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Abstract Several procedures that use summary data to test
hypotheses about Pearson correlations and ordinary least
squares regression coefficients have been described in var-
ious books and articles. To our knowledge, however, no
single resource describes all of the most common tests.
Furthermore, many of these tests have not yet been imple-
mented in popular statistical software packages such as
SPSS and SAS. In this article, we describe all of the most
common tests and provide SPSS and SAS programs to
perform them. When they are applicable, our code also
computes 100 × (1 − α)% confidence intervals
corresponding to the tests. For testing hypotheses about
independent regression coefficients, we demonstrate one
method that uses summary data and another that uses raw
data (i.e., Potthoff analysis). When the raw data are avail-
able, the latter method is preferred, because use of summary
data entails some loss of precision due to rounding.

Keywords Correlation . Regression . Ordinary least
squares . SPSS . SAS

Introduction

Several textbooks and articles describe methods for testing
hypotheses concerning Pearson correlations and coefficients
from ordinary least squares (OLS) regression models (e.g.,
Howell, 2013; Kenny, 1987; Potthoff, 1966; Raghunathan,
Rosenthal, & Rubin, 1996; Steiger, 1980). However, we are
not aware of any single resource that describes all of the
most common procedures. Furthermore, many of the meth-
ods described in those various resources have not yet been
implemented in standard statistical software packages such
as SPSS and SAS. In some cases, data analysts may find
stand-alone programs that perform the desired tests.1 How-
ever, such programs can be relatively difficult to use (e.g., if
they are old 16-bit DOS programs, they may not run on
modern computers), or they may not provide all of the
desired output (e.g., one program we found reports a z-test
result, but not the corresponding p-value). It would be much
more convenient if one could carry out all of these tests
using one’s usual statistical software. With that in mind, the
twofold purpose of this article is to provide a single resource
that briefly reviews the most common methods for testing
hypotheses about Pearson correlations and OLS regression
coefficients and to provide SPSS and SAS code that per-
forms the calculations. When they are applicable, our code
also computes 100 × (1 − α)% confidence intervals (CIs)
corresponding to the statistical tests.

We describe the various methods in this order: methods
concerning (1) single parameters (e.g., testing the signifi-
cance of a correlation), (2) two independent parameters
(e.g., the difference between two independent correlations),
(3) k independent parameters, where k ≥ 2 (e.g., testing the

1 For example, James Steiger’s Multicorr program (http://www.statpower.
net/Software.html) can be used to perform “single sample comparisons of
correlations”; and Calvin Garbin’s FZT program (http://psych.unl.edu/
psycrs/statpage/comp.html) can be used to compute “a variety of r and R2

comparison tests.”
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equivalence of three correlations), and (4) two nonindepend-
ent parameters (e.g., the difference between two nonindepend-
ent correlations). In all cases, SPSS and SAS programs to
carry out the computations are provided as part of the online
supplementary material, along with the output they generate.
(The data files, code, and output are also available on the
authors’ Web sites: https://sites.google.com/a/lakeheadu.ca/
bweaver/Home/statistics/spss/my-spss-page/weaver_
wuensch and http://core.ecu.edu/psyc/wuenschk/W&W/
W&W-SAS.htm.) Users can select the desired confidence
level for CIs (when they are applicable) by setting the value
of a variable called alpha (e.g., set alpha = .05 to obtain a 95%
CI, alpha = .01 to obtain a 99 % CI, etc.).

To illustrate the various methods, we use the lung func-
tion data set from Afifi, Clark, and May’s (2003) book
Computer-Aided Multivariate Analysis. We chose this data
set for two reasons: (1) It contains variables suitable for
demonstrating all of the methods we discuss, and (2) readers
can easily download it in several formats (SAS, Stata, SPSS,
Statistica, S-Plus, and ASCII) from the UCLA Academic
Technology Services Web site (http://www.ats.ucla.edu/stat/
spss/examples/cama4/default.htm). The data are from the
UCLA study of chronic obstructive pulmonary disease.
Afifi and coauthors described this file as “a subset including
[nonsmoking] families with both a mother and a father, and
one, two, or three children between the ages of 7 and 17 who
answered the questionnaire and took the lung function tests
at the first time period.” The variables we use are area of the
state (four levels) plus height (in inches) and weight (in
pounds) for both fathers (variable names FHEIGHT and
FWEIGHT) and mothers (MHEIGHTandMWEIGHT). Note
that the initial F and M for the height and weight variables
stand for father’s and mother’s, not female and male.

Input data for most of the code we provide consist of
summary statistics that we computed using the lung
function data. For example, we computed within each
of the four different regions a correlation matrix for
father’s height, father’s weight, mother’s height, and
mother’s weight (variables FHEIGHT, FWEIGHT,
MHEIGHT, and MWEIGHT). Table 1 shows those four
correlation matrices. We also carried out some regres-
sion analyses, the results of which are displayed later in
the article.

