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Abstract State-trace analysis (Bamber, Journal of
Mathematical Psychology, 19, 137-181, 1979) is a graphical
analysis that can determine whether one or more than one
latent variable mediates an apparent dissociation between the
effects of two experimental manipulations. State-trace analysis
makes only ordinal assumptions and so, is not confounded by
range effects that plague alternative methods, especially when
performance is measured on a bounded scale (such as accura-
cy). We describe and illustrate the application of a freely
available GUI driven package, StateTrace, for the R language.
StateTrace automates many aspects of a state-trace analysis of
accuracy and other binary response data, including custom-
izable graphics and the efficient management of computation-
ally intensive Bayesian methods for quantifying evidence
about the outcomes of a state-trace experiment, developed
by Prince, Brown, and Heathcote (Psychological Methods,
17,78-99, 2012).

Keywords State-trace analysis - Dimensional analysis -
Bayes factors - R package

One of the most fundamental questions asked in experimental
psychology and the neurosciences concerns latent dimension-
ality: Does a single latent (i.e., not directly observable) variable
or dimension mediate the relationship between two or more
experimental factors? For example, is recognition memory
mediated by one (memory strength) or two (familiarity and
recollection) processes (Dunn, 2004, 2008)? Traditionally,
researchers have sought particular patterns of data, called dis-
sociations, in order to answer this question (Shallice, 1988)
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and, so, to infer the existence of functionally independent
neural (e.g., Teuber, 1955) or cognitive (e.g., Glanzer &
Cunitz, 1966) systems. A single dissociation occurs when an
experimental factor selectively affects performance under one
condition, or in one task or group, or by one measure, but not
another. Stronger evidentiary value is often associated with a
double dissociation, which occurs when a second factor selec-
tively influences the second condition/task/group/measure but
not the first (see Dunn, 2003, for a fuller treatment). Typically,
a one-dimensional or one-system account is rejected when a
dissociation is confirmed by a significant interaction test.

However, there have been many demonstrations that
interaction tests of dissociations can reject only a one-
dimensional explanation based on strong assumptions
(e.g., Bogartz, 1976; Busemeyer & Jones, 1983; Dunn,
2003; Dunn & Kirsner, 1988; Henson, 2006; Loftus, 1996;
Poldrack, 2006). Loftus (1978) described one cause of this
problem that commonly plagues bounded response meas-
ures, such as accuracy calculated from binary data. When
the function mapping the latent variable to the bounded
response scale is nonlinear, an observed interaction (or
equally, the failure to observe an interaction) might be scale
dependent. For example, floor and ceiling effects can mean
that neither the presence nor the absence of an interaction is
diagnostic of dimensionality. Even when an experiment
is calibrated to avoid extreme performance or the data
are transformed in an effort to remove the bounds,
confounding still cannot be ruled out without making
further debateable assumptions that are difficult, if not impos-
sible, to directly test (see Prince, Brown, & Heathcote, 2012,
for details).

State-trace analysis (Bamber, 1979), which is also known
as dimensional analysis (Loftus, Oberg, & Dillon, 2004),
avoids these and the other problems that plague traditional
dissociation methods (see Newell & Dunn, 2008, for a
concise and nontechnical treatment). It does so by making
only the weak and arguably plausible assumption that latent
variables have a monotonic effect on performance—that is,
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that the direction of the latent variable’s effect does not
change with its magnitude. Latent dimensionality can then
be assessed in a way that is easily understood and reported,
using a state-trace plot. This approach is as general and
flexible as dissociation analysis; the plot can be made by
graphing one type of dependent variable against another (a
dependent-variable state-trace analysis) or by graphing the
same dependent measure taken under different condi-
tions or from different tasks or groups. In all cases, if
the plot is monotonic (i.e., does not change from in-
creasing to decreasing or vice versa), performance is
mediated by the same latent variable; otherwise, more
than one latent variable must be in play.

State-trace analysis has been applied to a diverse range of
topics in areas ranging from basic research in perception,
attention, short-term and long-term memory, categorization,
problem solving, and meta-cognition to applications in aging,
legal, clinical, educational, human factors, and developmental
psychology (Prince et al., 2012, provide an exhaustive sum-
mary and taxonomy). Evidence provided by state-trace anal-
ysis that more than one latent variable is in play can support
inference about the existence of separate brain regions, cog-
nitive representations, or processes (e.g., is forgetting in short-
term memory due to decay as well as interference?; Oberaurer
& Lewandowsky, 2008). It can also indicate that a single
region, representation, or process has a multivariate structure
(i.e., is characterized by more than one latent variable). For
example, single-process models of recognition memory,
which assume that recognition decisions are based on a single
memory-strength dimension, can be either one-dimensional
(e.g., equal-variance signal detection theory, where memory
strength is characterized by a mean parameter) or multidimen-
sional (e.g., unequal-variance signal detection theory, where
both mean and variance parameters characterize memory
strength).

Unfortunately, state-trace analysis is unfamiliar to many
researchers who could benefit from its use. Prince et al.
(2012) attempted to make it more accessible by providing
a general methodology for designing and fine-tuning state-
trace experiments, as well as statistics suitable for the type
of bounded data where state-trace analysis is often needed.
Their Bayesian approach can help guide the fine-tuning of
experimental designs, as well as inference about monoto-
nicity and, hence, latent dimensionality.

