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Abstract This study analyzes the robustness of the lin-
ear mixed model (LMM) with the Kenward–Roger (KR)
procedure to violations of normality and sphericity
when used in split-plot designs with small sample sizes.
Specifically, it explores the independent effect of skew-
ness and kurtosis on KR robustness for the values of
skewness and kurtosis coefficients that are most fre-
quently found in psychological and educational research
data. To this end, a Monte Carlo simulation study was
designed, considering a split-plot design with three lev-
els of the between-subjects grouping factor and four
levels of the within-subjects factor. Robustness is
assessed in terms of the probability of type I error.
The results showed that (1) the robustness of the KR
procedure does not differ as a function of the violation
or satisfaction of the sphericity assumption when small
samples are used; (2) the LMM with KR can be a good
option for analyzing total sample sizes of 45 or larger
when their distributions are normal, slightly or moder-
ately skewed, and with different degrees of kurtosis
violation; (3) the effect of skewness on the robustness
of the LMM with KR is greater than the corresponding
effect of kurtosis for common values; and (4) when data are
not normal and the total sample size is 30, the procedure is not

robust. Alternative analyses should be performed when the
total sample size is 30.

Keywords Linear mixed model . Kenward–Roger
procedure . Skewness . Kurtosis . Robustness

Longitudinal studies, which can be broadly defined as those
studies in which the response of each individual is observed
on two or more occasions, play a prominent role in the
behavioral sciences. The empirical evidence obtained by
considering the changes in psychological and educational
variables over time can be used to establish predictive
relationships that sometimes cannot be detected when
cross-sectional studies are used. One of the most popular
longitudinal designs is the split-plot design, in which indi-
viduals are measured repeatedly on two or more occasions
in relation to one or more grouping factors. Data from this
design are frequently analyzed with an analysis of variance
(ANOVA) with within-subjects and between-subjects fac-
tors. This approach is valid under certain assumptions, such
as normality, sphericity, and independence of the observa-
tions. However, when these assumptions are not satisfied, as
is often the case in psychological and educational research
(Blanca, Arnau, Bono, López-Montiel & Bendayan, 2012;
Jaccard & Ackerman, 1985; Rogan, Keselman & Mendoza,
1979; Winer, 1971), the robustness of ANOVA is not guaran-
teed (Berkovits, Hancock & Nevitt, 2000; Keselman, Lix &
Keselman, 1996), and alternative procedures of data analysis
may be necessary.

One of the most suitable approaches for analyzing the
data from repeated measures designs, in general, and split-
plot designs, in particular, is the linear mixed model (LMM;
Cnaan, Laird & Slasor, 1997; Laird & Ware, 1982; Littell,
Milliken, Stroup & Wolfinger, 1996). The LMM allows
researchers to include random factors and to model the
covariance structure of their data prior to testing the
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treatment effects. In general, the LMM described by Laird
and Ware (1982) can be written as in Eq. 1:

y ¼ Xb þ Zu þ e : ð1Þ

where y is the observations vector, X the matrix for the fixed
effects model, β is the vector of the fixed effects parameters, Z
is the matrix for the random effects model, u the vector of the
random effects parameters, and e is the vector of random errors.

The distribution assumptions of this model are that u and
e are independent random vectors distributed as u ~ N(0,G)
and e ~ N(0,R), respectively, where G is a matrix of un-
known covariance parameters for the between-subjects ran-
dom effects and R is a covariance matrix for the within-
subjects errors. Since u and e are independent vectors,
their covariance is equal to 0, and the covariance matrix
of y is V = ZGZ’ + R.

The matrices G and R are usually unknown, and conse-
quently, an estimate of V must be used. This is often done
by means of the residual maximum likelihood estimation
(Zimmerman & Núñez-antón, 2001), as in Eq. 2:

bV ¼ V bb� �
¼ X 0V�1X

� ��
: ð2Þ

Once the covariance matrix has been selected and its
parameters estimated, β is estimated through the estimated
generalized least squares estimator, as in Eq. 3:

bb ¼ X 0 bV�1
X

� ��1
X 0 bV�1

y : ð3Þ

However, the true variance of bb is not X0V�1X
� ��1

because bb contains variation due to bV, so it is not always a
good estimate of V (Littell, 2002). As Vallejo, Fernández,
Herrero and Conejo (2004) highlighted, this means that the
likelihood-based inference should be interpreted with cau-
tion when the sample size is not large enough.