Methods for single parameters

Testing the null hypothesis that ρ = a specified value

The correlation matrices shown in Table 1 include a p-value
for each correlation. If those same correlations appeared in a

report or article that did not include p-values, one could
work out the p-values by computing a t-test on each of the
Pearson r values, as shown in Eq. 1. Under the null hypoth-
esis that ρ = 0, the test statistic t is asymptotically distributed
as t with df = n − 2:2

t ¼ r
ffiffiffiffiffiffiffiffiffiffiffi
n� 2

pffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p : ð1Þ

When a null hypothesis that specifies a nonzero value
for ρ is tested, things are more complicated. As Howell
(2013) put it, “When ρ ≠ 0, the sampling distribution of
r is not approximately normal (it becomes more and
more skewed as ρ⇒±1.00), and its standard error is
not easily estimated” (p. 284). Fortunately, there is a
straightforward solution to this problem: One can apply
Fisher’s (1921) r-to-z transformation to both r and ρ.
Equation 2 shows the application of Fisher’s transformation to
r, and Eq. 3 shows the inverse transformation from r′ to r.3

Fisher showed that the sampling distribution of r′ is approx-
imately normal with variance equal to 1/(n – 3), where n is the
sample size. Taking the square root of that variance yields the
standard error of r′ (see Eq. 4):

r0 ¼ 0:5ð Þloge
1þ r

1� r

����
���� ð2Þ

r ¼ er
0 � e�r0

er0 þ e�r0 ¼
e2r

0 � 1

e2r0 þ 1
ð3Þ

sr0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1

n� 3

r
: ð4Þ

The final step is to compute a z-test (see Eq. 5). The p-
value for this z-test is obtained in the usual fashion (i.e.,
using the standard normal distribution). This z-test can be
used even when the null hypothesis states that ρ = 0 (and our

2 The symbol ρ is the Greek letter rho. It is used to represent the
population correlation.
3 Because the sampling distribution of the transformed value is ap-
proximately normal, Fisher (1921) called it z. Following Howell (2013)
and many other authors, we call it r′ instead, in order to avoid confu-
sion with the z-test value to be reported shortly. (Some authors use zr
rather than z, for the same reason.)
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code computes it), but in that case, the t-test shown in Eq. 1
is preferred.

Equation 6 shows how the standard error of r′ (Eq. 4) can
be used to compute a CI for ρ′. The zα/2in Eq. 6 represents the
critical value of z for a two-tailed test with α set to the desired
level. For a 95 % CI, for example, α = .05, and zα/2 = 1.96.
The inverse of the r-to-z transformation (Eq. 3) is used to
convert the lower and upper confidence limits for ρ′ into
confidence limits for ρ:

z ¼ r0 � ρ0

sr0
¼ r0 � ρ0ffiffiffiffiffiffiffi

1
n�3

q ð5Þ

100 1� að Þ% CI for ρ0 ¼ r0 � za=2sr0 : ð6Þ

Whereas the choice of test statistic (t vs. z) depends
on whether the null hypothesis specifies that ρ = 0
versus some nonzero value, the computation of confi-
dence limits for ρ does not. The method shown in Eq. 6
is used to compute a CI regardless of the value of ρ
under the null hypothesis.

Our code for illustrating these methods requires the fol-
lowing input variables: r (the observed Pearson r), rho (the
population correlation according to H0), n (the sample size),
alpha (the value used to determine the confidence level for
the CI on rho), and Note, a text field in which a brief

Table 1 Pearson correlations computed using the height and weight variables for fathers and mothers in the lung function data file

Area of state Height of father in
inches

Weight of father in
pounds

Height of mother
in inches

Weight of mother
in pounds

Burbank (n = 24) Height of father in inches Pearson 1 .628** .164 −.189

Sig. (2-tailed) .001 .443 .376

Weight of father in pounds Pearson .628** 1 −.145 −.201

Sig. (2-tailed) .001 .499 .346

Height of mother in inches Pearson .164 −.145 1 .624**

Sig. (2-tailed) .443 .499 .001

Weight of mother in pounds Pearson −.189 −.201 .624** 1

Sig. (2-tailed) .376 .346 .001

Lancaster (n = 49) Height of father in inches Pearson 1 .418** .198 .065

Sig. (2-tailed) .003 .172 .660

Weight of father in pounds Pearson .418** 1 −.181 .299*

Sig. (2-tailed) .003 .214 .037

Height of mother in inches Pearson .198 −.181 1 .040

Sig. (2-tailed) .172 .214 .786

Weight of mother in pounds Pearson .065 .299* .040 1

Sig. (2-tailed) .660 .037 .786

Long Beach (n = 19) Height of father in inches Pearson 1 .438 .412 .114

Sig. (2-tailed) .061 .079 .641

Weight of father in pounds Pearson .438 1 −.032 .230

Sig. (2-tailed) .061 .898 .343

Height of mother in inches Pearson .412 −.032 1 .487*

Sig. (2-tailed) .079 .898 .035

Weight of mother in pounds Pearson .114 .230 .487* 1

Sig. (2-tailed) .641 .343 .035

Glendora (n = 58) Height of father in inches Pearson 1 .589** .366** .071

Sig. (2-tailed) .000 .005 .596

Weight of father in pounds Pearson .589** 1 .330* .209

Sig. (2-tailed) .000 .011 .115

Height of mother in inches Pearson .366** .330* 1 .364**

Sig. (2-tailed) .005 .011 .005

Weight of mother in pounds Pearson .071 .209 .364** 1

Sig. (2-tailed) .596 .115 .005
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description of the data can be entered. The SPSS code for
this situation has the following DATA LIST command4:

The correlations entered in variable r are the correlations
between father’s height and father’s weight for the four areas
of the state (see Table 1). The first four rows of input set rho =
0, whereas the last eight rows set rho = .650.5 Therefore, our
code uses the t-test shown in Eq. 1 for only the first four rows,

whereas the z-test in Eq. 5 is computed for every row. Note too
that the value of alpha is .05 in some rows of input data and
.01 in others. Our code computes 95 % CIs where alpha = .05
and 99 % CIs where alpha = .01.6 All CIs are computed via
Eq. 6. The output from our SPSS code is listed below.