Prince et al. (2012) argued that their Bayesian methods
are particularly suited to state-trace analysis for several
reasons. First, for accuracy data, they require only a
minimal additional assumption (that the binary data are
binomially distributed), and so they detract little from the
relatively assumption-free nature of state-trace analysis.
Second, hypotheses about different dimensionalities vary tre-
mendously in their ability to fit data by chance. Bayesian
methods take this into account and so do not inappropriately

favor more flexible models. Finally, state-trace analysis has
been described as an example of an “equivalence” method that
treats the discovery of simplicity and difference as equally
important (Loftus, 2002) and so ideally requires a correspond-
ingly even-handed statistical method. In contrast to null hy-
pothesis testing, Bayesian analysis can quantify evidence in
favor of a simpler “null” (e.g., a one-dimensional) model, as
well as evidence against it.

In this article, we describe the scope and capabilities of
StateTrace, a package written for the freely available R
language (R Development Core Team, 2011), which
implements Prince et al.’s (2012) methods using com-
putationally intensive posterior sampling to perform
Bayesian estimation and model selection. R is freely
available for Windows, Mac OS X, and Linux and can
be downloaded from http://www.r-project.org/. The
StateTrace package can be installed within R by typing
install.packages ("StateTrace") on the com-
mand line, and the package functionality is made avail-
able by typing library ("StateTrace"). StateTrace
has been tested using the standard Rgui on PCs running
Windows 7 and XP, as well as the standard R console
under Mac OS X and Linux systems. Note, however,
that problems can sometimes occur with other common-
ly used interfaces (e.g., RStudio), and therefore, we do
not recommend their use with this package.

StateTrace is designed for users with no experience imple-
menting Bayesian analyses. Functions can be accessed through
a GUI, so it is also suitable for users with relatively minimal
experience of R. The GUI functionality is provided by
Hoffman and Laird’s (2009) fgui package. It is important to
note, however, that the aim of this article is to provide an
overview of the capabilities of StateTrace, including the type
of statistical summary results and graphical output that can be
obtained. Before the package is used, we strongly recommend
that users work though the detailed instructional tutorial pro-
vided in the “vignette” document that accompanies the
StateTrace package. This vignette provides a step-by-step
guide on how to analyze two example data sets, including
explanations of each argument available in a function, as well
as the argument values required to reproduce the example
output presented and further detail regarding how to interpret
the various output as one progresses through the analy-
sis. This vignette was developed on the basis of our experience
using the package with undergraduate research students. Once
the package is installed, the vignette can be accessed within
R by typing vignette (topic ="StateTrace",
package = "StateTrace")

Although designed for users unfamiliar with Bayesian
techniques, experienced users otherwise competent in these
sampling methods may still benefit from StateTrace in that it
provides facilities that manage potentially large demands on
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computer time and memory. With these facilities, analysis of
appropriately designed experiments is practical on commonly
available personal computers. StateTrace also provides con-
venient tabular and graphical methods for examining and
summarizing results, including customizable state-trace plots
that address both the individual and group levels of analysis.
In the next section we discuss the types of experimental
designs and data types that StateTrace accommodates. We
then describe its statistical and graphical capabilities.

Design and data

StateTrace can analyze three-factor (2 x 2 x N) repeated
measures experiments that yield a binary dependent mea-
sure, including measures calculated either with or without
reference to a measured baseline. Accuracy quantified by
the difference between a hit rate and false alarm rate are
examples of the former type of measure. Proportion correct
is an example of the latter type of measure. Since state-trace
analysis is not affected by monotonic transformations,
equivalent results are produced for related measures, such
as d' from signal detection theory. The example data sets
presented in this article are taken from recognition memory
experiments and address both types, as measured by testing
single items that were either studied or not (“yes—no” test-
ing) or by two-alternative forced choice (2AFC) testing.

Prince et al. (2012) labeled the three factors as state,
dimension, and trace factors. In this section, we explore the
nature of each type of factor and the types of designs that
StateTrace can and cannot analyze. A global limitation is that
all three factors must be of the repeated measures type, since
Prince et al.’s (2012) methods analyze each participant’s data
separately and then combine the individual results to address
the group level. In the final section of this article, we discuss
these limitations in more detail and describe how they can
currently be addressed using StateTrace.

State and dimension factors

The state factor has two levels that constitute the axes of the
state-trace plot. In our example data, the two levels are based
on recognition memory decisions made about pictures of
houses versus pictures of faces. In the case of a dependent-
variable state trace analysis, these levels correspond to differ-
ent binary dependent measures. For example, they might be
the outcome of a recognition decision and a classification of
the decision as being made with high versus low confidence.

The dimension factor has levels corresponding to differ-
ent experimental manipulations. In our examples, the
manipulation corresponds to whether the study and/or test
presentations used upright or inverted images. The dimen-
sion factor can be thought of as interacting with the state
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factor in a way that changes the dimensionality of the
processes underlying performance. For example, upright
faces are thought to be able to be encoded both in terms of
their constituent features and in a more holistic or relational
way, whereas only the former encoding is available for
inverted faces (Maurer, LeGrand, & Mondloch, 2002;
Valentine, 1988; Yin, 1969).

