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Abstract Recurrence quantification analysis (RQA) has
been successfully used for describing dynamic systems that
are too complex to be characterized adequately by standard
methods in time series analysis. More recently, RQA has
been used for analyzing the coordination of gaze patterns
between cooperating individuals. Here, we extend RQA to
the characterization of fixation sequences, and we show that
the global and local temporal characteristics of fixation
sequences can be captured by a small number of RQA
measures that have a clear interpretation in this context.
We applied RQA to the analysis of a study in which observ-
ers looked at different scenes under natural or gaze-
contingent viewing conditions, and we found large differ-
ences in the RQA measures between the viewing conditions,
indicating that RQA is a powerful new tool for the analysis
of the temporal patterns of eye movement behavior.

Keywords Eye movements . Recurrence quantification
analysis . Time series analysis

Eye movements are unique behavioral responses that have
not only a reaction time and an accuracy, but also a location
(where one moves), an amplitude (how far one moves), and
a duration (how long one fixates a position). Researchers
looking to examine the effects of stimulus or condition
manipulations typically use a combination of these meas-
ures (for review, see Henderson, 2003). Eye movements
unfold over time; hence, one can also examine the interre-
lationship between sequences of eye movements. In his
seminal work, Yarbus (1967) noticed that observers dis-
played similar scan patterns in successive viewings of
Repin’s painting The Unexpected Visitor and concluded that
“observers differ in the way they think and, therefore, differ
also to some extent in the way they look at things” (p. 192).
A brief inspection of these scan patterns reveals that they are
complex and nonrandom, and that they contain sequences of
repeated fixations. Noton and Stark (1971) noticed that
observers tend to show similar scan patterns during encod-
ing and later recognition of images. According to their
“scanpath theory,” the sequence of fixations during the first
viewing of a stimulus is stored in memory as a spatial
model, and stimulus recognition is facilitated through
observers following the same scan path during repeated
exposures to the same image. These early observations were
made informally by visual inspection, but later research has
aimed at quantifying the similarity of scan paths for the
same observer at different time points or when solving
different tasks, or between different participants.

One successful method for comparing scan paths is based
on the string-edit distance (Bunke, 1992; Levenshtein, 1966;
Wagner & Fischer, 1974). In this method, fixation positions
on a grid are encoded with letters, and scan paths, as sequen-
ces of fixated grid positions, can then be encoded as strings.
Strings are compared by applying a number of transforma-
tions (e.g., insertions, deletions, and substitutions) to trans-
form one string into the other. The number of transformation
steps can thus be used as a measure of the distance between
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the scan paths. Scan path comparisons based on string-edit
distance have been used successfully by many researchers—
for example, Foulsham and Underwood (2008), Underwood,
Foulsham, and Humphrey (2009), Foulsham and Kingstone
(in press), and Harding and Bloj (2010). A second common
scan path comparison is a linear distance algorithm that com-
pares fixation sequences on the basis of the average distances
between fixations (Henderson, Brockmole, Castelhano, &
Mack, 2007; Mannan, Ruddock, & Wooding, 1995).

While these scan path comparison methods have been
successfully used by many researchers, they are necessarily
constrained to the comparison of scan paths for a limited
number of situations, such as scan path comparisons for the
same stimulus (e.g., Brandt & Stark, 1997; Noton & Stark,
1971; Shepherd, Steckenfinger, Hasson, & Ghasanfar,
2010), for closely related stimuli or stimulus sequences
(e.g., Foulsham & Kingstone, in press; Underwood et al.,
2009), or for stimuli with identical layouts (e.g., Cristino,
Mathôt, Theeuwes, & Gilchrist, 2010). In other words, these
methods are constrained to comparisons in which stimulus
similarity is high (if the stimuli are not identical). In addi-
tion, it is often difficult to dissociate whether scan path
similarity is due to the properties of the image (Harding &
Bloj, 2010; Itti & Koch, 2001), the task or background
knowledge (Underwood et al., 2009), or idiosyncratic eye
movement behavior (Tatler & Vincent, 2008) because com-
parisons of this nature usually do not give values that would
be expected to be above chance, and the string-edit similarity
score typically has very low variability (e.g., Harding & Bloj,
2010; Underwood et al., 2009). To fully explore scan patterns
within and across individuals, we need a more general tech-
nique for quantifying the temporal structure of eye move-
ments. Recurrence quantification analysis (RQA), introduced
here, permits not only the characterization of the scan path of a
single observer to a single stimulus, but associated measures
allow generalizations over observers and stimuli. RQA pro-
vides a general set of measures for characterizing different
temporal structures of fixation sequences.

Recurrence quantification analysis

Recurrence analysis has been used successfully as a tool for
describing complex dynamic systems (e.g., climatological
data, Marwan & Kurths, 2002; electrocardiograms, Webber
& Zbilut, 2005; or postural fluctuations, Pellecchia &
Shockley, 2005; Riley & Clark, 2003) that are inadequately
characterized by standard methods in time series analysis
(e.g., Box, Jenkins, & Reinsel, 2008). It has also been used
for describing the interplay between dynamic systems in
cross-recurrence analysis (e.g., the postural synchronization
of two persons: Shockley, 2005; Shockley, Santana &
Fowler, 2003). Recurrence analysis can be generalized to

