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Abstract In this article, we introduce a measure of within-
participant response consistency for use in the analysis of
performance in decision-making tasks. The measure is an
estimate of the correlation between the responses associated
with two identical blocks of trials, the second of which has
yet to be conducted. We derive a formula for the measure
that can be applied to data from any two-choice decision
task, including yes/no detection and two-alternative forced
choice (2AFC). The estimate is easily calculated from the
observed frequencies of hits, misses, false alarms, and correct
rejections. We utilized data from an actual 2AFC experiment
to compare estimated and observed consistency values; the
estimates accounted for more than 90 % of the variability in
observed consistency scores. We also discuss potential appli-
cations of the measure.
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The topic of measurement error has occupied psychologists
for well over a century (e.g., Spearman, 1904). Not surpris-
ingly, much effort has been devoted to addressing it by
devising various ways to index reliability. One way to
understand these different indexes is to think about the
sources of error that they handle well or less well. Cronbach
(1947; see also Schmidt, Le, & Ilies, 2003) has identified
three such sources of error: random response, transient, and
specific factor errors.

Random response errors occur when there are momentary
variations in attention, distractions, and so on; these are
errors across items. Transient errors are longitudinal and
concern variations in mood, processing efficiency, learning,

and so on across occasions. In contrast to transient errors,
specific factor errors are consistent across occasions. An
example would be that a particular item might be worded
in such a way that it is interpreted differently than other
items. Suppose that participants respond consistently to the
wording of a particular item, either via exposure to the same
item twice in a single occasion or across occasions, but
differently to that item than to other items measuring the
same construct. In this case, there would be no random
response or transient error, but there would be a specific
factor error. There would be variation in responses across
items measuring the same construct. As Schmidt et al.
(2003) explained, measures of internal consistency, of
which the most prominent is Cronbach’s alpha, address
random response and specific factor errors, but they do not
address transient error. In contrast, tests across occasions
address transient error but do not address specific factor
error. The measurement of transient errors requires estimat-
ing the variability of time series data collected from a single
participant, which we will refer to as within-participant
variability (or inversely, consistency). The most straightfor-
ward quantification of within-participant consistency is the
variance of a participant’s responses to a single stimulus
across occasions. This measure is often referred to in the
literature as intraindividual variability (see Nesselroade &
Ram, 2004) and is affected by transient and random re-
sponse errors but is unaffected by specific factor errors.
There are several drawbacks to this approach, including
the necessity of collecting responses to the same stimulus
over multiple occasions and the fact that the consistency
measure is based on responses to a single stimulus. Jackson
(1977) proposed a more complex measure of response con-
sistency that allows for the responses to multiple items to
contribute to the consistency estimate at the expense of
requiring each participant to complete many surveys. Scores
on odd-numbered items associated with a particular scale
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are summed, as are scores on the even-numbered items. This
calculation is repeated across many scales, and the even-
and odd-numbered sums are correlated to produce a consis-
tency measure. This measure is sensitive to random re-
sponse and specific factor errors but is unlikely to be
affected by transient errors, unless transient errors manifest
within the duration of a single survey.

In this brief report, we will discuss an effort to apply
these concepts to measure the reliability (consistency) of
a participant’s responses in a more general decision-
making task. In this context, participants typically per-
form a large number of trials across occasions (blocks
of trials); reliability in this context addresses transient
error of particular individuals, but it does not address
their specific factor error. In fact, defining specific fac-
tor error in a decision-making context is not straightfor-
ward. Consider a traditional testing context where one
has several items measuring attitude. Specific factor
error is minimized to the extent that participants’ re-
sponses on the different items are similar; that is, there
is a high level of internal consistency. For example,
participants with a positive attitude toward “eating choc-
olate” should give positive responses to “like–dislike”
and “favorable–unfavorable” items, whereas participants
with a negative attitude should give negative responses
in response to these two types of items. In a typical
detection or discrimination task, however, there are typ-
ically only two types of trials, with no expectation on
the part of the researcher that responses to the two
kinds of trials will be similar. For example, in a yes/no
detection task, there is no obvious a priori reason for
the researcher to believe that responses on target-present
trials will be similar to responses on target-absent trials.
If the participant is good at the task, the expectation
might be for dissimilar responses: a “yes” response on
target-present trials and a “no” response on target-absent
trials. In this new context, internal consistency should
concern not whether individuals respond similarly on all
items measuring a construct but, rather, whether their
responses to a particular trial type are similar. Our goal
is to develop a measure of this similarity.