The t-test results in the first four rows of output
indicate that the correlation between height and weight
(for fathers) is statistically significant in all four areas

except area 3, Long Beach. Note too that the p-values
for those correlations (.001, .003, .060, and .000) agree
almost perfectly with the p-values reported in Table 1.
The only differences (e.g., .060 vs. .061 for Long
Beach) are due to loss of precision resulting from our
use of summary data.5 We don’t know the value of the actual population correlation between

height and weight of the fathers.We chose .650 because it was convenient
for producing a mix of significant and nonsignificant z-tests. 6 In general, our code computes CIs with confidence level = 100(1 − α)%.

4 Users who wish to analyze their own data can do so by replacing the data
lines between BEGINDATA and ENDDATA and then running the syntax.
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In the final eight rows of output, where ρ = .650
under the null hypothesis, only the z-test is computed.
Note that we included the input data for each area
twice, first with alpha = .05 and again with alpha =
.01. Thus, the first line of output for each area displays
a 95 % CI, and the second a 99 % CI. The z-test result
is unaffected by the value of alpha, which is why the
same test result appears twice for each area. Only in
area 1 (Lancaster) does the observed correlation differ
significantly from .650, z = −2.238, p = .025.

Testing the hypothesis that b = a specified value

The data we use as an illustration in this section come from
four simple linear regression models (one for each area)
with father’s weight regressed on father’s height. In order
to make the intercepts more meaningful, we first centered
height on 60 in. (5 ft).7 Parameter estimates for the four
models are shown in Table 2.

In his discussion of this topic, Howell (2013) began by
showing that the standard error of b (sb) can be computed
from the standard error of Y given X (sY|X), the standard
deviation of the X scores (sX), and the sample size (n). Given

that sY jX ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSerror

p
, or the root mean square error

(RMSE), sb can be computed as shown in Eq. 7:

sb ¼ RMSE

sX
ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p ¼ RMSEffiffiffiffiffiffiffiffi
SSX

p : ð7Þ

However, it is extremely difficult to imagine circumstan-
ces under which one would have the RMSE from the re-
gression model (plus the sample size and the standard
deviation of X), but not the standard error of b. Therefore,
we do not provide code to compute the standard error of b as
shown in Eq. 7. Instead, we simply take the standard error of
b from the regression output and plug it into Eq. 8, which
shows a t-test for the null hypothesis that b*, the population
parameter corresponding to b, is equal to a specified value.8

The m in the subscript is the number of predictor variables,
not including the constant, and n – m − 1 equals the degrees
of freedom for the t-test.9 The standard error of b is also
used to compute a 100(1 − α)% CI for b* (Eq. 9):

tn�m�1 ¼ b� b�

sb
ð8Þ

100 1� að Þ% CI for b* ¼ b� ta=2sb: ð9Þ

7 In other words, we used a transformed height variable equal to height
minus 60 in. If we had used the original height variable, the constant
from our model would have given the fitted value of weight when
height = 0, which would be nonsensical. With height centered on
60 in., the constant gives the fitted value of weight when height =
60 in.

Table 2 Parameter estimates for four simple linear regression models with father’s height regressed on father’s weight; father’s height was centered
on 60 in. (5 ft)

Coefficientsa

Area Unstandardized
coefficients

Standardized
coefficients

t Sig. 95.0 % confidence interval for B

B Std. error Beta Lower bound Upper bound

Burbank (n = 24) (Constant) 142.011 10.664 13.317 .000 119.896 164.127

Height of father (centered on
60 in)

4.179 1.105 .628 3.781 .001 1.887 6.472

Lancaster (n = 49) (Constant) 148.053 11.142 13.288 .000 125.638 170.468

Height of father (centered on
60 in)

3.709 1.177 .418 3.151 .003 1.341 6.078

Long Beach
(n = 19)

(Constant) 144.038 18.250 7.893 .000 105.535 182.541

Height of father (centered on
60 in)

3.749 1.866 .438 2.009 .061 −.187 7.685

Glendora (n = 58) (Constant) 130.445 10.228 12.753 .000 109.955 150.935

Height of father (centered on
60 in)

5.689 1.044 .589 5.451 .000 3.598 7.780

a Dependent Variable: weight of father in pounds

8 We follow Howell (2013) in using b* rather than β to represent the
parameter corresponding to b. We do this to avoid “confusion with the
standardized regression coefficient,” which is typically represented by
β.
9 Although some authors use p to represent the number of predictors in
a regression model, we use m in this context in order to avoid confu-
sion with the p-value.
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As we saw earlier, when testing hypotheses about ρ, we
can use the t-test shown in Eq. 1 when the null hypothesis
states that ρ = 0; but when the null hypothesis states that ρ =
some nonzero value, we must apply Fisher’s r-to-z transfor-
mation to both r and ρ and then use the z-test shown in
Eq. 5. For regression coefficients, on the other hand, the t-

test shown in Eq. 8 can be used regardless of the value of b*.
In other words, when b* = 0, we will get the usual t-test
shown in the table of regression coefficients. To confirm
this, we plugged the displayed values of the intercept and
slope into our implementation of Eq. 8 and set b* = 0. Doing
so produced the following output:

Apart from some rounding error, the results of these t-
tests match those shown in Table 2. Note that alpha = .05 on
every line, so all CIs are 95 % CIs.

