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Abstract A Thurstonian model for ranking data assumes
that observed rankings are consistent with those of a set of
underlying continuous variables. This model is appealing
since it renders ranking data amenable to familiar models for
continuous response variables—namely, linear regression
models. To date, however, the use of Thurstonian models
for ranking data has been very rare in practice. One reason
for this may be that inferences based on these models
require specialized technical methods. These methods have
been developed to address computational challenges in-
volved in these models but are not easy to implement
without considerable technical expertise and are not widely
available in software packages. To address this limitation,
we show that Bayesian Thurstonian models for ranking data
can be very easily implemented with the JAGS software
package. We provide JAGS model files for Thurstonian
ranking models for general use, discuss their implementa-
tion, and illustrate their use in analyses.

Keywords Ranking data . Thurstonian models . Bayesian
statistics . JAGS

Introduction

Consider data where subjects rank K choices. Ranking data
can be represented by a set of K response variables: Yi1; Yi2;
. . . ; YiK , where Yik represents the rank given by subject i to
choice k. For example, Yi1 = 2, Yi2 = 3, and Yi3 = 1 is a ranking
of K = 3 choices by subject i where the third choice is ranked
first, the first choice is ranked second, and the second choice is
ranked third. The use of ranking data in research is attractive
because ranks are relatively easy to elicit from respondents,
cannot violate transitivity, and are not subject to idiosyncra-
siesin scale use. Ranking data are particularly useful in appli-
cations where respondents are faced with evaluating several
choices simultaneously, as in conjoint analysis. The challenge
of ranking data lies in the statistical analysis of these multi-
variate discrete responses. Reviews of statistical models for
ranking data are given by Critchlow, Flinger, and Verducci
(1991) and Marden (1995). One particular family of models,
known as order statistic models, assume that the observed
ranking can be modeled on the basis of the order statistics of a
sample from an underlying multivariate continuous
distribution. The Thurstonian ranking model is one of the
oldest and most well-known order statistic models.

Despite being a relatively simple and intuitive model,
reported applications of Thurstonian rankingmodels have been
rare, and many of these are only examples in methodological
articles. Computational difficulties in implementing
Thurstonian ranking models are one likely reason for their
rarity. Thurstonian ranking models define the probability of
an observed ranking as a (K − 1)-dimensional integral, which
cannot be expressed in closed form. The crux of the problem of
implementing these models is how to either approximate this
integral numerically or circumvent its evaluation altogether.
Much of the methodological research on Thurstonian ranking
models has focused on this issue, and a variety of solutions
have been proposed. But these methods require significant
technical expertise to use, and since software using these
methods is not widely available, analyses must often be
programmed on a case-by-case basis. This article directly
addresses this problem by showing that Bayesian
Thurstonian ranking models can be very easily implemented
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in the free and open-source software package JAGS. We also
provide generic JAGS model files that users can easily adapt
for their own analyses.

The rest of this article is organized as follows. We briefly
review Thurstonian ranking models, including discussions
of the specification of covariates, model identification, and
estimation methods. We then describe in detail the imple-
mentation of Bayesian Thurstonian ranking models in
JAGS. We also provide two demonstrations of analyses
using Thurstonian ranking models with JAGS, using real
data sets. Model files and further details are provided in the
appendices and as supplementary material.1

Thurstonian ranking models

The Thurstonian ranking model was proposed as a scaling
method for ranking data by Thurstone (1931), on the basis
of his law of comparative judgment (Thurstone, 1927). This
model assumes that observed frequencies of rankings are
consistent with probabilities of the ranking of unobserved
continuous response variables representing what might be
thought of as the psychological perception of each choice. A
Thurstonian ranking derives the probability of a given rank-
ing on the basis of the distribution of a set of K unobserved
or latent response variables,Ui1;Ui2; . . . ;UiK, corresponding
to the K ranked choices.2 These latent response variables are
assumed to have a multivariate normal distribution, NK

μi;Σð Þ. One of the strengths of Thurstonian ranking models
is in the flexibility of the mean and covariance structure of
the latent responses. To extend the model to include cova-
riates, we index the mean vector by the observation and will
later discuss how to parameterize the mean as a function of
one or more covariates. An arbitrary covariance structure
allows heteroscedasticity of and correlations among the
latent responses. Other related order-statistic models, such
as “exploded” logit models (Beggs, Cardell, & Hausman,
1981; Chapman & Staelin, 1982; Hausman & Ruud, 1987;
Luce, 1959; Plackett, 1975; Punj & Staelin, 1978), assume
independence of the latent responses (sometimes referred to
as independence of irrelevant alternatives. or IIA, in the
discrete choice literature), which can be too restrictive.