The state and dimension factors correspond to the two factors
examined in a dissociation analysis. For example, traditional
dissociation-based evidence for faces being processed in a
qualitatively different way from other visual stimuli is provided
by an interaction between the class of stimuli (e.g., face vs.
house) and presentation orientation (e.g., upright vs. inverted).
Foradependent-variable state-trace analysis, assignment of the
two factors to state and dimension roles is clear, but otherwise
these roles can be interchangeable. An exception concerns
measures assessed against a baseline. For such measures, the
levels of the dimension factor must have a common baseline for
state-trace plotmonotonicity to be diagnostic of dimensionality.
Since this restriction does not apply to the state factor, assign-
ment can be made accordingly (as was the case with our baseline
example), or a measurement method that does not include a
baseline mustbeused (e.g., 2AFC). One of our examples has no
baseline (a “B0” design), and the other example has a separate
baseline for each level of the state factor (a “B2” design). In the
latter case, the baseline conditions correspond to test house or
face images that were not studied.

StateTrace assumes that the dimension factor has two
levels based on practical motivations related to the size of
(i.e., number of cells in) a design. First, the computational
method used by StateTrace for the Bayesian analysis rapidly
becomes prohibitive as size increases. Second, for large
designs it is difficult to run enough trials per cell to obtain
estimates that are sufficiently precise to support individual-
participant analysis. Hence, using a two-level dimension
factor is prudent, perhaps after piloting to select appropriate
levels, since this is typically sufficient to test dimensionality.

Trace factor

The third experimental manipulation, the trace factor, has no
analogue in dissociation analysis. In Prince et al.’s (2012)
method, the effect of the trace factor on dimensionality is
not of interest. Indeed, the trace factor is chosen specifically
because past research indicates that it is unlikely to affect
dimensionality, so that dimensionality evidence can be unam-
biguously interpreted in terms of the state and dimension
factor effects. In our examples, the trace factor was the time
spent studying each item. Given that past research indicates
that increasing study time increases accuracy for houses and
faces both when they are upright and when they are inverted,
study time should have a monotonic effect in the state-trace
plot. For the same reasons that apply to the dimension factor,
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the trace factor cannot have different baselines for different
levels.

The trace factor’s role is to ensure that state-trace analysis
is diagnostic of dimensionality. A state-trace plot can be non-
diagnostic for two reasons. When state and dimension factors
have only two levels and there is no trace manipulation, the
state-trace plot has only two points, and so is always mono-
tonic. However, if the plot has more than two points, it can still
be nondiagnostic if the dimension factor effect is so large that
results do not overlap on either axis of the plot. The remedy is
to induce overlap using the trace factor. In our examples, greater
accuracy for the upright condition is counteracted by a longer
study time for the inverted condition, inducing overlap.

StateTrace can accommodate any number of trace factor
levels. Prince et al. (2012) recommended three to four levels
with evenly spaced effects. Too many levels can cause the
sort of design-size-related problems discussed previously.
Too few levels and unevenly spaced effects risk the state-
trace plot being nondiagnostic due to an unlucky configura-
tion of estimated points even when overlap is achieved.
Choosing an appropriate number and spacing of trace factor
levels can require some calibration through pilot testing.
When doing so, it is important to recognize that it may be
most efficient to use different trace factor levels within each
level of the dimension factor (i.e., the design need not be
fully factorial). For example, we used generally longer study
times in the inverted than in the upright condition in order to
counteract generally greater accuracy for upright than for
inverted items. A trace factor can sometimes be created by
the post hoc construction of a factor according to criteria set
to obtain the most diagnostic outcome. For example,
Heathcote, Freeman, Etherington, Tonkin, and Bora (2009)
constructed a post hoc trace factor in a recognition memory
experiment by dividing test trials on study—test interval.

Input data formats

StateTrace reads in text data files made up of equal numbers of
entries on each line. Data files may contain #rial data, with a
column indicating the response on each trial, or summarized
data, with columns indicating the number of correct responses
and number of trials for each condition. StateTrace accepts
either a single file with all the participants’ data or individual-
participant files. Columns can be delimited in a variety of
common ways, and relevant columns can be selected from a
larger set either by name or by number. The relevant columns
indicate the response (number of trials for summarized data)
and the state, dimension, and trace levels for each row.
StateTrace accepts data files formatted as coming from
designs either with no baseline (B0) or with a different base-
line condition for each state level (B2). Since baseline con-
ditions cannot differ over dimension and trace levels, a B2
design is automatically detected through the presence of blank

or “NA” entries in these columns. Designs where accuracy in
all conditions is measured relative to a single baseline can be
treated as coming from either a BO or a B2 design. In the
former case, the baseline data are omitted, whereas in the latter
case, they are included twice. The outcome of state-trace
analysis is the same in both cases, but the B2 format may be
preferred since accuracy results can be displayed by differ-
ences between nonbaseline and baseline results.