Now suppose that we have reason to believe that the
true population values for the intercept and slope are

145 and 3.5, respectively, and we wish to compare our
sample values with those parameters. Plugging the ob-
served intercepts and slopes into our SPSS implementa-
tion of Eq. 8 with b* = 145 for intercepts and b* = 3.5
for slopes, we get the output listed below:

Looking first at the results for the intercepts, we would
fail to reject the null hypothesis (that b* = 145) in all four
cases, because all p-values are greater than .05. For the
slopes, on the other hand, we would reject the null hypoth-
esis (that b* = 3.5) for Glendora, t(56) = 2.097, p = .041, but
not for any of the other three areas (where all t-ratios are <1
and all p-values are ≥ .545).

Methods for two independent parameters

We now shift our focus to tests and CIs for the difference
between two independent parameters.

Testing the difference between two independent correlations

When the correlation between two variables is com-
puted in two independent samples, one may wish to
test the null hypothesis that the two population corre-
lations are the same (H0: ρ1 = ρ2). To test this null
hypothesis, we use a simple extension of the method
for testing the null that ρ = a specified value. As in
that case, we must apply Fisher’s r-to-z transformation
to convert the two sample correlations into r′ values.
As is shown in Eq. 4, the standard error of an r′ value
is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1= n� 3ð Þp

. Squaring that expression (i.e., removing
the square root sign) gives the variance of the
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sampling distribution of r′. The variance of the differ-
ence between two independent r′ values is the sum of
their variances.10 Taking the square root of that sum
of variances yields the standard error of the difference
between two independent r′ values (see Eq. 10). That
standard error is used as the denominator in a z-test
(see Eq. 11):

sr01�r0
2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n1 � 3
þ 1

n2 � 3

r
ð10Þ

z ¼ r
0
1 � r

0
2

sr0
1
�r0

2

¼ r
0
1
� r

0
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
n1�3 þ 1

n2�3

q : ð11Þ

We illustrate these computations using several indepen-
dent pairs of correlations from Table 1.11 In each case, we
compare the values for Lancaster and Glendora, the two
areas with the largest sample sizes. Plugging the needed
values into our implementation of Eq. 11 gave us the output
shown below:

In the Note column, the initial F and H stand for
father’s and mother’s respectively, and HT and WT stand
for height and weight. Thus, the r(FHT,FWT) on the
first line indicates that the correlation between father’s
height and father’s weight has been computed for both
Lancaster and Glendora and the two correlations have
been compared. The rp1 and rp2 columns give the r′
values corresponding to r1 and r2. (Standard errors for
rp1 and rp2 are also computed but are not listed here,
in order to keep the output listing to a manageable
width.) The rpdiff and sediff columns show the numer-
ator and denominator of Eq. 11. The null hypothesis
(that ρ1 – ρ2 = 0) can be rejected only for the test
comparing the correlations between father’s weight and
mother’s height, z = −2.632, p = .008. For all other
comparisons, the p-values are greater than .05.

Our code also computes 100 × (1 − α)% CIs for ρ1,
ρ2, and ρ1 − ρ2. CIs for ρ1 and ρ2 are obtained by

computing CIs for ρ′1 and ρ′2 (see Eq. 6) and then
back-transforming them (Eq. 3). The CI for ρ1 − ρ2 is
computed using Zou’s (2007) modified asymptotic (MA)
method.12 The first listing below shows CIs for ρ1 and
ρ2, and the second listing shows the CI for ρ1 − ρ2. (We
included Zou’s example in order to verify that our code
for his method was correct.) Alpha = .05 in all cases, so
they are all 95 % CIs.

10 More generally, the variance of the difference is the sum of the
variances minus two times the covariance. But when the samples are
independent, the covariance is equal to zero.

11 Readers may wonder why we do not compare the correlation be-
tween height and weight for fathers with the same correlation for
mothers. Given that there are matched pairs of fathers and mothers,
those correlations are not independent. Therefore, it would be inappro-
priate to use this method for comparing them. However, we do com-
pare those two correlations later, using the ZPF statistic, which takes
into account the dependency.
12 We use Zou’s MA method because his simulations demonstrate
that for the situations listed below, it provides coverage much
closer (on average) to the nominal confidence level than do the
more conventional methods: (1) comparing two independent cor-
relations, (2) comparing two correlated correlations with one
variable in common, and (3) comparing two correlated correla-
tions with no variables in common.
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Testing the difference between two independent regression
coefficients

If one has the results for OLS linear regression mod-
els from two independent samples, with the same
criterion and explanatory variables used in both mod-
els, there may be some interest in testing the differ-
ences between corresponding coefficients in the two

models.13 The required test is a simple extension of
the t-test described earlier for testing the null hypoth-
esis that b* = a specified value (see Eq. 8).

13 If one has the raw data for both samples, the same comparisons can
be achieved more directly by running a single model that uses all of the
data and includes appropriate interaction terms. We will demonstrate
that approach shortly.