Derivation of the measure

Consider a decision-making task in which an observer is
presented with one of two possible stimuli (A or B), and is
required to identify it as either A or B. Yes/no detection,
two-choice discrimination, and two-interval forced choice
(2IFC) procedures all fit this description. Imagine that the
experiment consists of two blocks of n trials. Each block
comprises the same proportions of A and B stimuli, al-
though the order of the stimuli varies across blocks.

A researcher interested in the consistency of the re-
sponses of a participant could consider the blocks as two
administrations of the same test and correlate the responses
across blocks to get a measure of test–retest reliability.
Given that the stimulus order was allowed to vary across
blocks, however, the researcher would first need to reorder
the trials in the second block to match the stimulus order of
the first. This would result in n pairs of trials, the response
on each trial within a pair associated with either stimulus A
or stimulus B. If the responses were recoded as numeric
values (1 for A responses and 0 for B responses, for exam-
ple), the correlation across blocks would provide a reason-
able and intuitive measure of response consistency.

The object of this brief report is to derive an estimate
of this quantity when only one block of trials is avail-
able. In other words, we are trying to predict test–retest
reliability after a single administration of the test. One
could interpret the measure as an indication of the
consistency that would be observed if the participant
completed the block of trials again while the percept
distributions, stopping rule, and decision rule were held
constant across blocks. We will start by identifying the
formula for the correlation between the two blocks of
responses. Since both sets of responses are dichoto-
mous, each of the n trial pairs fits into one of four
categories, as indicated in the following contingency
table:

Block 2 Trial

Response = A Response = B

Block 1 Trial Response = A a b

Response = B c d

a, b, c, and d are the frequencies associated with each of
the four possible outcomes, where a + b + c + d = n. The
formula for the correlation between two dichotomous vari-
ables (also known as the phi coefficient) can be written in
terms of these cell frequencies:

ρ ¼ ad � bcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ bð Þ cþ dð Þ aþ cð Þ bþ dð Þp : ð1Þ

The point of this derivation is to estimate ρ from quanti-
ties observed in block 1 under the assumption that the hit
and false alarm rates (and therefore, the corresponding fre-
quencies) are constant across blocks. We will also assume
that the decision process is applied independently across
blocks. We will denote the observed frequencies of hits,
misses, false alarms, and correct rejections in block 1 as h,
m, f, and r, respectively.

To begin with, we will derive the formula for the quantity
d, which is the number of trials for which a B response was
observed in both blocks. This combination of responses can
happen only if a hit occurs in both blocks or if a false alarm
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occurs in both blocks. Using h
h þ m and

f
f þ r

as our estimates of

the hit and false alarm rates, respectively, it follows that

d ¼ h � h

hþ m
þ f � f

f þ r
¼ h2

hþ m
þ f 2

f þ r
: ð2Þ

c is a count of trials for which a hit occurred in the first
block and a miss occurred in the second or a false alarm
occurred in the first block and a correct rejection occurred in
the second. Therefore,

c ¼ h � m

hþ m
þ f � r

f þ r
¼ hm

hþ m
þ fr

f þ r
; ð3Þ

and using the same logic,

b ¼ m � h

hþ m
þ r � f

f þ r
¼ hm

hþ m
þ fr

f þ r
¼ c ð4Þ

Finally,

a ¼ m2

hþ m
þ r2

f þ r
: ð5Þ

All that remains is to insert these quantities into Eq. 1 and
simplify terms. Doing so to the numerator of Eq. 1 yields