It is common to write Thurstonian ranking models in
terms of the differences among the latent responses for
identification reasons and to slightly simplify computations.
Let Zik ¼ Uik � UiK represent the difference between the

latent response to the kth and Kth (i.e., last) choice. In matrix

notation, this can be written as zi = Cui, where u
0
i ¼

Ui1;Ui2; . . . ;UiKð Þ, z0i ¼ Zi1;Zi2; . . . ; Zi;K � 1Þ
�

, and

C ¼
1 0 � � � 0 �1
0 1 � � � 0 �1
..
. ..

. . .
. ..

. ..
.

0 0 � � � 1 �1

2
664

3
775: ð1Þ

The probability of a given rank order can be expressed
as

P Yi1 ¼ y1; Yi2 ¼ y2; . . . ; YiK ¼ yKð Þ

¼
Z

� � �
Z

f z;Cμi;CΣC0ð ÞI z 2 Sið Þdz1dz2 . . . dzK � 1;

ð2Þ
where ϕ denotes the probability density function of a mul-
tivariate normal distribution with given mean vector and
covariance matrix evaluated at z0 ¼ z1; z2; . . . ; zK � 1ð Þ, and
Si is the set of values z1; z2; . . . ; zK�1 such that, when
combined with zK = 0, has the same rank order as yi1; yi2;
. . . ; yiK . Note that I z 2 Sið Þ ¼ 1 if z 2 Si , and zero other-
wise, so that Eq. 2 computes the probability that the multi-
variate, normally distributed vector zi with mean vector Cμi

and covariance matrix CΣC0 falls within Si to produce the

observed rank order y
0
i ¼ yi1; yi2; . . . ; yiKð Þ.

Including covariates

Discussions of Thurstonian ranking models do not always
include covariates. The mean and variance are often speci-
fied as being constant over observations, although some
researchers have discussed letting the mean μi vary over
observations, due to its dependence on covariates (e.g., Yu,
2000). This is not a major extension of the model, but it is
worth discussion since, in practice, covariates are common
and there are some important considerations in terms of how
their effects are specified and identified. Including covari-
ates effectively creates a kind of regression model for rank-
ing data.

Because ranking data are multivariate in the sense that
each observation consists of K ranks, Yi1; Yi2; . . . ; YiK , that
vary both between and within choice sets, it is useful to
distinguish between covariates that vary only between
choice sets (i.e., over i but not over k) and those that vary
within choice sets (i.e., over k). In the first case, the cova-
riates might represent characteristics of respondents, condi-
tions under which respondents made their rankings, and
interactions thereof. Assume that the values of P covariates

are collected in a vector x
0
i ¼ 1; xi1; xi2; . . . ; xiPð Þ. Then it

might be reasonable to model the mean vector μ
0
i ¼

μi1;μi2; . . . ;μiKð Þ using the linear model

1 Available as supplementary material.
2 Thurstone referred to what we call here Uik as the realization of a
“discriminal process” to account for the randomness (from the per-
spective of the researcher) of the observed rank orders. A related
concept is that of “random utility maximization” in economics and
econometrics (Marschak, 1960; McFadden, 1974). See Böckenholt
(2006) for a review.
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μik ¼ b0k þ b1kxi1 þ b2kxi2 þ . . .þ bPkxiP: ð3Þ

A second case is one where all covariates vary within
choice sets. This could occur if characteristics of the choices
are used as covariates. Here, the covariates are collected into

a vector x
0
ik ¼ xi1k ; xi2k ; . . . ; xikPð Þ. A linear model for the

mean in this case would be

μik ¼ b1xi1k þ b2xi2k þ . . .þ bPxiPk : ð4Þ

Note that the differences between Eqs. 3 and 4 are whether
the parameters or covariates vary over choices. A third
situation is one where some covariates vary only between
choice sets, whereas others vary within choice sets. Suppose
that there are Pb covariates that vary only between choice
sets and Pw covariates that vary within choice sets. Here, a
mean structure can be created that combines Eqs. 3 and 4 so
that

μik ¼ bðbÞ0k þ bðbÞ1k x
ðbÞ
i1 þ bðbÞ2k x

ðbÞ
i2 þ . . .þ bðbÞPbk

xðbÞiPb

þbðwÞ1 xðwÞi1k þ bðwÞ2 xðwÞi2k þ . . .þ bðwÞPw
xðwÞiPwk

:
ð5Þ

Here, we use the superscripts (b) and (w) to distinguish
between covariates and parameters corresponding to
effects that vary between choice sets and within choice
sets, respectively. Clearly the models in Eqs. 3 and 4
can be thought of as special cases of Eq. 5. Perhaps
less obviously, with the use of dummy variables for
each choice, Eqs. 3 and 5 can be written as Equation 4. But
for simplicity and clarity, it is useful to consider special cases
separately, rather than considering only the general but more
complicated model. Similar discussions of parameterizations
for models for choice data are given by, for example,
Agresti (2002).