To summarize, the LMM approach uses statistics that
have good large-sample properties but do not appear to
be adequate when used with small samples (Wright &
Wolfinger, 1996). However, small sample properties can
be improved by procedures that adjust the degrees of
freedom—for example, the method developed by Kenward
and Roger (1997). The KR procedure provides an adjusted
estimator of the covariance matrix of β that has reduced the
bias for small sample inference when the asymptotic covari-

ance matrix underestimates bV.

Specifically, the LMM uses Wald-type statistics that can
be defined as in Eq. 4:

W ¼ Cbb� �0
C X 0V�1X
� ��1

C 0
� ��1

Cbb� �
; ð4Þ

where C is a contrast matrix with range q, and the Wald F
for the hypothesis H0: Cβ = 0 is F =W /q.

If we calculate a scale factor δ and an approximate value
for the degrees of freedom ν, then the F statistic for the KR
method is given by Eq. 5:

F� ¼ dFKR ¼ d
q

Cbb� �0
C X 0V�1X
� ��1

C 0
� ��1

Cbb� �
: ð5Þ

The moments of F* are generated and matched to the
moments of the distribution F so as to solve δ and ν. Under
the null hypothesis, it is assumed that F* is approximately
distributed in the same way as F, with q degrees of freedom
in the numerator and ν degrees of freedom in the denomi-
nator. Hence, two values from the data have to be calculated:
the degrees of freedom in the denominator ν and a scale
factor δ, following Eqs. 6, 7, and 8. Thus,

v ¼ 4þ qþ 2

qy� 1
; ð6Þ

where

y ¼ V FKR½ �
2E FKR½ �2 ð7Þ

and

d ¼ v

E FKR½ � v� 2ð Þ : ð8Þ

Several simulation studies have examined the use of the
LMM with the KR procedure by exploring robustness in
split-plot designs when the assumptions of the LMM are not
met. In this context, robustness means that the empirical
alpha found in the simulations is close to the nominal value
of alpha (probability of type I error). Most simulation stud-
ies use Bradley’s (1978) liberal criterion, according to which
the test procedure is considered robust if the empirical type I
error is between .025 and .075, for an alpha level of .05.

With respect to the repeated measures effect, Monte
Carlo simulation studies have found that the KR procedure
is robust to variance heterogeneity with assumed sphericity
and different violations of normality—for example, log-
normal (Kowalchuk, Keselman, Algina & Wolfinger,
2004), chi-square with three degrees of freedom (Vallejo et
al., 2004), or some unknown distributions with moderate
(skewness = 1 and kurtosis = 0.75), high (skewness = 1.75
and kurtosis = 3), or very extreme (skewness = 3 and
kurtosis = 21) violation of normality (Livacic-Rojas,
Vallejo & Fernández, 2006, 2010). As regards the interac-
tion effect, the results are inconsistent. With sphericity as-
sumed, Kowalchuk et al. (2004) found that the procedure was
robust when the distribution was log-normal, while Vallejo et
al. (2004) showed that KR is conservative with chi-square
distributions with three degrees of freedom. However, with
different unknown distributions, such as those cited above,
studies have shown that KR may be robust (Livacic-Rojas et
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al., 2010), conservative (Livacic-Rojas et al., 2006, 2010), or
liberal under some sample size conditions when variances are
heterogeneous (Vallejo & Ato, 2006).

Arnau, Bono, Blanca and Bendayan (2012) examined KR
robustness when the assumptions of normality, sphericity, and
variance homogeneity are not met jointly. Specifically, they
explored KR robustness with log-normal, exponential, and
double exponential distributions. They found that for the re-
peated measures and the interaction effects, KR was least
robust when the distribution was log-normal, in which case it
was nearly always liberal when the sphericity assumption was
not met. Furthermore, they suggested that skewness and kurto-
sis could have a differential effect on KR robustness—namely,
that higher values of skewness appeared to be related to greater
type I error rates, while higher values of kurtosis seemed to be
related to reduced type I error rates. However, the effect of
kurtosis and skewness on the KR procedure has yet to be
specifically explored. Some studies focusing on other statistical
procedures have found that the effects of kurtosis are greater
than those of skewness (Harwell, Rubinstein, Hayes & Olds,
1992; Hopkins & Weeks, 1990), whereas others have reported
that the effects of skewness are greater than those of kurtosis
(Arnau et al., 2012; Chafin & Rhiel, 1993; Scheffé, 1959).