ad � bc ¼ 1

f þ rð Þ hþ mð Þ � hr � fmð Þ2: ð6Þ

Moving on to the denominator of Eq. 1, given the result
that b and c are equal, (a + b) = (a + c) and (b + d) = (c + d).
Therefore,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ bð Þ cþ dð Þ aþ cð Þ bþ dð Þ

p
¼ aþ bð Þ cþ dð Þ: ð7Þ

(a + b) is the number of A responses in block 1, and (c +
d) is the number of B responses in block 1. Writing these
quantities in terms of h, m, f, and r, it follows that

aþ bð Þ cþ dð Þ ¼ mþ rð Þ hþ fð Þ: ð8Þ
Inserting Eqs. 6 and 8 into Eq. 1, we get

ρ ¼ hr � fmð Þ2
f þ rð Þ hþ mð Þ mþ rð Þ hþ fð Þ : ð9Þ

Equation 9 can also be expressed in terms of the hit rate,
false alarm rate, the base rates, and the response rates:

ρ ¼ P S ¼ Að ÞP S ¼ Bð Þ
P R ¼ Að ÞP R ¼ Bð Þ HR� FARð Þ2: ð10Þ

In the above equation, P (S = A) and P (S = B) are the
stimulus base rates, P (R = A) and P (R = B) are the observed
proportions of A and B responses, and HR and FAR are the
hit and false alarm rates, respectively. Please see the Appendix
for the derivation of Eq. 10 from Eq. 9.

The relation between ρ and accuracy is straightforward to
calculate. We define accuracy as the average of the hit and
correct rejection rates:

Accuracy ¼ HRþ 1� FARð Þ
2

: ð11Þ

Rearranging terms, we get

HR� FARð Þ ¼ 2 Accuracy� 0:5ð Þ: ð12Þ
Substituting into Eq. 10,

ρ ¼ P S ¼ Að ÞP S ¼ Bð Þ
P R ¼ Að ÞP R ¼ Bð Þ 2 Accuracy� 0:5ð Þð Þ2: ð14Þ

Therefore, if the stimulus and response probabilities are
treated as constants,1 consistency is proportional to the
squared deviation of observed accuracy from 0.5:

ρ / Accuracy� 0:5ð Þ2: ð15Þ
This result is in line with our expectation: Deviation from

50 % accuracy in either direction indicates that the re-
sponses are becoming more similar to one another.

A demonstration with real data

We will demonstrate the use and interpretation of Eq. 9 using
data from Experiment 1b from Trafimow, MacDonald, and
Rice (2012). The experiment consisted of a 2IFC auditory
detection task made up of two blocks of 52 trials each. For the
purposes of this demonstration, we will treat the 2IFC task as
anAB discrimination task: StimulusA is the concatenation of a
signal interval with a noise interval, and stimulus B is the
concatenation of a noise interval with a signal interval. In this
context, a “hit” occurs when stimulus B is presented (the
signal occurs in the second interval) and the participant re-
sponds B, and a correct rejection occurs when stimulus A is
presented (the signal occurs in the first interval) and the
participant responds A. Response consistency estimates were
obtained for each participant using Eq. 9 and data from the
first block of trials. The actual response consistency was
calculated for each participant by matching trials by stimulus
type across blocks and correlating the responses. Although 31
participants completed the experiment, 2 were excluded from
analysis due to response behavior that resulted in a value of
zero for the denominator of Eq. 9.

The results are illustrated in Fig. 1. The dotted line in-
dicates a perfect correspondence between estimated and
observed consistency. The consistency estimates were quite
accurate: They accounted for 90.8 % of the variance in the
observed consistency scores. As can be seen in the figure,
there was a tendency to underestimate consistency. This
presumably occurred because the decision process is likely
to be unstable when the participant is learning how to
complete the task, which would lead to a reduced consis-
tency estimate. The decision process is more likely to be
stable during the second block, which explains why the

1 This treatment is not strictly appropriate, since the response proba-
bilities are related to the hit and false alarm rates and are, therefore,
likely to vary with the hit and false alarm rates.
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observed consistency is higher than the estimate produced
from the first block of data.