Parameter identification

The identification of Thurstonian models for ranking
data is complicated by the fact that the probabilities
defined in Eq. 2 depend only on the differences between
latent responses and that the scale of these differences is
arbitrary. On the basis of the mean structure in Eq. 3,
the mean of Zik ¼ Uik � Uik

0 is

μik � μik
0 ¼ b0k � b0k 0 þ ðb1k � b1k 0 Þxi1 þ ðb2k

� b2k 0 Þxi2 þ . . .þ ðbPk � bPk 0 ÞxiP: ð6Þ

Since the mean difference depends only on the difference
between βjk and βjk′, we can fix, say, βjK = 0 to resolve the
indeterminacy. However, it should be noted that the choice of
which βjk should be fixed and the value at which it should be
fixed are arbitrary. Thus, inferences are limited to the

differences among the βjk between choices (i.e., over k). The
mean of Zik based on the mean structure in Eq. 4 is

μik � μik
0 ¼ b1ðxi1k � xi1k 0 Þ þ b2ðxi2k � xi2k 0 Þ þ . . .

þ bPðxiPk � xiPk0 Þ: ð7Þ
This shows that an implicit assumption of this parame-
terization is that xijk varies over the choices; otherwise,
xijk � xijk 0 ¼ 0 and βj are not identified. Models with

covariates that do not vary within choice sets should use the
parameterization in Eq. 3 or 5. The identification constraints
necessary for the mean structure in Eq. 5 follow naturally from
those for Eqs. 3 and 4, discussed above.

The covariance matrix Σ is identified only up to the
covariance matrix of the differences,CΣC0. Our recommen-
dation is to limit inferences to this covariance matrix.
Although there are various constraints that can be imposed
onΣ so that it is identified (see Yu, 2000), these constraints,
while technically convenient, are not particularly meaning-
ful. The scale of the latent responses is not set, meaning that
the probability of a given rank order does not change if μi

and CΣC0 are multiplied by d and
ffiffiffi
d

p
, respectively, for any

d > 0. Our approach to resolving this indeterminacy is to fix
the generalized variance of CΣC0, which is defined as the
determinant v ¼ CΣC0j j .3 We find this approach useful
because it does not involve fixing individual arbitrary
parameters.

Estimation methods

Perhaps the most significant obstacle to the use of
Thurstonian ranking models in research is the computational
complexity of the probability defined in Eq. 2. The (K − 1)-
dimensional integral cannot be expressed in closed form. In
cases with relatively few observed rank orders, few choices,
and/or few distinct values of the covariate vector, numerical
methods can be used to directly approximate the integral
(e.g., Genz, 1992), but these methods can be computation-
ally or numerically problematic in other situations. Other
estimation approaches have been proposed to circumvent
the integration in various ways. Several researchers have
proposed limited-information methods using the ranking of
pairs or triples of choices (Brady, 1989; Chan & Bentler,
1998; Maydeu-Olivares, 1999). Others have proposed full-
information maximum likelihood methods using Monte
Carlo expectation-maximization algorithms (Poon & Lu,
2009; Xu, Poon, & Lee, 2008). Yao and Böckenholt
(1999) and Yu (2000) showed that Bayesian Thurstonian
ranking models are amenable to Markov chain Monte Carlo

3 The generalized variance can be interpreted as a measure of the
amount of “total variation” reflected by a covariance matrix. It takes
into account the variability and the covariability of the variables.
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(MCMC) algorithms by using data augmentation with Gibbs
sampling (Gelfand & Smith, 1990; Tanner & Wong, 1987).
Using this approach, the unobserved differences are speci-
fied as missing data in a complete-data likelihood function
to create the Bayesian probability model:

h θð Þ
YN
i ¼ 1

f zi;Cμi;CΣC0ð ÞI zi 2 Sið Þ; ð8Þ

where h(θ) denotes a prior distribution for all unknown
parameters (collected into the vector θ). Using MCMC, a
sample of realizations from the posterior distribution can be
simulated. Inferences concerning the marginal posterior dis-
tribution of θ, “integrating” over the unobserved responses
z0i ¼ Zi1; Zi2; . . . ; Zi;K � 1

� �
, can then be done using summary

statistics of the sample without reference to zi.
While these approaches have significantly lessened com-

putational obstacles to the use of Thurstonian ranking mod-
els, they require significant expertise in their use. Progress
has been made in making limited-information methods ac-
cessible using standard software packages for mean and
covariance structure models (Brown & Maydeu-Olivares,
2012; Maydeu-Olivares & Böckenholt, 2005). But full-
information likelihood-based methods have not yet been
incorporated into widely available user-friendly software
packages, and implementing them oneself requires signifi-
cant expertise in programming algorithms for simulation-
based inference. The main purpose of this article is to
address this obstacle by showing how Bayesian
Thurstonian ranking models can be implemented very easily
in the software package JAGS.