The aim of the present study was to analyze the robustness
of the LMM, with the KR procedure, to violations of normal-
ity and sphericity when used in split-plot designs with small
sample sizes. Specifically, we sought to examine whether
skewness and kurtosis have a differential effect on KR robust-
ness by exploring both independently. To this end, a simula-
tion study was designed, including the values of skewness and
kurtosis coefficients most frequently found in psychological
and educational research data (Blanca et al., 2012), as well as
the sample sizes most frequently used (Fernández, Vallejo,
Livacic-Rojas & Tuero, 2010; Keselman, Huberty, Lix,
Olejnik, Cribbie, Donahue Kowalchuk et al., 1998).

Method

A Monte Carlo simulation study was designed to compare
the effects of skewness and kurtosis on KR robustness, the
comparison being based on type I error rates. This study
considered a split-plot design with three levels of the
between-subjects grouping factor and four levels of the
within-subjects factor—that is, three groups of a number
of individuals who are measured on four occasions.

Normal data were generated using a series of macros
created ad hoc in SAS 9.2 (SAS Institute, 2008). First,
covariance matrices were generated with sphericity values
of .57 and .75. Second, the RANNOR generator was used to
obtain normally distributed pseudorandom observations, ap-
plying the Cholesky factor of the covariance matrix R.
Nonnormal data were generated via the same procedure

but were transformed by means of Fleishman coefficients
(Fleishman, 1978) corresponding to each of the distributions
studied. The within-subjects, between subjects, and interac-
tion effects were set to zero in the population model.

All data were generated assuming variance homogeneity
and using the unstructured (UN) covariance structure, since
this is the most common approach in behavioral and educa-
tional longitudinal data. Indeed, some studies recommend
using this structure when the number of observations is
moderate or sample sizes are small (Chen & Wei, 2003;
Kowalchuk et al., 2004).

The following variables were examined: (1) total sample
size, (2) equal and unequal group size, (3) distributional shape
of the response variable, and (4) sphericity. Total sample sizes
of N = 30, 45, and 60 were considered. These sample sizes
correspond to what is most frequently used in behavioral and
educational research (Fernández et al., 2010; Keselman et al.,
1998; Livacic-Rojas et al., 2006). For each value of N, both
equal and unequal group sizes were considered. Unequal group
sizes, in which the number of individuals decreases, were
considered because unbalanced data due to experimental mor-
tality is very common in longitudinal studies (Keselman et al.,
1998). Specifically, with unequal group size, the coefficient of
sample size variation, Δnj, was .33, while the group sizes were
as follows: 14, 10, 6 (N = 30); 21, 15, 9 (N = 45); and 28, 20, 12
(N = 60). When the group sizes were equal, Δnj = 0, the group
sizes were 10, 10, 10 (N = 30); 15, 15, 15 (N = 45); and 20, 20,
20 (N = 60). The coefficient of sample size variation, Δnj, can
be defined as in Eq. 9:

Δnj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPJ

j¼1 nj � n
� �2

=J
q

n
; ð9Þ

where nj is the sample size of each group, J is the number of
groups, and n ¼ P

nj=J .
In order to explore the differential effect of skewness (γ1)

and kurtosis (γ2) on KR robustness, several distributional
shapes of the response variable were considered. In a first step,
data were generated to be normally distributed, so as to set a
baseline. Different values of the γ1 and γ2 coefficients were
chosen on the basis of a recent study that assessed the distribu-
tional shape of real data by examining the values of γ1 and γ2 in
small samples of educational and behavioral research data
(Blanca et al., 2012). This study revealed that γ1 usually ranges
between −2.49 and 2.33, while γ2 usually ranges between
−1.92 and 7.41. The values of the γ1 and γ2 coefficients (see
Table 1) were chosen according to the cutoff points for the
typical degree of contamination found in this type of data, as
proposed by Blanca et al. (2012). It should be noted that γ2 is
equal to β2 − 3, where β2 is the Pearson coefficient of kurtosis
and 3 is the value of β2 for the normal distribution.