Discussion

The proposed measure provides an estimate of the correlation
between the responses associated with two iterations of the
same decision-making experiment. The measure identifies the
consistency that would be observed if its assumptions were
met. First, we assume that the decision process that maps
stimuli to responses is independent across blocks. In other
words, we assume that if the stimulus type is held constant, the
response probabilities are identical across blocks. The validity
of this assumption is easily evaluated using standard tests of
independence. This assumption is likely to be invalid during
the early phases of an experiment where the decision strategy
of the observer is still under development. Any change in the
way in which percepts are matched to responses (i.e., any
difference in the decision rule across blocks) will result in a
violation of this assumption. For this reason, we advocate for
the measure being interpreted as an indication of response
consistency given a particular decision strategy, rather than an
unqualified estimate of future behavior.

It follows from this assumption that the hit and false alarm
rates will be constant across blocks. For this reason, the hit and
false alarm rates observed during the first trial block are used as
point estimates of the hit and false alarm rates in the second
(upcoming) block of trials. Given that these quantities are
sample statistics, they are very unlikely to be equal across
blocks even if the decision process that produced them remains
constant. If the hit and false alarm rates in the second block
were to deviate significantly from those observed in the first,

the accuracy of the consistency estimate would suffer. Howev-
er, it is clear from the demonstration illustrated in Fig. 1 that this
occurred only rarely, at least for the data set under consider-
ation: The mean absolute error in predicted consistency was
0.083 across 29 participants, and the maximum error in predic-
tion was only 0.187. In any case, such a deviation across blocks
would indicate that the decision process had not stabilized.

As Cronbach (1947) explained, no measure of reliability is
perfect, and each one offers different benefits. So it is useful to
contrast them against each other. Most measures of reliability,
such as Cronbach’s alpha and the Spearman–Brown formula,
each test the internal consistency of items across groups of
participants. But if a researcher wishes to obtain the reliability
with which individuals respond to two sets of stimuli, none of
these methods are applicable in a straightforward way. In an
attempt to fill this gap, a researcher could obtain reliability
coefficients for individuals by having them respond to at least
two blocks of matched trials. This might be considered a
within-participants version of test–retest reliability. Although
this measure often works well (e.g., Trafimow & Rice, 2009),
it cannot always be used. Sometimes the experimental design
requires that there is only one block of trials, or the measure
may be applied after the fact to a preexisting data set. Even if it
is possible to have two blocks of trials, perhaps there is no way
to match the trials on the first block with the trials on the
second block. Without such matching, there is no way to
compute reliability across blocks of trials. Our proposed con-
sistency measure addresses this problem by providing an
estimate, from a single block of trials, of the result that likely
would occur with two blocks of trials. Although the accuracy
of the estimate depends on the assumptions we discussed
earlier, the analyses illustrated in Fig. 1 suggest that there is
reason to be hopeful that the assumptions are not strongly
violated in at least some experimental contexts.

It is possible to argue that unless our proposed consisten-
cy measure actually is tested against a two-block measure,
as is illustrated in Fig. 1, it is difficult to know whether to
trust it. And if it is necessary to use two blocks of trials
anyhow, why not simply compute a within-participants ver-
sion of test–retest reliability and not bother with the pro-
posed consistency measure? We suggest multiple answers.
In the first place, the proposed consistency measure can be
used on each block of trials to provide a test of changes in
consistency across blocks of trials, possibly due to learning,
exhaustion, or other factors. Theory-based predictions about
changes in consistency could therefore be tested using this
measure. Second, in many areas in perceptual and cognitive
psychology, researchers tend to produce large numbers of
articles using very similar research paradigms. Once prelim-
inary research has been accomplished and the proposed
consistency measure has been checked against a two-block
measure and validated for a particular research paradigm, it
is inefficient for each researcher in the future to continue to