Implementing Bayesian Thurstonian Ranking Models
in JAGS

Just Another Gibbs Sampler, or JAGS (Plummer, 2003), is a
free program licensed under the GNU General Public
License. Compiled versions of JAGS are available for the
Macintosh OS X and Microsoft Windows operating systems
and several Linux distributions. The source code is also
available. JAGS is similar to WinBUGS (Lunn,
Spiegelhalter, Thomas, & Best, 2009) and OpenBUGS
(Thomas, O’Hara, Ligges, & Sturtz, 2006), where
“BUGS” stands for “Bayesian inference using Gibbs
sampling,” and also PROC MCMC in SAS/STAT (SAS
Institute Inc., 2008). With these programs, a user specifies
a Bayesian probability model, and the program builds an
MCMC algorithm to sample realizations from the posterior
distribution. These programs exploit the fact that such algo-
rithms can be broken down into a series of smaller steps for
models that can be represented as directed acyclic graphs,
which include many common statistical models. But the

user needs only to specify a model in a simple syntax. The
syntax used by JAGS, WinBUGS, and OpenBUGS is sim-
ilar to that used in R (R Development Core Team, 2012). All
this allows the user to focus on model specification and
inference, and not the development and programming of
the MCMC algorithm. For a good didactic treatment of
Bayesian modeling and analysis using JAGS, see
Kruschke (2011).

Here, we show how to use JAGS to conduct analyses
using Thurstonian ranking models. It is convenient to use
the data augmentation approach to specify the Bayesian
probability model given in Eq. 8, since the probability in
Eq. 2 is difficult to evaluate. Given Si, the distribution of zi is
censored, in the sense that the value of zi is unknown but is
known to be in Si so as to be consistent with the observed
ranking, yi. We refer to zi as being rank-censored. Without
conditioning on zi 2 Si , the observed ranking, the distribu-
tion of zi is multivariate normal, so that

zi � NK � 1 Cμi;CΣC0ð Þ: ð9Þ
The trick is to specify the rank-censoring mechanism. This
can be done by using some of the built-in programming
functions to define bounds for the “distribu-
tion” in JAGS. This functionality is intended for censored
response variables, such as in survival models, but it can
also be used to specify the censoring of Zi1; Zi2; . . . ; Zi;K � 1

implied by an observed ranking. Formally, the rank-
censoring implies that

Zik 2
Ziyi k þ 1ð Þ ;1

� �
; if yik ¼ 1;

Ziyi k þ 1ð Þ ; Ziyi k � 1ð Þ

� �
; if 1 < yik < K;

0; Ziyi k � 1ð Þ

� �
; if yik ¼ K;

8>>><
>>>:

ð10Þ

where yi(k) is the value of yik with rank k.4 For example, the
ranking yi1 = 2, yi2 = 3, yi3 = 1, and yi4 = 4 implies that Si is
the region such that 0 < Zi2 < Zi1 < Zi3 (recall that ZiK = 0 by
definition). This can be expressed as interval-censoring,
since the ranking is consistent with

Zi2 2 ð0; Zi1Þ; Zi1 2 ðZi2; Zi3Þ; and Zi3 2 ð0;1Þ: ð11Þ
Thus, each Zik is censored by one or two of the other latent
responses. While WinBUGS, OpenBUGS, and PROC
MCMC in SAS/STAT allow specification of censored vari-
ables, these packages cannot be used for Thurstonian rank-
ing models in general, since they limit the censoring to
scalars that are (conditionally) independent, which limits
the range of models that can be considered. JAGS allows

4 For simplicity of the exposition, we assume a complete ranking
where all choices have been ranked. This approach, however, can be
modified to accommodate partial rankings where only the first K′
choices are ranked where K′ < K.
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censoring of variables with an arbitrary joint distribution,
and so, among the packages that have been developed for
MCMC-based Bayesian inference, JAGS is particularly
suitable for Thurstonian ranking models.

