
Tatool: A Java-based open-source programming
framework for psychological studies

Claudia C. von Bastian & André Locher & Michael Ruflin

Published online: 22 June 2012
Psychonomic Society, Inc. 2012

Abstract Tatool (Training and Testing Tool) was developed
to assist researchers with programming training software,
experiments, and questionnaires. Tatool is Java-based, and
thus is a platform-independent and object-oriented frame-
work. The architecture was designed to meet the require-
ments of experimental designs and provides a large number
of predefined functions that are useful in psychological
studies. Tatool comprises features crucial for training studies
(e.g., configurable training schedules, adaptive training
algorithms, and individual training statistics) and allows
for running studies online via Java Web Start. The accom-
panying “Tatool Online” platform provides the possibility to
manage studies and participants’ data easily with a Web-
based interface. Tatool is published open source under the
GNU Lesser General Public License, and is available at
www.tatool.ch.

Keywords Cognitive training . Experimental software .

Java . Open-source . Online experiments

Various software packages for conducting behavioral
experiments exist—for example, E-Prime (Schneider,
Eschman, & Zuccolotto, 2002), Inquisit (Draine, 1989),
and SuperLab (Haxby, Parasuraman, Lalonde, & Abboud,

1993). However, the majority of this experimental software
is proprietary, and thus is often expensive and not extensible
to the demands encountered in the wide range of computer-
based psychological research. There are also a growing
number of freely available or open-source experimental
software packages (e.g., Psychophysics Toolbox for MAT-
LAB, Brainard, 1997; Pelli, 1997; PyEPL, Geller, Schleifer,
Sederberg, Jacobs, & Kahana, 2007; Functional Measure-
ment Builder Suite, Mairesse, Hofmans, & Theuns, 2008;
TScope, Stevens, Lammertyn, Verbruggen, & Vandieren-
donck, 2006; and PsyToolkit, Stoet, 2010), which are more
cost-effective and often more flexible. However, most of
these software packages generate platform-dependent code
that is suitable solely for specific operating systems (e.g.,
Microsoft Windows or Mac OS). Moreover, some software
packages can only be used for offline research in the lab.
Tatool is an open-source programming framework based on
Java, and hence is extensible and platform-independent.
Tatool was developed specifically with a focus on facilitat-
ing cognitive training research, but it can be used for setting
up experiments and questionnaires as well, both online and
offline. With Tatool, one compiled version of the experi-
mental tasks can be distributed online to all participants.
This is particularly useful for cognitive training studies, in
which it is often required that training sessions run self-
administered from participants’ home computers with dif-
ferent operating systems. Moreover, Tatool provides multi-
ple features that are crucial for conducting training studies
(e.g., session schedulers, adaptive training algorithms, and a
Web-based interface to monitor participants’ commitment),
which will be described in more detail below.

Tatool is published open source under the GNU Lesser
General Public License. By editing the source code of
Tatool, the software can be extended to virtually every need
that may be encountered during the technical development

C. C. von Bastian (*)
Department of Psychology, University of Zurich,
Binzmühlestrasse 14/22,
8050 Zurich, Switzerland
e-mail: c.vonbastian@psychologie.uzh.ch

A. Locher
Bristol, UK

M. Ruflin
Sydney, New South Wales, Australia

Behav Res (2013) 45:108–115
DOI 10.3758/s13428-012-0224-y

http://www.tatool.ch

of psychological tasks or studies. Because Tatool is open
source, this also implies that fellow researchers can—and
are invited to—contribute their own ideas to the Tatool main
release in order to optimize the framework for different
fields of research. The code of training or experimental tasks
can be published under the GNU General Public License, so
researchers can easily exchange tasks or code snippets with-
out compromising their authorship of a specific task.