Statistics and graphics

Figure 1 shows example state-trace plots for our 2 (state: face,
house) x 2 (dimension: upright, inverted) x 3 (trace: study
duration) design for both individual participants (Fig. 1a, b)
and the group aggregate for the no-baseline example (Fig. 1¢)
and for the baseline example (Fig. 1d). Plots such as these can
be visually inspected to assess whether all of the points fall on
a monotonic function—that is, whether the order of points on
the x-axis is the same as the order of points on the y-axis.
However, inference about dimensionality based on the visual
inspection of state-trace plots can sometimes be misleading
due to measurement noise. This is particularly the case for
individual-participant data (e.g., Fig. 1a, b), where levels of
measurement noise can be high. However, individual analysis
is required to make strong inferences on the basis of state-trace
analysis, because neither the monotonicity nor the nonmono-
tonicity of state-trace plots is necessarily preserved when they
are averaged over participants (Prince et al., 2012). Hence, a
quantitative approach to state-trace analysis provides an im-
portant complement to visually assessing a state-trace plot.
StateTrace obtains evidence about questions relevant both
to refining an experimental design and to diagnosing dimen-
sionality by selecting among four mutually exclusive models.
In defining these models, it is convenient to refer to “data
traces,” lines joining data points from the same level of the
dimension factor (e.g., the solid and dashed lines in Fig. 1a, b).

1) Nontrace model: The trace factor does not always have
a monotonic effect (i.e., one or more data traces are
nonmonotonic), and so any nonmonotonicity in the
state-trace plot cannot be unambiguously attributed to
the interaction between the state and dimension factors.

2) No-overlap model: Data traces do not overlap on either
axis, so that even though the state-trace plot is monotonic,
no conclusions can be made about dimensionality.

3) Unidimensional model: A single latent variable medi-
ates performance; that is, the state-trace plot is
monotonic and provides a valid basis for inference
about dimensionality.

4)  Multidimensional model: More than one latent variable
mediates performance; that is, the state-trace plot is
nonmonotonic.
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Fig. 1 Accuracy state-trace plots showing modes of the posterior
estimates from the encompassing model (large symbols) for the
2AFC data set for a participant “J,” b participant “R,” and ¢ on
average, as well as d on average for the yes—no data set. Accuracy is
indicated by plotting the hit rate (HR) for the 2AFC data and d' [i.e., z
(HR)—z(FAR), where FAR is the false alarm rate] for the yes—no

Each model specifies a set of order restrictions on the
points in a state-trace plot. Evidence for each model is
quantified using a Bayes factor (BF; Kass & Raftery,
1995). The BF quantifies the change in relative beliefs
(odds) about two models caused by observing the data.
That is, it is the change from prior odds (odds before seeing
the data) to posterior odds (odds after seeing the data). For
example, if two models, M1 (the numerator model) and M2
(the denominator model), are initially considered equally
likely, BF = 10 implies that M1 is 10 times more likely than
M2 after the data have been observed.

BFs can be thought of as measures of relative goodness-
of-fit that compensate for differences in model flexibility.
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example. For panels a and b, the lines are data traces, joining posterior
modes of the encompassing model samples, and ellipses represent the
50% credible regions. For panel c, lines with small symbols join
posterior modes of the trace model, and for panel d, they join the
highest posterior probability (i.e., most frequently sampled) monotonic
model. The ellipses in panels ¢ and d represent 68% credible regions

Our denominator (M2) is always an encompassing model
under which all orders are equally likely. Hence, BF > 1
favors the less flexible order-restricted (numerator) model
over the encompassing model, which, by definition, fits any
data perfectly. If it is assumed that one model among a set of
models generated the data (i.e., is the #rue model), BFs for
the set of models can be combined to calculate posterior
model probabilities, p, which quantify relative evidence.
High probabilities provide evidence favoring a model, and
low probabilities provide evidence against a model. If the
true-model assumption is not made, a posterior probability
still provides a number that quantifies relative evidence on
an easy-to-interpret zero-to-one scale, even though it cannot
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be interpreted as a probability. Additionally, when the trace
factor is selected on the basis of strong prior evidence that it
has a monotonic effect, it makes sense to exclude the non-
trace model when posterior model probabilities are
computed.

StateTrace can output both BFs, to quantify absolute
evidence about whether the data provide sufficient support
for clear conclusions about each model, and posterior model
probabilities (calculated either including or excluding the
nontrace model), to quantify relative evidence. We suggest
(after Raftery, 1995) that evidence for the numerator model
can be considered weak for a BF < 3, positive for a BF
between 3 and 20, strong for a BF between 20 and 100, and
very strong for a BF > 100. Table 1 provides similar con-
ventions for posterior model probabilities. The two sets of
conventions are closely related because p = BF/(1 + BF),
given BF = | by definition for the encompassing model.
Like all conventions, these suggestions should not be used
uncritically; BFs and posterior model probabilities have a
natural scale making their interpretation straightforward.

Computing Bayes factors

Prince et al. (2012) used posterior sampling methods pro-
posed by Klugkist, Kato, and Hoijtink (2005) and Klugkist,
Laudy, and Hoijtink (2005) to compute BFs for the four
models. Although conceptually straightforward (i.e., they
simply count the frequency with which different orders
occur in a set of simulated samples), this method is compu-
tationally expensive. In order to make it practical,
StateTrace uses two types of sampling:

1) Encompassing sampling: Monte Carlo (MC) sampling,
used to obtain samples from a model that makes no
order constraints, and

2) Trace model sampling: Markov chain Monte Carlo
(MCMC) sampling, used to obtain samples under the
trace model constraint.