categorical data, and recently, Richardson, Dale, and col-
leagues have used categorical cross-recurrence analysis for
analyzing the coordination of gaze patterns between indi-
viduals (e.g., Cherubini, Nüssli, & Dillenbourg, 2010; Dale,
Kirkham, & Richardson, 2011a; Dale, Warlaumont, &
Richardson, 2011b; Richardson & Dale, 2005; Richardson,
Dale, & Tomlinson, 2009; Shockley, Richardson, & Dale,
2009). For example, Richardson and Dale quantified the
coordination between a speaker and a listener’s eye move-
ments as they viewed actors on a screen. Those researchers
demonstrated that the locations of a listener’s eye move-
ments tend to follow the speaker’s by approximately 2 s. In
addition, they found that the more closely a listener’s eye
movements matched the speaker’s, the better the listener’s
overall comprehension of the speaker’s comments. This
form of cross-recurrence analysis can provide an overall mea-
sure of similarity across two eye movement sequences (like
the string-edit method), as well as the quantification of the
time lag that most closely matches the two sequences. While
this method is useful for quantifying similarities between two
time series, the general recurrence method includes many
more temporal measures that may be useful in quantifying
the temporal structure of a single time series—namely, the eye
movements of a single observer.

In the present article, we introduce a form of categorical
recurrence analysis for characterizing the gaze patterns of a
single observer. We show that it is a powerful tool for
analyzing fixation sequences, for discovering repeated scan
paths, and for determining image positions that are fixated
repeatedly or are part of recurring scan paths. In the follow-
ing sections, we first introduce the fundamentals of RQA,
with specific consideration of fixation sequences. Second,
we describe and interpret the main measures associated with
RQA. Third, we present an eyetracking experiment
designed to reveal meaningful and interpretable differences
in these measures. Finally, we discuss potential applications
and extensions of RQA as a general tool for the temporal
analysis of eye movement behavior.

Recurrence

Consider a fixation sequence fi, i = 1, . . . ,N, with fi = < xi, yi>.
Two fixations are considered to be recurrent if they are close
together. “Closeness” can be defined in several ways, as
discussed below, but in general, one can define recurrence rij
as

rij ¼ 1; d f i; f j
� �

� ρ

0; otherwise

(
; ð1Þ

where d is some distance metric (e.g., Euclidean distance) and
ρ is a given radius (i.e., two fixations are considered recurrent
if they are within a certain distance of each other).
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Recurrence plot

Recurrence can be represented in a recurrence plot, which
plots recurrences of a fixation sequence with itself over all
possible time lags. If fixations i and j are recurrent
(i.e., if rij = 1), then a dot is plotted at position i, j (see
Fig. 1b). All fixations are recurrent with themselves [since
d(fi, fi) = 0]; hence, all elements on the major diagonal—
the line of incidence—are recurring. Furthermore, since
distance metrics are symmetric [i.e., d(fi, fj) = d(fj, fi)],
recurrence plots are also symmetric. A recurrence plot is

generated for each sequence of fixations (e.g., each trial or
image viewed). Note that time is not represented directly
on the recurrence plot; rather, the fixation sequence is
preserved. Later, we will describe an extension of RQA
in which fixation duration is taken into account.

Distance metrics

One can define several distance metrics for the analysis of
fixations, and we will discuss each one in turn. In the fixed-
grid method, which is similar to the string-edit method

Fig. 1 (A) Example fixation
map overlaid by a grid with
element size 64 pixels. In the
fixed-grid method, fixations are
considered recurrent if they fall
within the same grid element.
For example, Fixations 11 and
13 are recurrent, but Fixations
10 and 13 are not (see high-
lighted region). (B) Recurrence
plot corresponding to the fixa-
tion sequence in Fig. 1a, gener-
ated using the fixed-grid
method. Notice that points are
drawn at the intersections of
Fixations 11 and 13
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employed for scan path analysis (Cristino et al., 2010;
Foulsham & Kingstone, in press; Underwood et al., 2009),
a grid of locations is defined over the image, and two
fixations fi and fj are considered recurrent if they land in
the same grid element. This is illustrated in Fig. 1a, which
shows a fixation sequence plotted on a 1,024 × 768 image
with a grid element size of 64 × 64 pixels. For example,
Fixations 11 and 13 are recurrent, and consequently points
are drawn on the recurrence plot at positions <11, 13> and
<13, 11>. One disadvantage of the fixed-grid method is that
the grid is defined independently of the image content and
may be too coarse in regions of interest, while being too fine
in other areas. As a remedy, one can define regions of
interest (e.g., eyes, nose, lips, and cheek) and define which
regions are considered adjacent to each other. Both methods,
however, suffer from the problem that fixations may not be
defined as recurring even if they are close to each other—
namely, if they happen to land in adjacent grid elements
(see, e.g., Fixations 10 and 13 in Fig. 1a).

A solution to this problem is the fixation-distance
method (see Fig. 2). Instead of relying on a fixed grid
superimposed on the stimuli, this method defines two
fixations fi and fj as recurring if they are close to each
other [i.e., if the Euclidean distance d(fi, fj) ≤ ρ for a
fixed radius ρ]. This is illustrated in Fig. 3, where the
distances between Fixations 4 and 34–36 are all less than
ρ = 64 pixels. The fixation-distance method will be used
in the remainder of the article.