Tatool is based on the programming language Java,
which is an object-oriented language with a common syn-
tax. Furthermore, a Java-based programming framework
entails three key benefits. First, Java is a portable language.
Therefore, Tatool applications can be written on one oper-
ating system (e.g., Windows) and run on every other oper-
ating system, such as Mac OSX or Linux, without the need
to change the code. Hence, this tool is truly platform inde-
pendent. Second, the Java Runtime Environment (JRE)
necessary for executing Java applications can be down-
loaded for free and is easily installed. Tatool requires Java
version 1.6 or later. To date, many applications in digital
everyday life use Java technology, which means that most
participants will probably have the JRE already installed.
Third, the Java Web Start technology included in the JRE
allows for the online distribution of the Tatool application
client. With a few mouse clicks, the client is installed on a
local computer. After installation, the application runs on the
local computer and does not require an Internet connection
anymore, avoiding typical issues of Internet testing (e.g.,
random noise produced by the Internet connection). Hence,
it allows for running experiments or training studies online
without sacrificing the advantages of an offline application
(see also Schmiedek, Bauer, Lövden, Brose, & Linden-
berger, 2010). Java Web Start can also be used to facilitate
the distribution of software updates. When starting the local
application, Java Web Start can optionally search for
changes to the online code and update the local version
accordingly.

The Tatool framework can be used with different levels
of complexity, depending on the user’s programming skills.
For experimenters or software developers with at least mod-
erate prior knowledge of Java or object-oriented program-
ming, the Tatool framework provides an extensive
application programming interface (API). It comprises a
large number of Java classes (in simplified terms, bundles
of functions) and methods that are useful in the context of
psychological studies in general, and in particular for
computer-based training studies. The full API documenta-
tion, including a comprehensive list of Tatool’s classes and
methods, is accessible online via www.tatool.ch/javadoc.
Once programmed in Java, study components (e.g., instruc-
tions, questionnaires, and tasks) are arranged in module files
written in XML (“Extensible Markup Language”), which is
a text format that is readable by both humans and machines.

XML documents follow a tree structure, consisting of a
single root element that branches into one or more child
elements. The grammar of the XML document is con-
strained by a specific set of rules, called the schema lan-
guage. Tatool utilizes the XML schema provided by the
open-source Spring framework (www.springsource.org).
Due to its easily comprehensible format, XML can be
viewed as a translator between the experimenter and Tatool.
In the module file, the parameters of an experiment, such as
the display duration of stimuli or the number of trials, can be
edited without having to change the Java code (see the How
to Get Started section below). Therefore, it offers the op-
portunity for the properties of already-implemented tasks to
be customized by researchers or students without or with
only few programming skills. Module files can be opened
and started with the Tatool application client from online
and from local sources.

The Tatool application client comes with a ready-to-
use graphical user interface and is multilingual (current-
ly available in English and German) and capable of
multiuser management (i.e., several individuals can use
the same Tatool installation by creating different users).
Custom information, such as user statistics, can be dis-
played in the main window, facilitating the individuali-
zation of the client application (Fig. 1). The display
during module execution (e.g., an experimental task) is
organized in three regions (north, center, and south,
according to the Java BorderLayout) and provides two
modular panels that can be displayed in these regions,
the “status panel” (top or “north” panel in Fig. 2) and
the “action panel” (bottom or “south” panel in Fig. 2).
The status panel can display information on the current
level of difficulty, the number of trials already complet-
ed, feedback on the correctness of the last trial, and a
visual timer display. The action panel enables the user
to interact with Tatool, for example through keypresses,
mouse clicks on buttons, or text input fields. The panels
can be set to be visible or hidden, for example to give
feedback during practice trials, but not during test trials.
The module execution display can either run in win-
dowed or full-screen mode.

Data produced during the execution of a module are
stored in a local database coming with Tatool, from which
they can be exported as comma-separated value (CSV) files.
These files are composed of one row per trial and several
columns for the variables of interest, which can be virtually
any stimulus properties or (measurable) variables. The CSV
file can be opened with a spreadsheet program such as
Microsoft Excel, in which data can be aggregated with a
few mouse clicks via pivot tables. The CSV file can also be
viewed with any text processor or imported into statistic
programs such as SPSS. To facilitate data aggregation, the
column headers in the CSV file are named according to

Behav Res (2013) 45:108–115 109

http://www.tatool.ch/javadoc
http://www.springsource.org

definitions made in the XML module file and are, therefore,
meaningful to the experimenter.