In order to analyze KR robustness to violations of normality
and sphericity together, two indices of sphericity were used. A
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value of ε = .75 was used as a good approximation to spheric-
ity, and a value of ε = .57 was used to represent nonsphericity.
Ten thousand replications were performed for each combina-
tion at a significance level of .05. This number of replications
was chosen in order to ensure reliable results with extremely
contaminated distributions (Bendayan, Arnau, Blanca, Bono
& Alarcón, 2011; Robey & Barcikowski, 1992).

Results

The empirical type I error rates associated with the repeated
measures effect and the interaction effect of the LMM
combined with the KR procedure were analyzed for each
combination of the study variables. The robustness of this
model and procedure was evaluated by means of Bradley’s
(1978) liberal criterion, according to which a test is robust
when the empirical type I error rate is between .025 and .075
for α = .05. When the empirical type I error rate is above the
upper limit, the test is considered liberal, and when it is
below the lower limit, it is considered conservative.

Normally distributed data

Table 2 shows the empirical type I error rates for the repeat-
ed measures and interaction effects when the data were
normally distributed and the sphericity assumption was not
met. The results show that for the repeated measures effect
KR was generally robust under the conditions studied.
Similar results were obtained for the interaction effect, with
one exception: When the total sample size was 30, KR was
liberal. No differences were found according to whether or
not the group sizes were balanced. The violation of the
sphericity assumption had no effect on KR robustness.

Skewed data

Table 3 shows the empirical type I error rates for the repeated
measures and interaction effects when data were skewed. For
the repeated measures effect, the results indicate that with
slight and moderate skewness, KR was robust with total
sample sizes of 45 and 60. However, the procedure appeared
to be liberal with a total sample size of 30. Furthermore, with
high, extreme, and very extreme skewness, KR was liberal for

all the conditions. For the interaction effect, KR was robust
under all conditions, except for those with slight and moderate
skewness and a total sample size of 30, in which case it was
liberal. No differences were found regarding whether group
sizes were balanced or not. The violation of the sphericity
assumption had no effect on KR robustness.

Data with different degrees of kurtosis

As can be seen in Table 4, for the repeated measures effect, KR
was robust independently of the degree of kurtosis or violation
of the sphericity assumption. KR was also robust for the
interaction effect, although with a total sample size of 30, it
was mainly liberal, independently of the degree of kurtosis or
violation of the sphericity assumption. No differences were
found in terms of whether group sizes were balanced or not.

Discussion

This study has analyzed the robustness of the LMM,
with the KR procedure, to violations of normality and

Table 1 Values of γ1 and γ2 coefficients for the considered distributional shapes of the response variable

Degree of contamination

Slight Moderate High Extreme Very extreme

Skewness (γ2 = 0) γ1 = 0.4 γ1 = 0.8 γ1 = 1.6 γ1 = 2 γ1 = 2.5

Kurtosis (γ1 = 0) γ2 = 0.4 γ2 = 0.8 γ2 = 1.6 γ2 = 2 γ2 = 2.5; 3.2; 7.2

Table 2 Empirical type I error rates for the repeated measures and inter-
action effects (nominal value .05) with respect to normally distributed data

N n1 n2 n3 Δnj ε = .57 ε = .75

Repeated measures effect

30 10 10 10 .00 .074 .070

30 14 10 6 .33 .072 .076

45 15 15 15 .00 .066 .060

45 21 15 9 .33 .068 .068

60 20 20 20 .00 .063 .063

60 28 20 12 .33 .061 .066

Interaction effect

30 10 10 10 .00 .079 .076

30 14 10 6 .33 .078 .079

45 15 15 15 .00 .068 .060

45 21 15 9 .33 .071 .068

60 20 20 20 .00 .065 .065

60 28 20 12 .33 .060 .062

N, total sample size; nj, group sample size; Δnj, coefficient of sample
size variation; ε, sphericity. In bold: liberal
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sphericity when using split-plot designs with small sam-
ple sizes. More specifically, its aim was to explore the

independent effect of skewness and kurtosis on KR robustness
for the values of skewness and kurtosis coefficients that are

Table 3 Empirical type I error rates for the repeated measures and interaction effects (nominal value 0.05) with respect to skewed data