Fig. 1 The relationship
between fathers’ heights and
weights in the Lancaster and
Glendora samples (blue and red
symbols respectively). Height
was centered on 60 in.;
therefore, the intercepts for the
two models (148.053 and
130.45) occur at the
intersections of the two
regression lines with the dashed
line at height = 60

Behav Res (2013) 45:880–895 887



As was noted earlier, when one is dealing with two
independent samples, the variance of a difference is the
sum of the variances, and the standard error of the
difference is the square root of that sum of variances.
Therefore, the standard error of the difference between
b1 and b2, two independent regression coefficients, is
computed as shown in Eq. 12, where the two terms
under the square root sign are the squares of the
standard errors for b1 and b2. This standard error is
used to compute the t-test shown in Eq. 13 and to
compute the 100(1 − α)% CI (Eq. 14). The t-test has
df=n1+n2−2m−2 (where m = the common number of
predictor variables in the two regression models, not
including the constant).14 Some books (e.g., Howell,
2013) give the degrees of freedom for this t-test as
n1+n2−4. That is because they are describing the spe-
cial case where m = 1 (i.e., the two regression models
have only one predictor variable). And of course, n1+
n2−2(1)−2=n1+n2−4.

sb1�b2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2b1 þ s2b2

q
ð12Þ

t n1þn2�2m�2ð Þ ¼ b1 � b2
sb1�b2

ð13Þ

100 1� að Þ% CI for b*1 � b*2
� �

¼ b1 � b2ð Þ � ta=2sb1�b2 : ð14Þ

To illustrate, we use the results for Lancaster and Glen-
dora shown in Table 2 and also depicted graphically in
Fig. 1. Specifically, we compare the regression coefficients
(both intercept and slope) for Lancaster and Glendora. Plug-
ging the coefficients and their standard errors (and sample
sizes) into our code for Eq. 13, we get the output listed
below:

The bdiff and sediff columns show the difference between
the coefficients and the standard error of that difference—that
is, the numerator and denominator of Eq. 13. Since both p-

values are greater than .05, the null hypothesis cannot be
rejected in either case. The next listing shows the CIs for bdiff.
Because alpha = .05 on both lines of output, these are 95%CIs:

The method we have just shown is fine in cases where
one does not have access to the raw data but does have
access to the required summary data. However, when the
raw data are available, one can use another approach that
provides more accurate results (because it eliminates round-
ing error). The approach we are referring to is sometimes

called Potthoff analysis (see Potthoff, 1966).15 It entails
running a hierarchical regression model. The first step
includes only the predictor variable of primary interest
(height in this case). On the second step, k − 1 indicator
variables are added to differentiate between the k indepen-
dent groups. The products of those indicators with the main

14 In Eqs. 12–14, the subscripts on b1 and b2 refer to which model the
coefficients come from, not which explanatory variable they are asso-
ciated with, as is typically done for models with two or more explan-
atory variables.

15 Also see these unpublished documents on the second author’s Web
site: http://core.ecu.edu/psyc/wuenschk/docs30/CompareCorrCoeff.pdf,
http://core.ecu.edu/psyc/wuenschk/MV/multReg/Potthoff.pdf).
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predictor variable are also added on step 2. In this case, we have
k = 2 groups (Lancaster and Glendora), so we add only one
indicator variable and one product term on step 2. (We chose to
use an indicator for area 2, Lancaster, thus making Glendora the

reference category.) The SPSS commands to run this model
were as follows, with fweight = father’s weight, fht60 = father’s
height centered on 60 in., A2 = an indicator for area 2
(Lancaster), and FHTxA2 = the product of fht60 and A2:

The F-test on the change in R2 (from step 1 to step 2)
tests the null hypothesis of coincidence, which states that the
two population regression lines are identical (i.e., they have
the same intercept and the same slope). In the table of
coefficients for the full model (step 2), the t-test for the area
2 indicator variable tests the null hypothesis that the popu-
lation intercepts are the same, and the t-test for the height ×
A2 product term tests the null hypothesis that the two
population slopes are equal. (The t-test for height in the full
model tests the null hypothesis that the population slope = 0
for the reference group—that is, the group for which the
area 2 indicator variable = 0.)

We ran that hierarchical regression analysis for the Lan-
caster and Glendora data and found that the change in R2

from step 1 to step 2 = .011, F(2, 103) = 0.816, MSresidual =
44,362.179, p = .445. Therefore, the null hypothesis of
coincidence of the regression lines cannot be rejected. Nor-
mally, we would probably stop at this point, because there is
no great need to compare the slopes and intercepts separate-
ly if we have already failed to reject the null hypothesis of
coincident regression lines. However, in order to compare
the results from this Potthoff analysis with results obtained
earlier via Eq. 13, we shall proceed.

The regression coefficients for both steps of our hierarchical
model are shown in Table 3. Looking at the step 2, the coeffi-
cient for the area 2 indicator is equal to the difference between
the intercepts for Burbank and Glendora (see Table 2). The t-
test for the area 2 indicator is not statistically significant, t(103)
= 1.168, p = .245. Therefore, the null hypothesis that the two
population intercepts are equal cannot be rejected. The coeffi-
cient for the height × A2 product term gives the difference
between the slopes for Burbank and Glendora. The t-test for

this product term is not statistically significant, t(103) = −1.264,
p = .209. Therefore, the null hypothesis that the population
slopes are the same cannot be rejected either. Finally, note that
apart from rounding error, the results of these two tests match
the results we got earlier by plugging summary data into Eq. 13:
t(103) = 1.164, p = .247, for the intercepts; and t(103) = −1.259,
p = .211, for the slopes. (As has been noted, methods that use
the raw data are generally preferred over methods that use
summary data, because the former eliminate rounding error.)