In principle only MC methods are needed, but the yield
of samples relevant to models 2—4 is often so low that it
would be far too inefficient. Although slower per sample,
the MCMC method always yields samples from models 2—4
after an initial “burn-in” period and, so, is better in practice.

Table 1 Conventions to aid interpretation of the posterior model
probabilities (after Raftery, 1995)

Favoring model Against model

p>.99 Very strong evidence p <.01
95<p<.99 Strong evidence 01 <p<.05
I5<p<.95 Positive evidence 05<p<.25
25<p<.75 Equivocal evidence

For trace model sampling, initial (burn-in) samples are
discarded because it can take some time for the MCMC
process to converge to the target distribution (see Gilks,
Richardson, & Spiegelhalter, 1996). Our experience is that
convergence is very fast and that, at most, 100 initial sam-
ples need to be discarded. However, this may not be the case
in all applications, so StateTrace provides facilities to check.
StateTrace uses Plummer, Best, Cowles, and Vine’s (2006)
coda package to automatically calculate one check,
Gelman’s “R-hat” statistic (where values close to one indi-
cate convergence), and also allows MCMC samples to be
exported in a format suitable for further checks provided by
coda.

StateTrace manages the sampling process, enabling esti-
mates to be automatically refined to a specified level of
accuracy and allowing the time spent sampling to be limited
to convenient periods (e.g., overnight runs). Statistics to
support simultaneous selection among all four models (an
exhaustive strategy) or only models 2—4 (a trace-true strat-
egy) are calculated automatically, and raw counts can also be
accessed to support other approaches, such as sequential
model selection (see Prince et al., 2012).

Overview of functions

Typing guista () at the R command line invokes the main
StateTrace GUI, which provides access to the main
StateTrace functions: stFirst, stSample, stSummary,
stProbplot, stBootav, stPlot, and staManage. Alternatively,
the GUIs for each separate function can be called by typing
“gui” followed by the function name and parentheses (e.g.,
guistFirst ()). In general, command line users can re-
move "gui" from the start of the function and enter argument
values within the parentheses. Details on available argu-
ments can be obtained by consulting the function’s help,
called by typing a? prior to the function name. Each of the
GUIs allows users to view default values for function argu-
ments and to enter alternate values via widgets such as text
entry boxes, slider bars, true/false check boxes, and multi-
option lists. In all GUIs, argument values that require input
for a function to run are marked by an *, and argument
descriptions that contain the term “character string” must
have their values contained in double quotation marks.

The stFirst function performs an initial analysis, first
reading in data for one or more participants from one or
more text files, and then making a quick preliminary assess-
ment of the results on the basis of a limited number of
posterior samples. It then creates an object of class sta in
the R environment, which is named by the user. The sta
object encapsulates the data and the numerical results based
on sampling. Once stFirst is complete, the sta object can be
saved from the R environment to a file in a compressed
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format and restored in a later R session, using the R save
and 1load functions, respectively.

Three StateTrace functions allow the contents of an sta
object to be displayed. The stSummary and stProbplot func-
tions provide, respectively, tabular and graphical summaries
of the Bayesian analysis. The stPlot function makes state-
trace plots (e.g., Fig. 1). All three functions work, to some
degree, with an sta object created by stFirst. However, for
more accurate results from the Bayesian analysis, and to
access the full range of state-trace plot options, two other
functions may have to be run: stSample and stBootav. These
functions perform time-consuming computations whose
results are stored in the sta object. The stSample function
collects enough extra samples to reach a specified level of
accuracy in the Bayesian analysis. Some of these extra
samples can also be stored in the sta object, so that a line
representing the trace (e.g., Fig. 1¢) or monotonic (Fig. 1d)
model that is best supported by the data can be added to a
state-trace plot. However, to enable these lines to be added
to state-trace plots averaged over participants, the stBootav
function must also be run.

The main GUI also provides access to the staManage
function, which allows users to manage and export posterior
samples stored in an sta object. An sta object is an R list that
can be directly accessed by users, but staManage and the
other functions are designed so that this should not be
necessary. Samples are stored in an sfa object to enable
efficient generation of graphical summaries of uncertainty
in estimation (i.e., credible regions, the Bayesian analogue
of confidence intervals—e.g., the ellipses in Fig. 1).
However, this can sometimes cause an sta object to become
so large that it is slow to load and save. The staManage can
be used to remove samples after the graphics have been
generated. The staManage function also allows users to
export a list containing posterior samples with one entry
for each participant. Each entry in the list contains samples
in a format (the mcmc.list class), for which coda provides
many easy-to-use analysis methods (e.g., plot and summary
functions).

First steps

Before stFirst initiates sampling, checks are run to ensure
that the selected data files are compatible with StateTrace
(e.g., state and dimension factors each have only two levels)
and the multiple files are compatible with each other (i.e., all
have either a BO or a B2 design). It then obtains 100,000
MC samples for each independent set of design cells (four
sets for B2 designs and two for BO designs) and determines
the proportions that follow the order specified by the trace
factor. Estimates of 95% credible intervals for each propor-
tion estimate are obtained, and where the precision of the
interval is less than 0.0005, it marks sampling as complete.
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Otherwise, it estimates the time required to get enough
samples to narrow the interval sufficiently, based on the
time required for the initial 100,000. These time estimates
are only approximate and will vary, especially if sampling is
completed on a different computer that is faster or slower.

