarley et al., 2007; Neufeld et al., 2007) focused on a
qualitative comparison with a baseline model: the UCIP
model. The coefficient was designed so that the UCIP model
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component function weighted by the average magnitude of the factor
score. The third panel shows the factor scores for each participant’s
capacity function in each version of the task (word, pseudoword,
random letters, upside down, and Katakana)

would produce a value of one, which means performance on
an individual item remains constant across increases in
workload (thus, unlimited capacity). Values greater than
one are called super-capacity, and values less then one are
referred to as limited capacity. This level of analysis says
nothing about changes in the function over time and is
inconclusive if the function is sometimes greater than one
and sometimes less. Variation across time might contain
important information regarding performance on a task,
and it can now be accounted for through the use of fPCA.
Is should be noted, however, that this analysis is intended to
complement, rather than replace, more traditional compari-
sons. This is because fPCA describes how individual
capacity functions vary from the mean, and thus in a
relative sense, in contrast to the absolute comparisons
with baseline. In other words, although this new
approach excels at describing differences between
participants and conditions, it says nothing about char-
acterizing performance using the traditional labels of
limited, unlimited, or super-capacity.
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In addition to the capacity coefficient, there are other
ways to measure workload capacity. The race model in-
equality (Miller, 1982) compares true performance with a
baseline predicted by a race model that does not assume
independence. Another measure used in the literature is the
Cox proportional hazard model (e.g., Donnelly et al., 2012).
A thorough discussion of these approaches is beyond the
scope of this article, although fPCA could also be a useful
tool for enhancing either measure.

In conclusion, we have demonstrated an effective new
tool, fPCA, for the analysis of capacity data. This tool pro-
vides researchers with the flexibility to select their own
balance between parsimony and accuracy of representation
by choosing how many components to use. Importantly,
because these components are functions across time, they
can speak to variations of capacity at different reaction
times, a depth of analysis unavailable in previous methods.
The scores for each component that represent the data in this
lower dimensional space are a succinct, data-driven way to
characterize the capacity variations between participants or
conditions quantitatively, allowing capacity analysis to be
implemented in a wider variety of psychological domains.
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