Recurrence quantification measures

While the recurrence diagram provides a useful visual
representation of the recurrence patterns for a fixation

sequence, it must be complemented by an RQA for
comparison across different fixation sequences (i.e., for
different trials, participants, and experimental conditions).
Here, we introduce a subset of RQA measures, those that
are particularly useful for the analysis of fixations (see
Webber & Zbilut, 2005, and Marwan, Wessel,
Meyerfeldt, Schirdewan, & Kurths, 2002, for complete
lists of RQA measures). With each mathematical descrip-
tion, we provide an interpretation of the measure in terms
of eye movement behavior. Given the symmetry of the
recurrence diagram, the quantitative measures are usually
extracted from the upper triangle of the recurrence dia-
gram, excluding the line of incidence, which does not
add any additional information (recall that the line of
incidence indicates that each fixation is recurrent with
itself). First, we give some useful definitions: Let R be
the sum of recurrences in the upper triangle of the

recurrence diagram—that is, R ¼ PN � 1
i ¼ 1

PN
j ¼ i þ 1 rij. Let

DL be the set of diagonal lines, HL the set of horizontal
lines, and VL the set of vertical lines—all in the upper
triangle, and all with a length of at least L—and let |·|
denote cardinality.

The recurrence measure is defined as

REC ¼ 100
2R

N N � 1ð Þ : ð2Þ

It represents, for a sequence of N fixations, the percent-
age of recurrent fixations (i.e., how often observers refixate
previously fixated image positions). As fixations are plotted
sequentially, the larger the distance between a recurrent
point and the main diagonal, the larger is the time interval
(in number of fixations) between the original fixation and
the refixation.

Fig. 2 Example fixation plot.
Fixations are numbered
sequentially, and a circle with
radius 64 pixels is drawn
around fixations that recur
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The determinism measure is defined as

DET ¼ 100
DLj j
R

: ð3Þ

It measures the proportion of recurrent points forming
diagonal lines and represents repeating gaze patterns in the
recurrence diagram. In the example in Fig. 4, the scan path of

Fixations 19–20 is repeated later in Fixations 43–44, produc-
ing a diagonal line in the recurrence diagram. This may
represent two areas of the scene where one fixation is more
likely to follow another. For example, when a person looks at
one eye, he or she may be more likely to look at the other in a
repeated pattern between the two eyes. This repeated pattern
would create instances of determinism. In the present work,

Fig. 3 Example recurrence plot
(panel B) corresponding to the
fixation sequence from Fig. 2,
along with the corresponding
fixation detail of Fixations 4,
34, 35, and 36 (panel A).
Fixations 34, 35, and 36 fall
within 64 pixels of Fixation 4.
These fixations are said to
recur, and points are drawn on
the plot at the intersection of
Fixations 4, 34, 35, and 36
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the minimum line length of diagonal line elements was set to
L = 2. The length of the diagonal line element reflects the
number of fixations making up the repeated scan path, and the
distance from the diagonal reflects the time (in numbers of
fixations) since the scan path was first followed.

The laminarity measure is defined as

LAM ¼ 100
HLj j þ VLj j

2R
: ð4Þ

Referring to the top half of the recurrence plot, verti-
cal lines represent areas that were fixated first in a single
fixation and then rescanned in detail over consecutive
fixations at a later time (e.g., several fixations later),
and horizontal lines represent areas that were first
scanned in detail and then refixated briefly later in time
(see Fig. 5). (This definition of laminarity differs slightly
from that of Webber & Zbilut, 2005.) In the example in
Fig. 5, vertical laminarity is shown for Fixations 34, 35,
and 36, and horizontal laminarity is shown for Fixations

12, 13, and 14. Again, we set the minimum line lengths
of vertical and horizontal lines to L = 2. Finally, we have
found that recurrence diagrams sometimes contain recur-
rence clusters (with horizontal and vertical lines),

Fig. 4 Illustration of determinism in a recurrence plot (panel A), along
with the detail of a deterministic fixation sequence (panel B). Fixations
19 and 20 are fixated, and later in the trial this sequence is refixated in
the same order, as Fixations 43 and 44 (see the blue highlighted region
on panel A)

Fig. 5 Recurrence plot illustrating laminarity and associated details of
the fixations involved (panels B and C). The refixation at the location
of Fixation 4 in Fixations 34, 35, and 36 (panel B) creates a vertical
line on the recurrence plot (panel A, highlighted in purple). This
indicates that the general location of Fixation 4 was examined in detail
later on in the trial. In contrast, a region is fixated in detail at Fixations
12, 13, and 14. Later in the trial (at Fixation 24), the same location is
revisited briefly (panel C). This creates a horizontal line on the RQA
plot (panel A, highlighted in blue)
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indicating detailed scanning of an area and of nearby
locations. Laminarity in general indicates that specific
areas of a scene are repeatedly fixated. For example, an
observer may return to an interesting area of the scene to
scan it in more detail. This would create a vertical line
on the recurrence plot.

The center of recurrence mass (corm) is defined as the
distance of the center of gravity of recurrent points from the

line of incidence, normalized such that the maximum pos-
sible value is 100:

CORM ¼ 100

PN � 1
i ¼ 1

PN
j ¼ i þ 1 j� ið Þrij

N � 1ð ÞR : ð5Þ

This measure indicates approximately where in time most
of the recurrent points are situated. Small corm values
indicate that refixations tend to occur close in time, whereas
large corm values indicate that refixations tend to occur
widely separated in time (i.e., in terms of number of fixa-
tions; see Fig. 6). For example, if an observer sequentially
scans three particular areas of a scene in detail and never
returns to those areas later in the trial, most of the recurrent
points would fall close to the line of incidence. This would
be represented by a small corm value.

The corm measure is related to the trend measure intro-
duced by Marwan et al. (2002), which is computed as the
slope of the least-squares regression of the number of recur-
rences on each diagonal as a function of the distance from
the central diagonal. We have found that, in particular for
small values of N, the sample variance of the trend measure
tends to be large, because the addition or removal of a single
recurrence away from the main diagonal can strongly affect
the value of the trend measure. The corm measure was
found to be more resilient to such variations.