Appendix 1 lists the JAGS model file for a Thurstonian
ranking model with a mean structure as defined in Eq. 3. In the
interest of space, Appendix 2 lists only changes to this file to
allow for the mean structures defined in refeq:mumodelw and
Eq. 5. Little or no modification of the file is necessary other-
wise. This file is quite general in the sense that it can be
applied to data with an arbitrary number of observations,
choices, and covariates. The files do not require changes on
the part of the user, since known variable values are passed to
the program as variables during a JAGS session. We will,
however, consider a few points that may be of interest to some
users. The rank-censored multivariate distribution of zi is
defined on lines 15–23. The censoring mechanism given in
Eq. 10 is defined on lines 17 and 18, which define the bounds
for each element of zi, line 19, which indicates how each
element of zi is censored on the basis of those bounds (the

“variable” is a dummy variable indicating that
the element is between the supplied bounds), and lines 22 and
23, which define the distribution of the elements of zi prior to
censoring (here, ZiK = 0 by definition). The prior distribution
of all βjk parameters is specified on line 27 as the relatively
noninformative distribution N(0,1000). The prior distribution
for the inverse of CΣC0 is specified to be a Wishart distribu-
tion on line 36, with inverse scale matrix R = (K – 1)CC′
(defined on line 10) and degrees of freedom K − 1,
which is also a relatively noninformative prior distribution.5

Of course, these prior distributions can be modified
by the user. The two quantities that a user will likely
be interested in are and

, which are defined as

d ð12Þ
and

d ð13Þ
respectively, where

d ¼ v

jC∑Cj
� �1 v=

; ð14Þ

to fix the generalized variance at v, which in our examples is
v = K.6 Recall that when βjk is interpreted, it is useful to
consider differences or contrasts between choices of the form

βjk – βjk′ since βjK = 0 to identify the model, but the choice of
value at which to fix βjk is arbitrary. In cases where all
covariates vary between choices as in Eq. 4, the identified
parameters for the mean structure are

d ð15Þ
and in cases where some covariates vary within choice sets and
some do not, the identified parameters for the mean structure are

d

dbb

To simplify notation, where necessary, we use an asterisk to
denote an identified parameter based on the generalized variance,

so that, for example,b*jk ¼ bjk
ffiffiffi
d

p
andb*j ¼ bj

ffiffiffi
d

p
. The rest of the

model file concerns only minor computations and variable def-
initions that will generally not vary over applications.

Again, we would like to emphasize that the JAGS model
files are quite general. In practice, one needs only to consider
whether covariates vary between choice sets, within choice
sets, or both to choose the appropriate model file. The only
other information that needs to be provided are the N by K
array of rankings, the design matrix or matrices, the number of
observations (N), the number of choices (K), and the number
of covariates (P, or Pb and Pw). A relatively efficient way to
run JAGS is by using the rjags package (Plummer, 2011) in R.
We show how to do this in the following examples. The JAGS
model files, data, and R scripts for replicating these analyses
are available as supplementary material.

Example: Relationship between ranking of compensation
plans and cultural orientation

This example concerns data collected as part of a study on
compensation preferences (Kuhn & Johnson, 2004). While
it is sometimes claimed that most people prefer to be paid on
the basis of individual performance, rather than team or
organizational performance, and that most strongly prefer
fixed pay (salaries) to variable pay, such as performance
bonuses and profit sharing (see Rynes, Colbert, & Brown,
2002), other research indicates more complex relationships
(Kuhn, 2009; Kuhn & Yockey, 2003). In particular, cross-
cultural variation in preferences for reward allocation has
been widely studied (see Fischer & Smith, 2003, for a
review), and U.S. students with more individualistic orien-
tations tend to report greater preferences for individual
rather than team-based raises (Cable & Judge, 1994). The
data analyzed here adopted a more nuanced approach to
individual differences in value orientations as predictors of
preferences among common pay schemes, using the
Triandis and Gelfand (1998) model that crosses individualism

5 The parameterization of the Wishart distribution is such that the prior

expected value of CΣC0ð Þ�1 is K � 1ð ÞR�1 ¼ CC0ð Þ�1.
6 The value at which the generalized variance is fixed is arbitrary. We
chose v = K only because this would be the value of the generalized
variance if Σ ¼ I.
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and collectivism with power distance to describe four cultural
value types: horizontal individualism (hi), horizontal collec-
tivism (hc), vertical individualism (vi), and vertical collectiv-
ism (vc). In addition to completing an inventory developed by
Triandis and Gelfand to assess these four value types, each
subject in a sample ofN = 116 also rankedK = 4 compensation
plans in order of preference: individual bonus, team bonus,
profit sharing, and seniority.

Let Yi1, Yi2, Yi3, and Yi4 denote the ranks of the individual
bonus, team bonus, profit sharing, and seniority compensa-
tion plants, respectively, and let hii, hci, vii, and vci denote
the standardized cultural orientation scores for the ith sub-
ject.7 To model the rankings of the compensation plans as a
function of these scores, we modeled the mean latent re-
sponse of the ith subject to the kth compensation plan as

μik ¼ b0k þ b1khii þ b2khci þ b3kvii þ b4kvci: ð16Þ

The parameters for the seniority-based compensation plan are
fixed at zero (i.e., b0;4 ¼ b1;4 ¼ b2;4 ¼ b3;4 ¼ b4;4 ¼ 0 ) to
identify the model. Because this constraint is arbitrary, to
interpret the parameters, it is useful to consider differences

in the mean response between compensation plans:

μik � μik
0 ¼ b0k � b0k 0 þ ðb1k � b1k 0 Þhii þ ðb2k � b2k0 Þhci

þ ðb3k � b3k0 Þvii þ ðb4k � b4k0 Þvci:

Thus, differences of parameters between plans capture the
effect of the covariates on the mean difference or relative
preference for the plans. For example, to compare individual
bonus (k = 1) to team bonus (k′ = 2), β1k – β1k′ indicates how
the mean preference for individual bonus changes relative to
that of the team bonus plan as the horizontal individualism
score (hii) changes. If b1k � b1k 0 > 0 , respondents tend to

prefer individual over team bonus plans more as hii increases,
whereas if b1k � b1k 0 < 0, respondents tend to prefer individ-

ual over team bonus plans less as hii increases. The value of
b1k � b1k 0 is the rate at which this relative preference increases
or decreases per unit change in hii.

To conduct our analysis, we simulated realizations from the
posterior distribution of the Bayesian Thurstonian ranking mod-
el given in Eq. 8 with the mean structure described above using
JAGS from R using rjags. The R commands are given below.

The data are an N = 116 by K = 4 array of rankings
( ), and the corresponding four vectors of N = 116
cultural orientation scores ( , , , and ). These are
stored in a list object called , along with the values ofN,
P, and K. Initial values for the latent differences are generated
by the function and stored in the array
(the function is provided in Appendix 3). The

command checks and compiles the model
defined in the file . The listing of this
file is given in Appendix 1. The command produces
an initial sample to “burn in” the algorithm for 5,000 itera-
tions. The command then simulates 10,000
rea l i za t ions f rom the pos te r io r d i s t r ibu t ion of

a nd , a s

defined in Eqs. 12 and 13, respectively, which are saved in
. Summaries (e.g., posterior means, quantiles and per-

centile ranks) of the posterior distribution of any parameter or
functions thereof, such as those shown in the figures discussed
below, can then be obtained by simply computing descriptive
statistics of with any general-purpose statistical pack-
age. The adequacy of the burn-in period, convergence of the
simulation, and the size of the simulated sample from the
posterior distribution can be assessed using utilities in the R
package coda (Plummer, Best, Cowles, & Vines, 2006).8

Figure 1 shows the posterior distributions of the identified
parameter differences, b*jk � b*

jk
0 . Each box plot depicts the

posterior distribution for the parameter difference for a given
pair of compensation plans, k and k′. The box plots are

7 Standardization is useful here not just for interpretation, but also
because centering can improve the performance of the MCMC
algorithm.

8 Our experience has been that MCMC algorithms for Thurstonian
ranking models using JAGS are very “well-behaved” in the sense that
excessively large burn-in periods or samples are not generally neces-
sary to obtain accurate results.
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constructed on the basis of the 2.5 %, 25 %, 50 %, 75 %, and
97.5 % percentiles. These percentiles are approximated by the

sample percentiles from the posterior distribution of simulated
realizations of b*jk � b*

jk
0 generated by JAGS. The box plots also
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show 95 % credibility intervals, since they cover the middle
95 % of the distribution. These can be used to assess which
differences are unambiguously positive or negative. The exam-
ple mentioned earlier of the effect of horizontal individualism on
the relative preference for individual versus team bonus is
shown by the left-most box plot in the panel in the
second row and the second column (and also the left-
most box plot in the panel in the second row and the
first column, which is the reverse of this difference).
This shows that on the basis of this analysis, we can be
relatively confident that increases in horizontal individ-
ualism result in a preference for individual bonus to
increase, relative to that of team bonus. As another
example, the apparent effect of vertical collectivism is
to increase preferences for team bonus, in comparison
with the individual bonus, as shown in the left-most
box plot in the last row and first and second columns.
Probabilities can also be used to assess the (un)certainty in
these differences. For example, the posterior probability that
the preference for individual versus team bonus increases with
horizontal individualism is P b1;1 � b1;2 > 0 yj� � � 0:99. The
posterior probability that preference for team bonus versus
individual bonus increases with vertical collectivism is
P b4;2 � b4;1 > 0 yj� � � 0:99 . These posterior probabilities
are approximated very easily by the proportion of observations
of the difference in the simulated sample that exceed zero.

In this example, the covariance structure CΣC0 is not of
interest. However, inferences concerning the covariance struc-
ture can be made using the posterior distribution of the ele-
ments of the covariance matrix. For illustration, Fig. 2 shows
box plots depicting the posterior distribution of each distinct
element of the covariance structure. It is important to remem-
ber that these are the posterior distributions of the (co)variances
of the differences Zik ¼ Uik � UiK , and not Uik, since, as was
discussed earlier, the covariance structure of the latter is not
identified.