Next, an order-constrained Gibbs sampler (Gelfland,
Smith, & Lee, 1992) is used to draw two sequences of
5,000 MCMC samples (“chains”) from the trace model for
each participant. The proportions of samples following the
no-overlap, unidimensional, and multidimensional model
orders are tabulated, and the corresponding 95% credible
intervals calculated. Sampling for a participant is marked as
complete if all intervals are less than 0.005. Otherwise, the
additional time required to complete is estimated. A smaller
interval criterion is used for encompassing than for trace
sampling, since encompassing proportion estimates have a
greater potential to reduce precision overall because they
multiply the trace proportions in the calculation of BFs.
Once the two chains are complete, stFirst reports whether
the MCMC process has worked properly (i.e., has “con-
verged”), using Gelman’s multivariate R-hat statistic.

In the final stage of computation, stFirst draws 10,000
bootstrap average samples and uses the two-dimensional
density estimator provided by Wand and Ripley’s (2009)
KernSmooth package (with its default parameters) to calcu-
late the posterior modes (measures of central tendency) and
68% credible regions (i.e., the analogue of a standard error)
around the modes. These calculations are used to display an
average state-trace plot, which provides the user with an
immediate view of results averaged over participants, as
well as state-trace plots for each individual participant.
Additionally, the corresponding posterior mode estimates
are output in a tabular form to the R console. The stFirst
function can be called repeatedly to add additional partic-
ipants to the sta object. A warning will be issued if duplicate
data sources are mistakenly specified; however, these data
will still be added to the object without replacing the old
entries.

Refining estimates

Further sampling may be required if the analysis did not reach
completion during the initial pass or the user wishes to alter
the credible interval precision criteria from those used by
stFirst. This is achieved using stSample, which allows fine-
grained control over the defaults used by stFirst. The only
required input is the name of an existing sta object. Because
obtaining enough samples to fulfil stricter criteria can be time
consuming, stSample has a “refresh” mode, which allows the
predicted time to completion to be calculated for different
criteria. This refresh mode is fast to run, since no actual
sampling is done, unless none has been done yet, in which
case a single pass is made. Since the time information will
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vary depending on the computer used, if the most recent
pass (e.g., obtained by running stFirst) was on a different
computer, it is useful to turn off the refresh mode but leave
the maximum run time at zero; this will cause a single pass
to be run and to update the timing information for the new
computer.

Once a sampling plan is determined, the refresh mode
can be turned off, a suitable maximum run time entered, and
sampling initiated. Sampling is completed in a series of
passes, and users may choose to sample from only the
encompassing model, only the trace model, or both.
Sampling terminates when precision criteria are satisfied,
so stSample may require additional time than that estimated
from previous passes (e.g., after running stFirst); it may also
complete before the maximum time elapses, and one type of
sampling may complete before another. The verbose argu-
ment (with value 0, 1, or 2) controls information printed to
the R console during sampling: 0 is silent, 1 prints the
estimated total time remaining after each run for all partic-
ipants, and 2 adds timings per participant.

The number of samples for each pass of each type of
sampling is chosen to satisfy a trade-off. Using a small
number per pass inherits a cost in housekeeping between
passes, and initial burn-in samples on each trace-model run
are lost. A large number uses more RAM and can result in
more samples being taken than required to achieve the
required precision. A larger value is advisable for encom-
passing than for trace model sampling, since encompassing
sampling is usually an order of magnitude faster. In our
applications, we have found that the defaults work well
and that little is gained in particular cases by altering them.
Similarly, we have found that the default criteria (credible
interval type—e.g., 95%—and precision) strike an appropri-
ate balance between computation time and the accuracy of
BF and posterior model probability estimates.

A second reason for running stSample is to collect sam-
ples that enable visualization of each model—that is, sam-
ples that follow the order(s) dictated by a model. We have
found that the default value of 10,000 encompassing sam-
ples collected by stFirst is sufficient for accurate visualiza-
tion of central tendencies and credible regions, although
large regions (which require estimation of distribution tails)
can require more. The 10,000 trace samples collected by
stFirst are also usually more than sufficient, given that they
are used only to estimate central tendency. The stSample
function also collects a particular type of trace sample,
monotonic model samples, which may be relatively rare,
especially when the data are far from monotonic. Monotonic
samples are used to plot the central tendencies of the unidi-
mensional or no-overlap model, with the latter type of
sample often being extremely rare unless the data are strong-
ly nonoverlapping. Given this, by default, stSample keeps
all monotonic samples.

Storing large sets of samples for each participant can
greatly increase the size of sfa objects. The default values
(assuming that stored monotonic samples are not allowed to
grow too large) are rarely problematic. However, the
staManage function can be used to reduce the number of
stored samples where problems arise, including the ability to
keep only samples for the “best” (i.e., most frequently
occurring and, hence, most probable) monotonic order, rath-
er than all samples with monotonic orders. The staManage
function can also be used to join multiple sta objects; for
example, it can be computationally efficient to divide a very
large set of participants and then run the sampling for sub-
groups of participants on separate machines, after which the
sta objects can be combined and the group aggregate results
examined.