In summary, the recurrence and corm measures capture the
global temporal structure of fixation sequences. They measure
howmany times given scene areas are refixated (recurrence) and
whether these refixations occur close or far apart in the trial
sequence (corm). In contrast, determinism and laminarity are
measures of the finer temporal structure. Specifically, they

Fig. 6 Illustration of the center of recurrence mass (corm). Corm is
low when recurrence occurs close together in the trial sequence, near to
the line of incidence (a), and corm is high when recurrence occurs
farther apart in the trial sequence (b)

Fig. 7 The median and 95 %
confidence interval of percent
recurrence, as a function of
radius

848 Behav Res (2013) 45:842–856



indicate sequences of fixations that are repeated (determinism)
and points at which detailed inspections of an image area are
occurring (laminarity). These measures can then be compared
across different types of images, experimental contexts, and
participants.

Radius selection

As indicated earlier, two fixations fi and fj are considered
recurrent if d(fi, fj) ≤ ρ, with the radius ρ being a free param-
eter. The number of recurrences is related directly to the
radius. As the radius ρ approaches zero, (off-diagonal) recur-
rences approach zero, and as ρ approaches the image size,
recurrences approach 100 % (see Fig. 7). The dependence of
recurrence on radius leads to the obvious question of how an
appropriate radius for recurrence analysis should be selected.

Webber and Zbilut (2005) suggested several guidelines
for selecting the proper radius, including the selection of a
radius that falls within the linear scaling region of a log–log
plot of Fig. 7, or ensuring that the percentage of recurrences
remains low (e.g., in the range 0.1 %–2.0 %; Webber &
Zbilut, 2005, p. 56). In the experiment reported below,
applying this method would require that the radius size
change across conditions, eliminating the use of recurrence
as a measure for comparing the effects of different experimen-
tal conditions. In the case of eye movements, one can apply
more content-oriented criteria. For example, fixations can be
considered as recurring if their foveal (or parafoveal) areas
overlap, using a radius size of 1–2 deg of visual angle. In the
study reported below, the radius was selected to match the size
of the gaze-contingent window, which subtended approxi-
mately 5 × 5 deg of visual angle. Such content-oriented
criteria make it easier to interpret the meanings of recurrences.
Alternatively, it may be possible to derive an optimal radius

from the spatial frequency content of the stimulus images, but
we have not done so in the present work.

Significance testing (bootstrapping)

The RQA measures do not necessarily have the same prob-
ability distributions (see Fig. 8), and the distributions may
even differ between experimental conditions. In addition,
one limitation of the RQA measures is that their values are
largely dependent on the radius chosen, and for this reason,
the measured values are somewhat arbitrary. Thus, it is
critical to compare the RQA measures against a random
fixation model. For this reason, we relied on bootstrapping
methods (Efron & Tibshirani, 1993; Foster & Bischof,
1991) for comparing the RQA measures against chance.

In the experiment reported below, we computed, sepa-
rately for each of the experimental conditions, spatial fixa-
tion distributions. These were smoothed using a Gaussian
filter with σ = 20 pixels; that is, we computed standard
fixation heat maps. We then created random fixation
sequences by taking sequences of random samples from
these smoothed fixation distributions. This was repeated
1,000 times for each experimental trial, and the distribution
of the RQA measures for the recurrence, determinism, lam-
inarity, and corm of the empirical values was compared
against those obtained for these random fixation sequences.

Experiment

For the present study, we utilized a data set, part of which we
have published independently (Risko, Anderson, Lanthier, &
Kingstone, 2012). In that study, participants performed an
unrestricted scene-viewing task. Another group of participants,

Fig. 8 Histograms of the
recurrence (panel A),
determinism (panel B),
laminarity (panel C), and corm
(panel D) measures
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included in the present experiment only, viewed the same
scenes through a gaze-contingent window, a technique where-
by the fixated visual field is constrained and updated rapidly in
response to the eye movements of participants. The general
purpose behind the use of gaze-contingent displays is to limit
the availability of the surrounding scene context in order to
examine its role in normal eye movement planning (Bertera &
Rayner, 2000). The gaze-contingent window has a profound
impact on eye movement behavior (Foulsham &Kingstone, in
press; Foulsham, Teszka, & Kingstone, 2011; Loschky &
McConkie, 2002; van Diepen & d’Ydewalle, 2003):
Participants typically make smaller and more systematic eye
movements when viewing a scene through a gaze-contingent
display (Foulsham & Kingstone, in press; Loschky &
McConkie, 2002), and the size and shape of the window has
an impact on both the amplitude and direction of saccades
(Foulsham et al., 2011). Given the impact of the gaze-
contingent display on eye movement behavior, we employed
it here to assess the utility of the RQAmeasures in quantifying
differences in the temporal dynamics of normal and gaze-
contingent viewing. In addition, we compared eye movements
across 18 different scenes of buildings, interiors, and land-
scapes (six of each type; examples of each scene type are
shown in Figs. 1, 2, and 10) in order to assess whether the
RQA measures can dissociate differences in eye movement
behavior resulting from differences in image content.

Method

Participants A group of 108 undergraduates from the
University of British Columbia were paid $5 each or re-
ceived course credit to participate.