Example: Ranking of job candidates after revelation
of résumé discrepancies

This second example concerns a data set from a study that
examined the effect of an experimental manipulation of apparent
deception on the rank ordering of hypothetical job applicants
(Kuhn, Johnson, & Miller, in press). Subjects were presented
with a job description and were asked to evaluate the résumés of
three candidates (with the initials MC, AS, and SW), and then
they were given background check reports for each candidate
before recording their final rank ordering. All participants eval-
uated the same three résumés, but they were randomly assigned
to one of six conditions for the background reports. In each
experimental condition, the background reports revealed that
one applicant had a serious discrepancy (not having completed
a claimed college degree), one applicant had a less serious
discrepancy (employment dates of a previous job somewhat
different than claimed), and the third applicant had no discrep-
ancies. As part of the study, N = 73 subjects were asked to rank
the K = 3 candidates with respect to their suitability for the job.

Let Yi1, Yi2, and Yi3 denote the ranks of the candidates
MC, AS, and SW, respectively. Since all covariates vary
within choice sets, we used the mean parameterization given
in Eq. 4. The model is

μik ¼ b1mcik þ b2asik þ b3datesik þ b4degreeik; ð17Þ
where mcik and asik are indicator variables for the candidates
MC and AS, respectively, and datesik and degreeik are indica-
tor variables for the dates and degree discrepancy con-
ditions, respectively. On the scale of the latent response
variables, this is effectively a three by three two-way
factorial model with main effects for the candidate (MC,
AS, or SW) and the presence and type of résumé
discrepancy (dates, degree, or none). Here, the question
is how the rankings depend on the candidate and the
discrepancy conditions.

1,1

2,1

2,2

3,1

3,2

3,3

1050

Covariance

k,
k’

Fig. 2 Box plots for the
posterior distributions of
VarðZik;Zik

0 Þd—that is, the
elements of the identified
covariance matrix CΣC0d
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The implementation of this model in JAGS is similar to that
in the previous example. The commands are given below.

The listing for the model file is
described in Appendix 2. With respect to the previous
example, the main difference here is the design matrix.
Because the covariates vary over choices as well, three
design matrices are assembled into an N by P by K array

. Each “slice” of the array along the third dimension is
a choice-specific design matrix, called , , and

. A design matrix must be specified for each choice,
but they are passed to JAGS as one array.

Figure 3a shows the posterior distributions ofb*i1 andb
*
i2, as

well asb*i1 � b*i2, which are the three pairwise contrasts among
the three candidates. The posterior distributions show a clear
mean preference for candidate MC over AS, SWover AS, and
MC over SW. The posterior probabilities that these mean
differences exceed zero are all at least .98. Figure 3b shows
the posterior distributions of b*i3, b

*
i4, and b

*
i3 � b*i4, which are

the three pairwise contrasts among the three discrepancy con-
ditions. There appears to be a negligible distinction in mean
preferences between the date discrepancy and the no-
discrepancy versions. However, a college degree discrepancy
clearly made the candidate less preferable, on average, in
comparison with those with a date discrepancy or no discrep-
ancy. The posterior probabilities that these mean differences
are in the stated direction are both greater than 0.99.

The model used here is only one possible model for
the observed data. Other Thurstonian models could be
specified (e.g., with different mean or covariance struc-
tures), or other models from outside the family of
Thurstonian models could be used. One general ap-
proach to assessing the fit of a Bayesian probability

model is to use posterior predictive checks (Gelman,
Meng, & Stern, 1996; Meng, 1994; Rubin, 1984).
These checks are based on comparing observed values
of a chosen statistic, computed from the data, with the
posterior predictive distribution of the statistic implied
by the model. This effectively compares the observed
value of the statistic to its predicted value, while taking
into account the uncertainty in the model parameters.
For ranking data, one simple and intuitive measure is
the count of each rank order. It is relatively simple to
generate a sample of observations from the posterior
predictive distribution using JAGS. This can be done
by adding the following lines between lines 23 and 24
in the model file in Appendix 1:

These lines simulate realizations of Zik ( ) from the
posterior predictive distribution and the ranking they
imply ( ). Then the frequency of the six possible
rankings in each simulated sample can be tabulated.
Figure 4 shows the observed and posterior predictive
distributions for the frequencies of the six possible rank-
ings of the three candidates.

A model with poor fit may reveal observed counts that are
outliers relative to the posterior predictive distribution of the
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counts.9 Note that in Fig. 4, none of the observed counts appear
to be particularly unusual, so this check does not suggest that
the specified model is a poor fit. If one or more of the observed
counts appeared to be extreme outliers, it would be appropriate
to consider modifying the model to produce a better fit or to
abandon the model if such modifications were unsuccessful. It
should be noted that other statistics can be specified for the
checks. Yao and Böckenholt (1999) suggested using counts of
partial rankings of all subsets of two, three, and/or four choices.
This approach is particularly useful when the observed counts
of all possible rankings are too sparse, such as when the
number of choices is large relative to the sample size.