Methods for k independent parameters

On occasion, one may wish to test a null hypothesis that
says that three or more independent parameters are all
equivalent. This can be done using the test of heterogeneity
that is familiar to meta-analysts (see Fleiss, 1993, for more
details). The test statistic is often called Q16 and is computed
as follows:

Q ¼
Xk

i¼1
Wi Yi � Y

� �2
; ð15Þ

where k = the number of independent parameters, Yi = the
estimate for the ith parameter, Wi = the reciprocal of its

variance, and Y = a weighted average of the k parameter
estimates, which is computed as shown in Eq. 16. When the

16 Meta-analysts often describe this statistic as Cochran’s Q and cite
Cochran (1954). This may cause some confusion, however, because
Cochran’s Q often refers to a different statistic used to compare k
related dichotomous variables, where k ≥ 3. That test is described in
Cochran (1950).
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null hypothesis is true (i.e., when all population parameters
are equivalent), Q is distributed (approximately) as chi-
square with df = k – 1.

Y ¼
P

WiYiP
Wi

: ð16Þ

An example using regression coefficients

We illustrate this procedure using output from the four
simple linear regression models summarized in Table 2.
Using the method described above to test the null hypothesis
that the four population intercepts are all the same, we get Q
= 1.479, df = 3, p = .687. And testing the null hypothesis
that the slopes are all the same, we get Q = 1.994, df = 3, p =
.574. Therefore, we cannot reject the null hypothesis in
either case.

Because the raw data are available in this case, we can
also test the null hypothesis that all slopes are the same by
performing another Potthoff analysis, like the one described
earlier. With k = 4 groups (or areas), we will need three (i.e.,
k − 1) indicator variables for area and three product terms.
The test of coincidence will contrast the full model with a
model containing only the continuous predictor variable
(height). The test of intercepts will contrast the full model
with a model from which the k − 1 indicator variables have
been removed. The test of slopes will contrast the full model
with a model from which the k-1 interaction terms have been
dropped.

Using SPSS, we ran a hierarchical regression model with
height entered on step 1. On step 2, we added three indica-
tors for area plus the products of those three indicators with
height. The SPSS REGRESSION command for this analysis
was as follows:

Table 4 shows the ANOVA summary table for this model,
and Table 5 shows the parameter estimates. Because we used
the TEST method (rather than the default ENTER method) for
step 2 of the REGRESSION command, the ANOVA summary
table includes the multiple degree of freedom tests we need to
test the null hypotheses that all intercepts and all slopes are the

same (see the “Subset Tests” section in Table 4). For SAS code
that produces the same results, see the online supplementary
material or the second author’s Web site (http://core.ecu.edu/
psyc/wuenschk/W&W/W&W-SAS.htm).

The R2 values for steps 1 and 2 of our hierarchical
regression model were .272 and .286, respectively, and the

Table 3 Parameter estimates for a hierarchical regression model with height entered on step 1 and an area 2 (Lancaster) indicator and its product
with height both entered on step 2

Coefficienta

Step Unstandardized coefficients Standardized coefficients t Sig. 95.0 % confidence interval for B

B Std. error Beta Lower bound Upper bound

1 (Constant) 138.793 7.510 18.481 .000 123.902 153.684

Height of father (centered on 60 in) 4.771 .778 .513 6.130 .000 3.228 6.314

2 (Constant) 130.445 10.511 12.410 .000 109.598 151.292

Height of father (centered on 60 in) 5.689 1.073 .612 5.304 .000 3.562 7.816

Area 2 indicator 17.608 15.075 .367 1.168 .245 −12.289 47.505

Height × A2 −1.979 1.566 −.403 −1.264 .209 −5.086 1.127

a. Dependent Variable: weight of father in pounds
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change in R2 from step 1 to 2 was equal to .014, F(6,
142) = 0.472, p = .828.17 Therefore, the null hypothesis
of coincident regression lines cannot be rejected. Nev-
ertheless, we shall report separate tests for the intercepts
and slopes in order to compare the results from this
analysis with those we obtained earlier via Eq. 15. The
test for homogeneity of the intercepts is the second
Subset Test in Table 4—that is, the combined test for
the area 1, area 2, and area 3 indicators. It shows that
the null hypothesis of homogeneous intercepts cannot be
rejected, F(3, 142) = 0.489, p = .690. When testing this
same hypothesis via Eq. 15, we got Q = 1.479, df = 3,
p = .687. The test of homogeneity of the slopes in the
Potthoff analysis is the third Subset Test in Table 4—
that is, the combined test for the three product terms. It
shows that the null hypothesis of homogeneous slopes
cannot be rejected, F(3, 142) = 0.659, p = .579. Earlier,
using Eq. 15, we got Q = 1.994, df = 3, p = .574, when
testing for homogeneity of the slopes.

Note that for both of these tests, the p-values for the Q
and the F-tests are very similar. The differences are partly
due to rounding error in the computation of Q (where we
rounded the coefficients and their standard errors to three
decimals) and partly due to the fact that the denominator
degrees of freedom for the F-tests are less than infinite. For

a good discussion of the relationship between F and χ2 tests
(bearing in mind that Q is approximately distributed as χ2

when the null hypothesis is true), see Gould’s (2009) post on
the Stata FAQ Web site (http://www.stata.com/support/faqs/
stat/wald.html).

Finally, we should clarify how the coefficients and t-
tests for the full model (Table 5, step 2) are interpreted.
The intercept for the full model is equal to the intercept
for area 4 (Glendora), the omitted reference group (see
Table 2 for confirmation). The coefficients for the three
area indicators give the differences in intercepts between
each of the other three areas and area 4 (with the area 4
intercept subtracted from the other intercept in each
case). None of those pairwise comparisons are statisti-
cally significant (all p-values ≥ .244). The coefficient
for height gives the slope for area 4, and the coeffi-
cients for the three product terms give differences in
slope between each of the other areas and area 4 (with
the area 4 slope subtracted from the other slope). None
of the pairwise comparisons for slope are statistically
significant either (all p-values ≥ .208).