Stimuli and apparatus We used 18 different scenes of exte-
riors, interiors, and landscapes, six of each type. The scenes
spanned 38 × 29.5 cm, corresponding to a visual angle of
approximately 42 × 33 deg at the viewing distance of 50 cm.
The image resolution was 1,028 × 768 pixels. An SR
Research EyeLink II head-mounted eyetracking system re-
cording at 500 Hz was used to display the stimuli and to
record eye movements. Calibration was performed at the
start of the experiment using a nine-point calibration pattern,
and drift correction was performed before each trial. The
online saccade detector of the eyetracker was set to detect
saccades with an amplitude of at least 0.5º, using an acceler-
ation threshold of 9500º/s2 and a velocity threshold of 30º/s.
Both the scenes and the eye positions were also presented to
the experimenter on a second monitor, so that real-time feed-
back could be given about system accuracy.

Procedure The participants were seated approximately
50 cm away from the computer monitor. The scenes were
then presented in random order, and each remained on the

screen for 15 s. The participants were in two experimental
conditions, “natural viewing” and “gaze-contingent view-
ing.” Those in the “natural viewing” condition were told that
they would be presented with a picture and that they were to
look at it “naturally.” Those in the “gaze-contingent” con-
dition viewed the scenes through a square gaze-contingent
window of size 128 × 128 pixels, corresponding to a visual
angle of approximately 5 × 5 deg.

Results

Data handling Three of the participants (two from natural
and one from gaze-contingent viewing) were removed from
the analysis on the basis of an outlier removal procedure in
which participants with an average recurrence value 2.5 stan-
dard deviations above or below their group condition mean
were removed. One participant was randomly removed from
the gaze-contingent condition in order to preserve a balanced
design. Thus, there were 52 participants in the natural viewing
and 52 in the gaze-contingent viewing condition. The fixation
sequences of two trials contained no recurrences and were
excluded from the RQA analysis. This was done for simplic-
ity, as the absence of recurrence renders determinism, lami-
narity, and corm values undefined. In general, however, trials
with no recurrence can indeed be informative in cases in
which recurrence is expected, and it may be interesting to
compare trials in which fixation sequences contain no recur-
rences to those that do. In our case, however, there were too
few trials without recurrence to allow for such an analysis, and
thus we chose to remove those trials.

The gaze patterns were analyzed using the RQA meas-
ures of recurrence, determinism, laminarity, and corm, sep-
arately in four 2 × 3 × 6 mixed analyses of variance, with
Viewing Condition (natural or gaze-contingent) as a
between-subjects factor and Image Type (exteriors, interi-
ors, or landscapes) and Repetitions (image identity) as
within-subjects factors. Huynh–Feldt corrections were ap-
plied whenever appropriate, and partial η2s are reported for
effect size. Bootstrap results for comparison against random
fixation sequences were based on 1,000 bootstrap replica-
tions. (The RQA analysis was implemented in MATLAB,
following Webber & Zbilut, 2005, and some of the software
packages mentioned therein. The code is available on re-
quest from the authors.)

Recurrence These results are shown in Fig. 9a. We found a
significant effect of viewing condition, F(1, 102) = 95.2,
p < .001, η2p = .346, with recurrence for natural viewing
(M = 6.84, SD = 0.14) being higher than recurrence for gaze-
contingent viewing (M = 3.18, SD = 0.06). A significant
effect of image type also emerged, F(2, 204) = 3.98, p = .02,
η2p = .008, with recurrence for exteriors (M = 4.70, SD = 0.16)
being lower than recurrence for interiors (M = 5.18, SD = 0.13),
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t(1248) = 2.37, p = .02, and for landscapes (M = 5.15,
SD = 0.17), t(1246) = 1.96, p = .05. Finally, there was as an
interaction between viewing condition and image type, F(2,
204) = 5.74, p < .001, η2p = .011, with recurrence being larger
for interiors than for the other image types during gaze-
contingent viewing, Scheffé F(2, 933) = 18.95, p < .001, but
not during normal viewing, Scheffé F(2, 931) = 2.44, p = .09.
Bootstrapping showed that recurrence was significantly higher
for both natural and gaze-contingent viewing than for the
corresponding random fixation sequences [for the respective
random sequences, M = 2.35, paired t(934) = 31.4, p < .001,
and M = 2.36, paired t(936) = 13.1, p < .001].

Determinism The determinism results are shown in Fig. 9b.
We found a significant effect of viewing condition,
F(1, 102) = 20.06, p < .001, η2p = .114, with determinism
for natural viewing (M = 35.06, SD = 0.59) being lower than
determinism for gaze-contingent viewing (M = 44.83,
SD = 0.65). We also found a significant effect of image
type, F(2, 204) = 50.66, p < .001, η2p = .076, with deter-
minism for interiors (M = 45.45, SD = 0.76) being higher
than determinism for exteriors (M = 37.36, SD = 0.76),
t(1248) = 7.52, p < .001, and for landscapes (M = 37.03, SD =
0.76), t(1246) = 7.77, p < .001. Bootstrapping showed that
determinism was significantly higher for both natural and
gaze-contingent viewing than for the corresponding random
fixation sequences [respectively, M = 4.25, paired t(934) =
52.56, p < .001, andM = 4.32, paired t(936) = 62.72, p < .001].