Discussion

Our goal with this article is to show that Bayesian Thurstonian
ranking models can be very easily implemented using the free
software package JAGS. To this end, we have provided
general-purpose and easy-to-use JAGS model files, as well
as detailed information and examples as to their use.10 It is our
hope that our contribution will make Thurstone’s classic mod-
el for ranking data significantly more accessible for research.

The Thurstonian ranking model will hopefully become more
widely available in statistical packages, following the increasing
trend in available packages for multinomial probit models (a

special case of Thurstonian ranking models in which only the
first or top-ranked choice is given). MCMC algorithms for
Bayesian multinomial probit models can be extended to model
a full ranking of choices (Imai & van Dyk, 2005). But even with
increasing availability of packages implementing the Thurstonian
ranking model, we believe that there are benefits to the approach
we described here using JAGS. In particular, the “open” nature of
the JAGS model file allows a user to easily extend the model in
ways that may not be feasible with other software. For example,
the user could specify a mean structure that is nonlinear in the
covariates or a specialized covariance structure. The JAGSmodel
files we have provided may be used to develop other models as
special cases of or extensions to a Thurstonian ranking model.

The focus here has been on modeling themean structure of
the latent responses. This is in contrast to others who have
focused on modeling the covariance structure (e.g., Maydeu-
Olivares, 1999; Maydeu-Olivares & Böckenholt, 2005).We
have focused on only modeling the mean structure for simplic-
ity, but we would argue that this is an important case for
applied work, since in many applications, the effects of ob-
served covariates as reflected in themean structure are likely to
be of interest. Furthermore, in cases where the covariance
structure can be thought of as a consequence of additional
latent variables, such as factor-analytic models, the covariance
structure can be modeled alternatively by specifying these
latent variables as unobserved covariates in the mean structure.

The data sets featured in the examples were from laboratory
studies andmight be considered relatively small in terms of both
sample size and number of choices. We have found, however,
that JAGS scales very well with bothN andK, so larger data sets
are not a significant computational burden. At most, we have
found that the increase in computer time is approximately linear
with the number of observations and choices.11

9 Posterior predictive checks evaluate the fit of a given model, although
they could also be used to compare the relative fit of two or more
models. Other approaches have been proposed to evaluate the relative
fit of two or more Bayesian models on the basis of likelihood, such as
the deviance information criterion (DIC; Spiegelhalter, Best, & Carlin,
1998). The use of DIC here is problematic for two reasons. One is that
the although JAGS can compute DIC for some models, it cannot do so
when using truncated latent response variables. The other is that the
literature on DIC is still somewhat inconclusive on its effectiveness,
particularly for more complicated models (Plummer, 2007).
10 Available as supplementary material.
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Appendix 1

The following listing is the JAGS model file for a
Thurstonian ranking model using the mean structure in

Eq. 3, where covariates vary between, but not within,
choice sets. It is named in the
examples.

0.94 0.11 0.41

0.87 0.3 0.82

1,2,3 1,3,2 2,1,3

2,3,1 3,1,2 3,2,1

0.00
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Fig. 4 Observed and posterior
predictive distributions of
ranking frequencies for each of
the six possible rankings. The
observed ranking frequencies
are indicated by a point and
vertical line. The number in the
top-right corner of each panel is
the proportion of observations
from the posterior predictive
distribution at or below the
observed count
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Appendix 2

The listing below shows the changes to the listing in
Appendix 1 to create a JAGS model file for the mean

structure in Eq. 4, where all covariates vary within
choice sets. This file is named .
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The changes are simply to replace lines 20–40 in the listing
in Appendix 1 with lines 20–33 above. For a model with
some covariates that vary strictly between choice sets and

some that vary within choice sets, the listing in Appendix 1
can be changed by replacing lines 20–40 with the lines
given below.

The full file is called . Note that to
implement this model, one must specify design matrices for
both sets of covariates (i.e., between and within choice sets), as
well as the number of covariates of each type. As an example,
consider the second example where themean structure could be
written alternatively using the mean structure in Eq. 5 as

μik ¼ bðbÞ0k þ bðwÞ1 datesik þ bðwÞ2 degreeik: ð18Þ

Here, there are two covariates that vary within choice sets and
no covariates that vary only between choice sets. The “inter-

cept” parameters bðbÞ0k are equivalent to the parameters for
the main effect for candidate. Using the model file

, the data would be defined as follows:
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Appendix 3

The following R function creates initial values for Zi1; Zi2;
. . . ; Zi;K � 1 to be passed to JAGS.
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