Extracting results

The stSummary function produces tabular model-selection
results to the R console. It also provides information about
the status of sampling for an sta object (i.e., whether it is
complete or, if not, how much more computation time is
required according to the criteria stored in the object).
Results can be output as BFs or posterior model probabili-
ties based on either exhaustive or trace-true strategies. By
default, stSummary reports results summarized over partic-
ipants based on group BFs, which are the product of each
participant’s BFs and assumes that each participant contrib-
utes independent evidence (Prince et al., 2012). However, in
some cases, the group results can be inappropriately influ-
enced by outlying individual-participant results (e.g., most
participants are unidimensional, but a few strongly multidi-
mensional participants dominate the group results). We rec-
ommend that users also output and examine individual-
participant results in order to check this possibility. This
can be done, and outlier participants can then be excluded
from the calculation of group results, using stSummary
options. Users may also output a large range of additional
results, including the prior probabilities for each model
(calculated analytically; see Prince et al., 2012), the total
number of encompassing and trace model samples, and
counts of the number of times the orders specified by each
model were sampled.

The stProbplot GUI allows the distribution over partic-
ipants of posterior model probabilities to be inspected
graphically. Outlying participants can be excluded, and the
annotation within the plots customized. Additionally, the
posterior probability for the group (based on the group
BF) can be displayed numerically in the title and as a line
on the plot. As is shown in the output for the 2AFC example
data in Fig. 2, the stProbplot plot includes a panel for each
model, and each letter in a panel represents the posterior
model probability for a single participant. Participants in
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Fig. 2 Posterior model
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each panel are sorted by their results, allowing those with
extreme values to be easily identified. Figure 2 was made
using defaults, which produce appropriate annotations in
most cases, and by choosing the option to use letter plot
symbols in order to easily identify each participant’s results.

Inspection of Fig. 2 suggests that participant “J” provides
an outlying result in favor of the nontrace model. However, a
follow-up analysis excluding participant “J” revealed little
influence on the group posterior model probability (gp in the
panel titles). Overall, these results show positive or greater
evidence for the trace model and for data-trace overlap (i.e.,
low probabilities for the nontrace and no-overlap models).
Evidence is weaker and individual variability greater in rela-
tion to the dimensionality results, but the group evidence
supports a multidimensional outcome. The stProbplot plots
can also reveal a potential mixture of unidimensional and

multidimensional subgroups, but that is not indicated in Fig. 2.

Figure 1 shows examples of state-trace plots produced by
stPlot. The stPlot function can represent accuracy data by the
mode, mean, or median measures of central tendency
applied to samples from the encompassing model. Since
the encompassing model makes no order assumptions,
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these measures (e.g., large symbols in Fig. 1) provide a
model-free estimate of the observed data. The default
choice used to create Fig. 1 (the mode) produces esti-
mates that are usually equivalent to the familiar
maximum-likelihood estimator (e.g., n/N for the 2AFC
hit rate, where n is the number of correct responses on N
trials).

The other central tendency measures usually produce
similar results, at least for reasonable sample sizes not
subject to floor or ceiling effects. For example, for the hit
rate and uniform prior used by StateTrace, the mean of a
large sample from the encompassing model is equivalent to
(n + 1)/(N + 1). For other accuracy measures, such simple
formulae are not available. This is also the case for any
accuracy measures for any of the order-restricted models.
Hence, estimates based on samples have the advantage of
providing an easily applied and general approach.

The stPlot function uses the same type of approach to
display the degree of uncertainty in central tendency esti-
mates, by drawing contours around regions containing a spec-
ified percentage of the posterior encompassing-model
samples. Estimating Bayesian credible regions in this way
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works with all accuracy measures in a way that takes account
of any floor and ceiling effects, which can be very influential
when contours are near bounds in an accuracy measure. The
regions, and modes, are estimated using the bkde2D function
in Wand and Ripley’s (2009) KernSmooth package, which is
included by default with R. Users can choose the percentage
contained by the regions and the degree of smoothing, as a
multiple of the maximum over data points of the values
provided by the dpik function: This KernSmooth function
and bkde2D are called with default values. The default mul-
tiplier of five used by stPlot was chosen to produce very
smooth contours even for large regions, which can otherwise
be irregular because they require estimation of distribution
tails; users are encouraged to experiment with the multiplier as
appropriate for their application.

Figure la, b plots results for participant “J,” who had the
strongest evidence for a violation of the trace model in Fig. 2,
and participant “R,” who had the strongest evidence for the
multidimensional model; both state-trace plots are clearly
consistent with the model-selection analyses. Individual-
participant data are typically quite noisy, so for clarity, the
credible regions in these plots contain only 50% of the poste-
rior samples. Both data sets display strong data-trace overlap,
consistent with the results for the no-overlap model in Fig. 2.