Laminarity The laminarity results are shown in Fig. 9c. A
significant effect of viewing condition emerged, F(1, 102) =
34.3, p < .001, η2p = .193, with laminarity for natural viewing
(M = 32.45, SD = 0.56) being higher than laminarity for gaze-
contingent viewing (M = 21.69, SD = 0.43). A significant effect
of image type also appeared, F(2, 204) = 53.45, p < .001, η2p =

.076, with laminarity for interiors (M = 31.44, SD = 0.63) being
higher than laminarity for exteriors (M = 24.34, SD = 0.62), t
(1248) = 8.05, p < .001, and for landscapes (M = 25.42, SD =
0.67), t(1246) = 6.58, p < .001. Bootstrapping showed that
laminarity was significantly higher for both natural and gaze-
contingent viewing than for the corresponding random fixation
sequences [respectively, M = 2.47, paired t(934) = 53.52,
p < .001, and M = 2.60, paired t(936) = 44.58, p < .001].

Center of recurrence mass The corm results are shown in
Fig. 9d. We found a significant effect of viewing condition,
F(1, 52) = 39.13, p < .001, η2p = .090, with corm for natural
viewing (M = 26.54, SD = 0.29) being higher than corm for
gaze-contingent viewing (M = 21.64, SD = 0.33). We also
found a significant effect of image type, F(2, 204) = 15.24,
p < .001, η2p = .024, with corm for interiors (M = 22.38,
SD = 0.36) being lower than corm for exteriors (M = 25.00,
SD = 0.39), t(1248) = 4.93, p < .001, and for landscapes
(M = 24.89, SD = 0.40), t(1246) = 4.62, p < .001. Finally, a
significant interaction between viewing condition and image
type was apparent, F(2, 204) = 4.66, p = .011, η2p = .007,
due to the fact that, as compared to the other conditions,
corm was particularly low for gaze-contingent viewing of
interior scenes, Scheffé F(1, 1864) = 109.42, p < .001.
Bootstrapping showed that corm was significantly higher
for both natural and gaze-contingent viewing than for the
corresponding random fixation sequences [respectively,
M = 14.01, paired t(934) = 39.56, p < .001, and
M = 15.79, paired t(936) = 17.34, p < .001].

Discussion

Recurrence quantification analysis revealed significant dif-
ferences in global temporal fixation patterns, in particular
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between natural viewing and gaze-contingent viewing.
Recurrence was higher in the natural viewing condition than
in the gaze-contingent viewing condition: Participants were
more likely to refixate previously inspected scene areas
when the surrounding scene context was visible. This high-
lights the importance of extrafoveal information for guiding
gaze, in particular for reinspecting previously fixated scene
positions. Recurrence in both the natural viewing and gaze-
contingent conditions was significantly higher than would
be expected on the basis of random fixation sequences. The
results also revealed a significant but small (η2p = .008)
effect of image type, with recurrence being somewhat
smaller for exterior scenes than for the other scene types.

Regarding the global temporal pattern of refixations, corm
was higher for natural than for gaze-contingent viewing, indi-
cating that refixations occurred farther apart in the fixation
sequence for natural viewing than for gaze-contingent viewing.
This could reflect a general tendency in gaze-contingent view-
ing to saccade within the bounds of the window. Such fixations
would constitute a recurrence in the present work, given that
the size of the radius chosen was approximately equal to the
size of the gaze-contingent window. Many of the refixations in
the gaze-contingent condition occurred closer to the line of
incidence (or closer together in the fixation sequence), resulting
in a smaller corm value. In addition, the corm measures for
natural and gaze-contingent viewing were significantly differ-
ent from those for random fixation sequences, indicating that,
in general, there was a modestly large gap between fixations
and refixations.

RQA also revealed significant differences in the local
temporal gaze patterns. Determinism was significantly higher
for gaze-contingent than for natural viewing, and both were
significantly higher than for random fixation sequences. In
other words, participants were likely to follow certain scan
paths repeatedly in viewing scenes, and they were more likely
to do so in gaze-contingent viewing than in natural viewing.
This suggests that, in the absence of peripheral scene infor-
mation in the gaze-contingent condition, observers scanned
scenes in a more stereotypical pattern. The same pattern of
results was found for the laminarity measure, which indexes
the co-occurrence of scan paths and single fixations of the
same scene area at different points in time. Thus, fixation
patterns in gaze-contingent viewing contain more clusters of
recurrent fixations (higher laminarity and determinism), indi-
cating that participants were inspecting particular scene
regions in greater detail under these conditions. For gaze-
contingent viewing, higher determinism and laminarity may
indicate that participants were repeatedly fixating within the
bounds of the gaze-contingent window and are less likely to
make a large-amplitude saccade to a new area of the scene.
This finding is consistent with previous accounts of gaze-
contingent viewing patterns (Foulsham et al., 2011; Loschky
& McConkie, 2002; van Diepen & d’Ydewalle, 2003).

Determinism and laminarity were also higher for interior
scenes than for exteriors or landscapes. In addition, corm
was lower for interior scenes than for exteriors or landscapes
(particularly for gaze-contingent viewing), indicating that
observers were fixating repeatedly in particular areas of
the scene. These results could reflect properties of the im-
age, such as the layout of interior scenes. For instance, the
interior scenes in this work contained more objects, often
clustered in particular areas (e.g., a desk). Clustered objects
may encourage the clustering of eye movements, both spa-
tially and temporally. This result is in line with work show-
ing that patterns of eye movement behavior can change
depending on the image content of a scene (e.g., Foulsham
& Kingstone, 2010; Foulsham, Kingstone, & Underwood,
2008). Although Foulsham and colleagues focused mainly
on the direction of saccades, it is possible that temporal
aspects of eye movement behavior may also change depend-
ing on image content. Further work will need to be con-
ducted to explore this possibility. For example, it may be
possible to compare RQA measures against measures of the
amount of clutter in a scene (e.g., Rosenholtz, Li, &
Nakano, 2007). From the results reported here, we predict
that the amount of clutter and the amount of determinism
and laminarity would be positively correlated.