Degree of skewness

N n1 n2 n3 Δnj Slight Moderate High Extreme Very extreme

γ1 = 0.4 γ1 = 0.8 γ1 = 1.6 γ1 = 2 γ1 = 2.5

ε = .57 ε = .75 ε = .57 ε = .75 ε = .57 ε = .75 ε = .57 ε = .75 ε = .57 ε = .75

Repeated measures effect

30 10 10 10 0.00 .071 .077 .088 .077 .259 .237 .267 .241 .151 .138

45 15 15 15 0.00 .067 .069 .074 .070 .216 .192 .228 .202 .126 .120

60 20 20 20 0.00 .063 .065 .068 .071 .177 .164 .195 .175 .113 .106

30 14 10 6 0.33 .076 .075 .082 .079 .252 .215 .247 .224 .137 .129

45 21 15 9 0.33 .067 .061 .077 .070 .210 .188 .210 .186 .116 .104

60 28 20 12 0.33 .059 .061 .065 .066 .171 .152 .193 .166 .101 .095

Interaction effect

30 10 10 10 0.00 .080 .079 .077 .076 .050 .052 .054 .054 .069 .067

45 15 15 15 0.00 .068 .067 .065 .068 .045 .048 .046 .049 .058 .054

60 20 20 20 0.00 .063 .064 .060 .063 .042 .049 .039 .041 .053 .053

30 14 10 6 0.33 .084 .075 .082 .078 .061 .058 .064 .062 .067 .072

45 21 15 9 0.33 .068 .069 .068 .065 .054 .049 .053 .056 .064 .064

60 28 20 12 0.33 .063 .061 .060 .069 .048 .048 .047 .048 .049 .053

N, total sample size; nj, group sample size; Δnj, coefficient of sample size variation; γ2, skewness; ε, sphericity. In bold: liberal

Table 4 Empirical type I error rates for the repeated measures and interaction effects (nominal value 0.05), using data with different kurtosis
coefficients

Degree of kurtosis

N n1 n2 n3 Δnj Slight Moderate High Extreme Very extreme

γ2 = 0.4 γ2 = 0.8 γ2 = 1.6 γ2 = 2 γ2 = 2.5 γ2 = 3.2 γ2 = 7.2

ε = .57 ε = .75 ε = .57 ε = .75 ε = .57 ε = .75 ε = .57 ε = .75 ε = .57 ε = .75 ε = .57 ε = .75 ε = .57 ε = .75

Repeated measures effect

30 10 10 10 0.00 .072 .071 .068 .073 .069 .069 .069 .067 .069 .070 .072 .066 .064 .067

45 15 15 15 0.00 .066 .067 .063 .068 .064 .065 .059 .062 .059 .063 .062 .059 .058 .058

60 20 20 20 0.00 .065 .062 .063 .059 .061 .057 .062 .060 .059 .058 .061 .062 .053 .061

30 14 10 6 0.33 .070 .069 .072 .070 .068 .074 .074 .068 .068 .070 .068 .072 .070 .065

45 21 15 9 0.33 .061 .063 .066 .061 .053 .071 .064 .065 .062 .058 .062 .064 .063 .063

60 28 20 12 0.33 .059 .060 .062 .060 .064 .066 .058 .063 .058 .060 .054 .059 .060 .061

Interaction effect

30 10 10 10 0.00 .080 .073 .079 .079 .075 .077 .076 .076 .072 .075 .072 .074 .072 0.063

45 15 15 15 0.00 .065 .065 .059 .065 .060 .064 .063 .061 .065 .064 .059 .064 .054 0.061

60 20 20 20 0.00 .061 .058 .062 .059 .059 .059 .060 .062 .055 .061 .061 .060 .054 0.061

30 14 10 6 0.33 .074 .081 .076 .079 .076 .079 .078 .077 .077 .074 .077 .076 .074 0.070

45 21 15 9 0.33 .070 .069 .062 .068 .053 .066 .067 .067 .066 .066 .066 .062 .064 0.065

60 28 20 12 0.33 .057 .065 .061 .065 .060 .059 .059 .061 .059 .061 .058 .060 .058 0.058

N, total sample size; nj, group sample size; Δnj, coefficient of sample size variation; γ1, kurtosis; ε, sphericity. In bold: liberal
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most frequently found in psychological and educational re-
search data.