An example using correlation coefficients

When using the test of heterogeneity with correlations,
it is advisable to first apply Fisher’s r-to-z transforma-
tion. To illustrate, we use the correlation between
father’s height and father’s weight in Table 1. The
values of that correlation in the four areas were .628,
.418, .438, and .589 (with sample sizes of 24, 49, 19,
and 58, respectively). The r ′ values for these

17 The three “R Square Change” values in Table 4 give the change in
R2 for removal of each of the three subsets of predictors from the final
(full) model. They do not give the change in R2 from step 1 to step 2 of
the hierarchical model.

Table 4 ANOVA summary table for the hierarchical regression model with height entered on step 1 and three area indicators and their products
with height entered on step 2

ANOVAd

Step Sum of squares df Mean square F Sig. R square change

1 Regression 23221.739 1 23221.739 55.189 .000a

Residual 62274.134 148 420.771

Total 85495.873 149

2 Subset Tests Height of father (centered on 60 in) 12117.765 1 12117.765 28.182 .000b .142

Area 1 indicator, Area 2 indicator, Area 3 indicator 631.267 3 210.422 .489 .690b .007

Height × A1, Height × A2, Height × A3 850.075 3 283.358 .659 .579b .010

Regression 24438.781 7 3491.254 8.120 .000c

Residual 61057.092 142 429.980

Total 85495.873 149

a. Predictors: (Constant), Height of father (centered on 60 in)

b. Tested against the full model

c. Predictors in the Full Model: (Constant), Height of father (centered on 60 in), Area 3 indicator, Area 1 indicator, Height × A2, Height × A1,
Height × A3, Area 2 indicator

d. Dependent Variable: weight of father in pounds
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correlations are .7381, .4453, .4698, and .6761. These
are the Yi values we will use in Eqs. 15 and 16. The
variance of the sampling distribution of r′ is equal to
1/(n – 3), so the Wi values needed in Eqs. 15 and 16
are simply ni−3 (i.e., 21, 46, 16, and 55). Plugging

these Wi and Yi values into Eq. 16 yields Y equal to
.5847. Solving Eq. 15 for these data results in Q =
2.060, df = 3, p = .560. Therefore, the null hypothesis
that the four population correlations are equal cannot
be rejected.

Finally, we should point out that when the procedure
described here is used to test the equivalence of two
correlations, the result is identical to that obtained via
the z-test for comparing two independent correlations
(z2 = Q). For example, when we used this procedure
to compare the correlation between father’s weight and
mother’s height for Lancaster, r = −.181, n = 49, p =
.214, with the same correlation for Glendora, r = .330,
n = 58, p = .011, we got Q = 6.927, df = 1, p = .008.
Comparing these same two correlations earlier using
Eq. 11, we got z = −2.632, p = .008.

Methods for two nonindependent parameters

In this section, we describe two standard methods for
comparing two nonindependent correlations. These
methods are applicable when both of the correlations
to be compared have been computed using the same
sample. One method is for the situation where the two
correlations have a variable in common (e.g., r12 vs.

r13), and the other for the situation where there are no
variables in common (e.g., r12 vs. r34). (The first
situation is sometimes described as overlapping, and
the second as nonoverlapping.)

Two nonindependent correlations with a variable
in common

Hotelling (1931) devised a test for comparing two
nonindependent correlations that have a variable in
common, but Williams (1959) came up with a better
test, which is still in use today. Although Williams
actually described it as an F-test, it is more common-
ly presented as a t-test nowadays.18 Equation 17
shows the formula for Williams’s t-test:

tn�3 ¼ r12 � r13ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n�1ð Þ 1þr23ð Þ
2 n�1

n�3ð Þ Rj jþ r12þr13ð Þ2
4 1�r23ð Þ3

r
where Rj j ¼ 1� r212 � r213 � r223 þ 2r12r13r23

ð17Þ

To illustrate Williams’s (1959) test, we use correla-
tions reported in Table 1. Within each of the four

18 Because Williams’s (1959) test statistic was distributed
(approximately) as F, with df = 1 and n – 3, its square root is distributed
(approximately) as t with df = n – 3.

Table 5 Parameter estimates for a hierarchical regression model with height entered on step 1 and three area indicators and their products with
height entered on step 2

Coefficientsa

Step Unstandardized coefficients Standardized coefficients t Sig. 95.0 % confidence interval for B

B Std. error Beta Lower bound Upper bound

1 (Constant) 140.491 5.844 24.039 .000 128.942 152.040

Height of father (centered on 60 in) 4.492 .605 .521 7.429 .000 3.297 5.687

2 (Constant) 130.445 10.502 12.420 .000 109.684 151.206

Height of father (centered on 60 in) 5.689 1.072 .660 5.309 .000 3.570 7.807

Area 1 indicator 11.566 15.758 .178 .734 .464 −19.584 42.717

Area 2 indicator 17.608 15.062 .346 1.169 .244 −12.167 47.383

Area 3 indicator 13.593 19.591 .189 .694 .489 −25.135 52.321

Height × A1 −1.510 1.622 −.226 −.931 .354 −4.716 1.697

Height × A2 −1.979 1.565 −.375 −1.265 .208 −5.073 1.114

Height × A3 −1.940 2.002 −.266 −.969 .334 −5.897 2.017

a. Dependent Variable: weight of father in pounds
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areas, we wish to compare r12 and r13, with X1 =
father’s height, X2 = mother’s height, and X3 = moth-
er’s weight. Thus, the comparisons we wish to make
are as follows: .164 vs. −.189 (Burbank), .198 vs.
.065 (Lancaster), .412 vs. .114 (Long Beach), and
.366 vs. .071 (Glendora). The r23 values for the four
areas (i.e., the correlations between mother’s height

and mother’s weight) are .624, .040, .487, and .364,
respectively. Plugging the appropriate values into
Eq. 17 yields the results listed below. The CI included
in the results is a CI on ρ12− ρ13 computed using
Zou’s (2007) modified asymptotic method. (Zou’s ex-
ample 2 is included in order to confirm that our code
produces his result.)