These observations also open an interesting prospect in
assessing models of gaze generation (e.g., Boccignone &
Ferraro, in press; Itti & Koch, 2001) and gaze imitation
(e.g., Hoffman, Grimes, Shon, & Rao, 2006). These models
have typically been tested by comparing predicted with
empirical fixation distributions or by comparing the congru-
ence of predicted and empirical gaze sequences. In contrast,
RQA provides several new measures that capture general
characteristics of gaze sequences, and thus may provide new
constraints on these models. For example, a model may be
consistent with empirical observations on the recurrence
measure, but not the determinism or corm measures.

Taken together, these RQA results reveal consistent tem-
poral gaze patterns that were not only very different for natural
and gaze-contingent viewing, but also for different types of
scenes. The results also show that RQA is a powerful tool for
capturing important temporal characteristics of gaze patterns.

Spatial mapping of RQA

RQA is suitable for the characterization of temporal gaze
patterns, independent of the spatial properties of particular
scenes. While this is undoubtedly one of the advantages of
RQA over other analysis methods, it is nonetheless interest-
ing to map RQA measures back on to spatial coordinates.
Given that RQA is performed separately for each participant
and stimulus, this can be achieved easily. Figure 10a shows
a standard fixation heat map for one of the exterior images
summed over all participants, excluding first fixations,
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which tend to be located near the center of the screen.
Figure 10b shows the recurrence heat map for the same
image. It was obtained by projecting all recurrences on each
recurrence diagram back into the image space. It thus rep-
resents a map of all locations that participants fixated more
than once (refixated). Notice that the “heat” is much more
tightly arranged across the scene and that some areas are

highlighted on the recurrence heat map that are not promi-
nent on the normal fixation heat map. The recurrence heat
map may be useful for those interested only in the places
where participants refixated. Image statistics (or other meas-
ures) can then be compared for these particular areas of the
scene. It would be interesting to know whether areas that are
refixated differ in image or semantic properties from areas
that are fixated more in general. Another possibility is that
areas that are consistently refixated are in some way more
task-relevant than others, as has been found in work examin-
ing eye movements during everyday tasks (e.g., Land, Mennie
&Rusted, 1999). Finally, Fig. 10c shows the determinism heat
map for the same image. It was obtained by projecting all
recurrence points that were part of diagonal lines (see Fig. 4)
back into image space. It thus represents a map of all locations
that were part of repeated scan paths. These back-projections
could also be done for the other RQA measures.

Casual examination of Figs. 10a and b shows that refixated
areas do not appear to be particularly special in terms of image
content or semantic information, relative to the rest of the
scene. It is possible that the refixated areas in Fig. 10b are
convenient locations from which to examine a broader area of
a scene. In addition, inspection of the recurrence heat maps of
our interior scenes showed that refixations generally appear to
occur in areas containing multiple objects or particularly clut-
tered areas of the scene. Moreover, systematic differences in
heat maps appear across normal and gaze-contingent viewing
conditions. In the normal condition, refixations are clustered
in a few (two to four) locations across the scene, while in
the gaze-contingent maps, refixations appear to be more
widely distributed across the scene. Further investigation
into the properties of these modified fixation maps will be
the subject of upcoming work.

Fixation duration

Fixation duration can be an important indicator of process-
ing during fixation (Henderson & Pierce, 2008; Holmqvist
et al., 2011, pp. 377ff). On these grounds, the comparison of
scan paths using string-edit distance has been criticized
because it takes fixation locations, but not fixation dura-
tions, into account. To overcome this potential deficiency,
Cristino et al. (2010) proposed the “ScanMatch” method for
comparing fixation sequences, which takes location, order,
and time into account. On the same grounds, one might
criticize RQA, but this concern would be unwarranted, as
RQA can be generalized to take fixation durations into
account. Given a fixation sequence fi, i = 1, . . . , N, and
the associated vector of fixation durations ti, i = 1, . . . , N,
one can redefine recurrence rij

t as

rtij ¼ ti þ tj; d f i; f j
� � � ρ

0; otherwise

�
; ð6Þ

Fig. 10 (A) Traditional fixation heat map. (B) Recurrence heat map,
with only those fixations that were recurrent represented in the image.
(C) Determinism heat map, with only deterministic fixations repre-
sented in the image

Behav Res (2013) 45:842–856 853



with the distance metric d and the radius ρ. With the mod-
ified recurrence rtij, the RQA measures have to be renormal-

ized, as is described in the Appendix.

Cross-recurrence analysis

Although RQA can be useful for comparing the temporal
structures of eye movements across experimental contexts,
of particular interest is the direct comparison of fixation
sequences. This comparison is typically done using the
string-edit method (e.g., Underwood et al., 2009). RQA can
be extended in order to directly compare fixation sequences in
a method known as cross-recurrence quantification analysis
(CRQA; e.g., Richardson & Dale, 2005). Richardson and
Dale used a method very similar to the fixed-grid method
described above; however, the adaptive method can be used
for CRQA by simply comparing one sequence of fixations to
another (instead of a sequence to itself, as in RQA). Given two
fixation sequences fi and gi, i = 1, . . . , N, we define the cross-
recurrence

rij ¼ 1; d f i; g j

� �
� ρ

0; otherwise

(
: ð7Þ

In this case, recurrence occurs when two fixations from
different sequences land within a given radius of each other.
These fixation sequences could be from the same participant
viewing two different images, or from different participants
viewing the same image (or from any other combination of
fixation sequences). The CRQA method is discussed in
greater detail in Richardson and Dale (2005). The only
addition to that method here is to use the radius to indicate
when fixations are recurrent, rather than a fixed grid.