Fig. 1 A comparison of predicted and actual response consistency
across blocks. The dotted line indicates a perfect correspondence
between predicted and observed consistency. Points above the line
represent underestimates, and points below represent overestimates
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use a two-block paradigm where a one-block paradigm, in
concert with our proposed consistency measure, is suffi-
cient. Therefore, given appropriate early testing, our pro-
posed consistency measure can reduce the difficulty of
performing research and, thereby, increase the ratio of
knowledge gained to effort put forth.

We see an additional use of the ρ measure that distin-
guishes it from test–retest reliability across blocks of trials.
Suppose that a researcher presents participants with two
types of trials and is interested in comparing the internal
consistency of each participant’s responses to each type of
trial. Prior to the development of the ρ measure, there was
no index that provides this capability. But ρ can be applied
separately to each of the two trial types. For example,
suppose visual stimuli were presented with different con-
trasts, and there was a theoretical reason to predict that
people would respond with greater internal consistency to
trials with one contrast than to trials with the other. Equation 9
could be used separately, for the trials within each contrast
type, to obtain internal consistency coefficients for each. A
comparison of the two coefficients with predictions would
provide a test of the theory.

In summary, we see ρ as useful for obtaining a reliability
index for individuals when it is impossible or impractical to
obtain data across blocks of trials. In addition, ρ enables
researchers to compare the consistency of a person’s re-
sponses to different types of trials. If the researcher arranges
matters so that the different types of trials map on to pre-
dictions from a theory, ρ can be used to test the predictions.
In short, we hope that the ρmeasure will be a useful addition
to the literature concerning the assessment of the reliability
of particular individuals in a decision-making context.

Appendix

In this Appendix, we will derive Eq. 10 from Eq. 9 in the
main text. Starting with Eq. 9:

ρ ¼ hr � fmð Þ2
f þ rð Þ hþ mð Þ mþ rð Þ hþ fð Þ :

Add and subtract hf within the squared term in the nu-
merator:

¼ hf þ hr � hf � fmÞð 2

f þ rð Þ hþ mð Þ mþ rð Þ hþ fð Þ :

Factor out a couple of common terms in the numerator:

¼ h f þ rÞ � f hþ mð Þð Þ½ �2
f þ rð Þ hþ mð Þ mþ rð Þ hþ fð Þ :

Multiply the numerator and denominator by 1
f þ rð Þ2 h þ mð Þ2 :

¼
1

f þ rð Þ2 h þ mð Þ2
1

f þ rð Þ2 h þ mð Þ2
� h f þ rÞ�f h þ mð Þð Þ½ �2

f þ rð Þ h þ mð Þ m þ rð Þ h þ fð Þ

¼
h f þ rÞ�f h þ mð Þð Þ½ �2

f þ rð Þ2 h þ mð Þ2
m þ rð Þ h þ fð Þ
f þ rð Þ h þ mð Þ

¼ f þ rð Þ h þ mð Þ
m þ rð Þ h þ fð Þ � h f þ rÞ�f h þ mð Þð Þ

f þ rð Þ h þ mð Þ
h i2

:

Multiply the numerator and denominator by 1
n2 , where n is

the number of trials in the block:

¼
1
n2

1
n2
� f þ rð Þ hþ mð Þ

mþ rð Þ hþ fð Þ � h

hþ m
� f

f þ r

� �2
:

h
hþm and

f
fþr are the hit and false alarm rates, respectively:

¼
f þ r
n � h þ m

n
m þ r
n � h þ f

n

� HR� FARð Þ2

¼ P S ¼ Að Þ � P S ¼ Bð Þ
P R ¼ Að Þ � P R ¼ Bð Þ � HR� FARð Þ2
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