These results indicate that the difference between the two
correlated correlations is statistically significant only in area
4, Glendora, t55 = 2.082, p = .042. As was expected, that is
also the only case in which the 95 % CI for ρ12− ρ13 does
not include 0.

Two nonindependent correlations with no variables
in common

Pearson and Filon (1898) devised a method for compar-
ing two nonindependent correlations with no variables
in common, but a revised version of it by Steiger
(1980) yields a “theoretically better test statistic”
(Raghunathan et al., 1996, p. 179). Pearson and Filon’s
original statistic is often called PF and is calculated as
shown in Eq. 18.

PF ¼ r12�r34
sr12�r34

¼ r12�r34ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�r2

12ð Þ2þ 1�r2
34ð Þ2�k

n

q
where

k ¼ r13 � r23r12ð Þ r24 � r23r34ð Þ
þ r14 � r13r34ð Þ r23 � r13r12ð Þ
þ r13 � r14r34ð Þ r24 � r14r12ð Þ
þ r14 � r12r24ð Þ r23 � r24r34ð Þ

ð18Þ

The modified version of the Pearson–Filon statistic,
which is usually called ZPF, can be calculated using
Eq. 19. The Z in ZPF is there because this statistic is

calculated using r′ values (obtained via Fisher’s r-to-z
transformation) in the numerator19:

ZPF ¼ r
0
12 � r

0
34

sr012�r
0
34

¼ r
0
12 � r

0
34ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� k
2 1�r212ð Þ 1�r234ð Þ

� �s
2

n�3

� � : ð19Þ

To illustrate this method, let r12 = the correlation
between father’s height and weight and r34 the corre-
lation between mother’s height and weight and com-
pare r12 and r34 in each of the four areas separately,
but also for all of the data, collapsing across area.20

The correlations within each area are shown in Table 1.
Collapsing across area, the correlation between height
and weight is .521 (p < .001) for fathers and .318
(p < .001) for mothers, with n = 150 for both. Plug-
ging those values into Eq. 18 yields the results shown

19 The reason this statistic is called ZPF is that Fisher used z to
symbolize correlations that had been transformed using his r-to-z
transformation. As was noted earlier, many current authors use r′ rather
than z, to avoid confusion with z-scores or z-test values.
20 As was noted earlier, the lung function data file has matched pairs of
fathers and mothers, which is why the correlation between height and
weight for fathers is not independent of the same correlation for
mothers.
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below. The 100 × (1 − α)% CI shown in these results
was computed using Zou’s (2007) method. (Zou’s

third example was included to ensure that his method
has been implemented correctly in our code.)

The PF and ZPF columns show the Pearson–Filon and
modified Pearson–Filon statistics, respectively, and the p_PF
and p_ZPF columns show the corresponding p-values. Thus,
the difference between the two correlated correlations is sta-
tistically significant only for the sample from Lancaster (p for
ZPF = .043) and for the analysis that uses data from all four
areas (p for ZPF = .025). Because alpha = .05 on all rows, all
CIs are 95 % CIs.

Summary

Our goal in writing this article was twofold. First, we wished
to provide, in a single resource, descriptions and examples of
the most common procedures for statistically comparing Pear-
son correlations and regression coefficients fromOLSmodels.
All of these methods have been described elsewhere in the
literature, but we are not aware of any single book or article
that discusses all of them. In the past, therefore, researchers or
students who have used these tests may have needed to track
down several resources to find all of the required information.
In the future, by way of contrast, they will be able to find all of
the required information in this one article.

Our second goal was to provide actual code for carrying
out the tests and computing the corresponding 100 × (1 − α)
CIs, where applicable.21 Most if not all of the books and
articles that describe these tests (including our own article)
present formulae. But more often than not, it is left to read-
ers to translate those formulae into code. For people who are
well-versed in programming, that may not present much of a
challenge. However, many students and researchers are not

well-versed in programming. Therefore, their attempts to
translate formulae into code are liable to be very time
consuming and error prone, particularly when they are
translating some of the more complicated formulae (e.g.,
Eq. 17 in the present article).

Finally, we must acknowledge that resampling methods
provide another means of comparing correlations and re-
gression coefficients. For example, Beasley et al. (2007)
described two bootstrap methods for testing a null hypoth-
esis that specifies a nonzero population correlation. Such
methods are particularly attractive when distribution
assumptions for asymptotic methods are too severely vio-
lated or when sample sizes are small. However, such meth-
ods cannot be used if one has only summary data; they
require the raw data. Fortunately, in many cases, the stan-
dard methods we present here do work quite well, particu-
larly when the samples are not too small.

In closing, we hope that this article and the code that
accompanies it will prove to be useful resources for students
and researchers wishing to test hypotheses about Pearson
correlations or regression coefficients from OLS models or
to compute the corresponding CIs.
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