Independence of RQA measures

We have selected only a small number of RQA measures
from the large number of measures found in the literature
(e.g., Marwan & Kurths, 2002; Webber & Zbilut, 2005)—
namely, those that have a straightforward and simple inter-
pretation in terms of fixation sequences. Other measures
may, however, capture further characteristics of fixation
sequences. It should also be pointed out that the selected
measures (recurrence, determinism, laminarity, and corm)
are not necessarily independent. For example, we found a
significant negative correlation between determinism and
corm. This is due to the fact that one cannot have a high
corm value (recurrences that tend to occur widely separated
in time, as illustrated in the upper left corner of the recur-
rence matrix in Fig. 6) and, at the same time, a large overall
number of recurrences. One potentially fruitful line of in-
vestigation will be examine the viewing factors, such as

stimulus type, task, and range of view, that do and do not
modulate the correlations between measures.

Potential applications and future directions

RQA provides a rich source of information about eye move-
ment behavior. The potential applications of this method are
many and varied. RQA can be used as a method for exam-
ining the characteristics of inhibition of return (Klein &
MacInnes, 1999; Smith & Henderson, 2011). For example,
some current theories of inhibition of return in visual search
predict that few refixations would occur near the line of
incidence, as one proposed mechanism of inhibition of
return is to prevent the visual system from repeatedly sam-
pling nearby locations (e.g., Klein & MacInnes, 1999). This
has been corroborated by work demonstrating that when
given a choice between inspecting a new or old location of
a search display, participants prefer to inspect the new
location, particularly when the old location was recently
visited (McCarley, Wang, Kramer, Irwin, & Peterson,
2003). The center of recurrence mass may be a particularly
useful measure for this work. In addition, one can measure
the decay of inhibition of return by counting how many
fixations, on average, occur before a refixation.

RQA may also be useful for theories of visual attention
concerned with the idiosyncratic characteristics of eye
movement behavior—for example, those that posit the in-
terplay between periods of local scanning, followed by
large-scale relocations to new areas of a scene (Pannasch,
Helmert, Roth, Herbold, & Walter, 2008; Tatler & Vincent,
2008). Laminarity and determinism are good candidates for
revealing these patterns; however, laminar and deterministic
recurrences can occur on their own (a few fixations repeated in
isolation) or in large clusters (many fixations in and around the
same area of a scene). To dissociate these, RQA plots can be
quantified using cluster analysis (e.g., Schaeffer, 2007; von
Luxburg, 2007). A cluster in a recurrence plot indicates that
fixations are occurring close together in time and space.
Clusters away from the line of incidence indicate areas of
the scene that have been reinspected in detail. Cluster analysis
can be used to quantify the number of clusters in a given
sequence, the average size of the clusters (i.e., how many
fixations are involved in a given instance), and the distance
of the cluster from the line of incidence.

The RQA measures allow for generalizations of the tempo-
ral structure of eyemovements across observers and stimuli. As
such, they can be used to indexmany aspects of the relationship
between visual attention, scene understanding, and cognition.
For example, multiple deterministic points across people in a
social scene may reflect the observers’ understanding of the
particular social situation portrayed (cf. Birmingham, Bischof,
& Kingstone, 2008a, b). Percentages of recurrence in a scene
may reflect the exploratory behavior of a particular observer
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(cf. Risko et al., 2012) or impoverished memory of particular
scene features (Hollingworth & Henderson, 2002). RQA is a
new approach to understanding the temporal aspects of eye
movement behavior. Used in conjunction with traditional
measures, it can provide a more thorough understanding of
how people explore their environment.

Conclusions

We have demonstrated that recurrence quantification analy-
sis can be used as a robust and general analytic tool to
quantify the temporal dynamics of fixation sequences. We
showed that several recurrence quantification measures can
readily be applied to fixation behavior to quantify both fine
and global aspects of the temporal structure of eye move-
ments. Furthermore, we demonstrated the use of this analy-
sis in the comparison of eye movement behavior between
natural and gaze-contingent viewing. We believe that RQA
is a promising tool for future research into the temporal
characteristics of eye movement behavior and that it can
reveal interesting dependencies between temporal and spa-
tial influences on visual attention.
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Appendix

Given a fixation sequence fi, i = 1, . . . , N, and the associated
vector of fixation durations ti, i = 1, . . . , N, one can redefine
recurrence Rij

t as

rtij ¼ ti þ tj; d f i; f j
� � � ρ

0; otherwise

�
ðA1Þ

with the distance metric d and the radius ρ. With the mod-
ified recurrence Rij

t, the RQA measures have to be renor-

malized. Let Rt ¼ PN � 1
i ¼ 1

PN
j ¼ i þ 1 r

t
ij; and T ¼ PN

i ¼ 1 ti .

Then the revised definitions for REC, DET, LAM, and
CORM are as follows.

RECt ¼ 100
Rt

N � 1ð ÞT ðA2Þ

DETt ¼ 100

Rt

X
i; jð Þ2DL

rtij ðA3Þ

LAMt ¼ 100

2Rt

X
i; jð Þ2HL

rtij þ
X
i; jð Þ2VL

rtij

0
@

1
A ðA4Þ

CORMt ¼ 100

PN � 1
i ¼ 1

PN
j ¼ i þ 1 j� ið Þrtij

N � 1ð Þ2T ðA5Þ
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