Figure Ic is a state-trace plot of the average over all
participants in the 2AFC example data. Reflecting the re-
duction in uncertainty associated with an average, the cred-
ible regions are much smaller in this case, even though they
contain the default value of 68% of the posterior samples.
The lines in Fig. 1c join the modes of the average of samples
from the trace model. The points joined by the lines are
different from the large symbols, which are estimated on the
basis of encompassing model samples, since the encompass-
ing model admits samples that violate the trace model.
However, the difference is not large, reflecting the fact that
for most participants, the trace model provides an excellent
description of this data.

Figure 1d plots average results for the yes—no example,
using the signal-detection theory d' measure of accuracy. The
lines in Fig. 1d join the modes of the most commonly occur-
ring order' for monotonic MCMC samples (the best mono-
tonic model)—that is, MCMC samples from either the
unidimensional or the no-overlap model. Because this data is
well described by a one-dimensional model, the difference
between the best monotonic model and encompassing model
modes is relatively small.

"It is important to note that the best order may differ between partic-
ipants. Before interpreting the best (most frequently occurring) mono-
tonic model in the average, such as is plotted in Fig. 1d, it is advisable
to use stSummary to examine the degree of variability in the best
orders over participants, since strong individual differences may mean
that taking an average is not sensible.

Figure 1c and d were created after first running stSample
to the default criterion, then stBootav to average the trace
and monotonic samples stored by stSample. The stBootav
function allows users to choose to calculate bootstrap aver-
ages (on the basis of the stored samples for each participant)
from one or more of the encompassing, trace, and monotonic
models. A set of bootstrap averages is created by repeatedly
randomly selecting with replacement one sample from each
participant’s set of posterior samples for a given model and
taking their mean. Each time stBootav is invoked, it can
compute averages for only one type of accuracy.

Monotonic samples may be relatively rare for some data
(e.g., the 2AFC data, since it is strongly nonmonotonic), and
so the averages can be unreliable; to alert users to this
possibility, stBootav reports the number for participants
who have fewer than 100 samples. A participant with no
monotonic samples is automatically excluded from the av-
erage. The problem of a lack of monotonic samples might be
addressed by calling stSample again with a stricter criterion,
but usually a lack of monotonic samples indicates that the
monotonic model is not appropriate for the data, and so
there is no point in plotting it.

Once averages are stored in an sfa object, stPlot can
make a corresponding average state-trace plot (e.g.,
Fig. 1d). Data points in average plots represent the
central tendency of the set of bootstrap averages.
Variability among the averages is used to construct
credible regions in the same way as for individual
participants. These credible regions reflect uncertainty
in the estimated average over the particular set of par-
ticipants in an experiment. The stBootav function also
allows participants to be selected at random with re-
placement on each bootstrap repetition; this produces a
set of averages with the same central tendency but
greater variability that is appropriate when the partici-
pants are treated as a sample from a population.

Limitations and future directions

StateTrace is limited in a number of ways that we plan to
address: It requires a fully repeated measures design, allows
only two levels for state and dimension factors, and works
with only binary data. This is not to say that it is not both valid
and useful to perform a state-trace analysis involving
between-subjects factors (e.g., does the dimensionality of
memory differ between amnesiacs and controls?). However,
statistical analysis of such state-trace plots requires estimation
of a population-level model and, so, would require a hierar-
chical extension of Prince et al.’s (2012) approach. Bayesian
methods are suited to this extension, and we hope to pursue it
in future work. Until then, we recommend Verhaeghen and
Cerella’s (2002) multilevel approach to address such designs,
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although it requires the assumption of a functional form (e.g.,
linear) for data traces.

In principle, both state and dimension factors may
have more than two levels. We are currently testing a
fast approximation for the Bayesian analysis, which
removes the computational reason for having only two
dimension levels. Hence, this restriction will likely be
removed as part of an update incorporating the fast
approximation. An extension beyond two state levels
requires more fundamental changes, and although appli-
cable methods have been developed (Dunn & James,
2003), further work is required to extend our Bayesian
analysis.

For now, when users are interested in the dimensionality
underlying the relationship between three state-factor levels
(e.g., A, B, and C) or more they can use StateTrace by
taking advantage of the transitivity of pairwise state-trace
inference (e.g., test A vs. B and B vs. C, with one-
dimensional results in both cases indicating that a single
latent variable explains variation in all three). A similar
approach can be required if more than two dimension-
factor levels are required. Finally, the limitation to binary
data can be accommodated by collapsing (e.g., a 1-10
confidence rating could be collapsed to high vs. low), but
subject to the usual caveats about loss of information. We
plan to explore the extension of Prince et al.’s (2012)
Bayesian analysis and StateTrace to such finer-grained
measures using a multinomial data generating assumption.

Although the range of application is restricted as
described above, the advance provided by Prince et
al.’s (2012) Bayesian analysis and the current package
within this domain is substantial. Rather than judging
state-trace plots “by eye,” these Bayesian procedures not
only quantify evidence about dimensionality (i.e., one or
more than one latent variable), but also aid in the
process of design refinement. Moreover, the StateTrace
package enables the adoption of these methods by
researchers who are unfamiliar with the required sam-
pling and estimation techniques. It does so by automat-
ing many aspects of a state-trace analysis of binary
response data, including the output of both tabular and
graphical summary results and customizable state-trace
plots. Additionally, StateTrace is a GUI-driven package
and, so, is accessible to users who are also not familiar
with the R language.
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