The results showed that for the repeated measures effect
the LMM with KR was robust mainly when data were
normal, regardless of whether the sphericity assumption
was met. Likewise, for the interaction effect, the procedure
was also robust when the total sample size was 45 or larger,
but it was liberal when the total sample size was 30. These
results are consistent with the findings of Livacic-Rojas et
al. (2006, 2010) and Arnau, Bono and Vallejo (2009), who
highlighted the problems with the KR procedure when using
very small samples with normal and spherical data.

With regard to the robustness of the procedure when data
were slightly or moderately skewed, KR was robust for both
the repeatedmeasures and interaction effects with total sample
sizes of 45 and 60, but it was liberal with a total sample size of
30 (regardless of whether the sphericity assumption was vio-
lated). When data were highly, extremely, or very extremely
skewed, the procedure was liberal for the repeated measures
effect for all the sample sizes considered, regardless of wheth-
er the sphericity assumption was violated. By contrast, KR
was robust under all the conditions for the interaction effect
when data were highly, extremely, or very extremely skewed.
These findings are partially consistent with those reported in
studies about other statistical procedures (Chafin & Rhiel,
1993; Scheffé, 1959). Furthermore, as Arnau et al. (2012)
pointed out, with small samples, the robustness of the LMM
with the KR procedure decreases as skewness increases.

Having explored the effect of skewness on the robustness
of the KR procedure, the third phase of the study examined the
effect of kurtosis. Here, the results indicated that for the
repeated measures effect, the procedure was robust, indepen-
dently of the degree of kurtosis or violation of the sphericity
assumption. KR was also robust for the interaction effect,
although with a total sample size of 30, it was mainly liberal,
but again independently of the degree of kurtosis or violation
of the sphericity assumption. These findings are partially
consistent with research that has reported the effect of kurtosis
on the robustness of other statistical tests (Harwell et al., 1992;
Hopkins & Weeks, 1990). Although the present results show
an effect of kurtosis on empirical type I error rates with small
samples and in relation to the interaction effect, taken together
they support previous studies (Arnau et al., 2012; Chafin &
Rhiel, 1993; Scheffé, 1959) that have suggested that skewness
effects are greater than those of kurtosis. Specifically, the
present results suggest that the effect of skewness is greater
for the repeated measures effect, whereas the effect of kurtosis
is slightly greater for the interaction effect only when the
sample size is 30. With respect to the main aim of this study,
the results as a whole indicate that there is an independent
effect of skewness and kurtosis on KR robustness. Further
research should now examine the effect of both skewness and
kurtosis, jointly, on KR robustness, because in psychological

and educational data, measures may be skewed and kurtotic at
the same time.

Furthermore, and as described above, the coefficient of
sample size variation was varied in the simulation; that is, equal
and unequal group sizes were considered. No differences were
found in any of the studied conditions in relation to whether or
not the group sizes were balanced. The results suggest that KR
robustness could be more affected by the total sample size
when small samples are used and the skewness of the response
variable, rather than bywhether the design is balanced or not. In
this context, it would be interesting for future research to
explore the effect of different unequal group sizes by consider-
ing other coefficients of sample size variation.

It should be noted that comparison of the present results
with previous findings may be hampered by the use of differ-
ent distributions. Indeed, our results are limited to the range of
conditions examined, although they may nonetheless help to
decide whether the LMM is suitable for use with specific
nonnormal data. As a final note, the following conclusions
can be drawn regarding use of the LMM with the KR proce-
dure. First, the robustness of this procedure does not differ as a
function of the violation or satisfaction of the sphericity as-
sumption when small samples are used. Second, the LMM
with KR can be a good option for analyzing total sample sizes
of 45 or larger when their distributions are normal, slightly
skewed, or moderately skewed, and with different degrees of
kurtosis. Third, for the repeated measures effect, the effect of
skewness on the robustness of LMM with KR is greater than
the corresponding effect of kurtosis. Finally, when data are not
normal and the total sample size is 30, the procedure is not
robust, and alternative analyses should be performed.

Considering the results obtained, as well as the fact that
small sample sizes and nonnormal data are frequent in longi-
tudinal psychological and educational research (Blanca et al.,
2012; Fernández et al., 2010; Keselman et al., 1998; Lei &
Lomax, 2005;Micceri, 1989), further studies are now required
to explore the robustness of the LMM with other nonnormal
unknown distributions, different total and group sample sizes,
and a greater number of observations.
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