Data can be exported either locally, on the client com-
puter, or online, to an FTP server or a Web server running
Tatool Online, which allows for managing studies via a Web
interface. This component can be installed on any Web
server that supports PHP and MySQL. An example instal-
lation can be viewed at www.tatool.ch. Experimenters can
create studies, add groups, and assign participants to these
groups. Different experimenter profile settings would facil-
itate complex study designs, such as double-blinding (i.e.,
when one or more experimenters must not be informed
about the identity and group membership of participants).
Furthermore, Tatool Online provides helpful features for
studies that require participants to do the experimental tasks

at home, as is the case in a growing number of training
studies. The data can be uploaded automatically, reducing
data loss due to possible technical problems. Importantly,
data are also stored locally in an embedded database
(HSQLDB). Hence, in the case of technical problems (e.g.,
a loss of Internet connection), data can be uploaded later or
exported locally. Tatool Online processes uploaded data in
real time and lists all participants and their sessions, includ-
ing the date and time of the last upload, session duration,
and custom information (e.g., performance and reaction
time). This enables experimenters to gain a quick overview
of the participants’ commitment and to intervene if neces-
sary. Moreover, Tatool Online allows for monitoring the
overall progress of a study by providing basic descriptive
statistics and simple graphs on the aggregated level, such as

Fig. 1 Main window of the
Tatool application client

Fig. 2 Display during the
execution of a module

110 Behav Res (2013) 45:108–115

http://www.tatool.ch

performance means and minimum and maximum values. The
experimenter can either access the data via Tatool Online or
download it from the FTP server hosting the Tatool Online
installation.

Architecture

Tatool’s architecture matches the design of typical psycho-
logical experiments. The core concept of Tatool’s architec-
ture is the module, which represents the experiment or study
(e.g., a cognitive training regimen, an experimental design,
or a series of questionnaires). A module comprises multiple
elements that can be of a number of types: list elements,
compound elements, or executable elements. The list and
compound elements serve to group executable elements,
and can be nested within each other. List elements set the
order in which elements listed in it are executed. Compound
elements contain a primary and a secondary element and can
be used as a basis for the implementation of dual tasks (e.g.,
a Brown–Peterson task [Brown, 1958] or a complex span
task [Daneman & Carpenter, 1980]). First, the primary ele-
ment is executed (e.g., the display of a list of words to
memorize). During the following execution of the secondary
element (e.g., a distraction task), the primary element is
suspended until the secondary element is completed. After-
ward, the primary element is executed again (e.g., the dis-
play of another list of words or of a prompt to recall the
words memorized before). Only the third type of element,
the executable element, can contain an executable. The
executable is the implementation (i.e., the Java class) of
the actual task that the participants have to do, such as the
memorization and recall of a list of words, in the example
above. Every executable element can only contain precisely
one executable. Therefore, modules including more than
one task will comprise several executable elements nested
within list and/or compound elements.

All three element types can (but do not have to) contain
handlers, which are reusable functions that can act during
different phases of the execution process and across differ-
ent executables. For example, a handler triggered after the
completion of a compound element could sum up the words
recalled correctly in this task and compare the sum to the
performance in another task. Figure 3a illustrates the hier-
archy of a module that consists of an executable element
nested within a list element.

The module hierarchy is defined in an XML file. It can be
opened with the Tatool application, which then saves the
file’s contents in a local Java database (HyperSQL) used
within Tatool. With every execution of a module, Tatool
creates a session and saves the data produced during this
session in the same database. Each execution of an execut-
able can be recorded and stored as a trial within the given

session. Figure 3b shows the different elements of a module
as they are reflected in the data view (i.e., data output).

Tatool subdivides the runtime of a module into different
phases (see Fig. 4), thereby allowing elements (e.g., han-
dlers or executables) to be triggered at given times during
the execution. In simplified terms, there are three types of
phases: before, during, or after the execution of the actual
task. As soon as a module file is opened with the Tatool
client application, the “execution_start” phase begins. After
the user presses the “Start” button (cf. Fig. 1), Tatool enters
the “session_start” phase. The phase immediately before the
execution of an executable is the “pre_process” phase. After
the actual execution of an executable (“execute_execut-
able”), each phase in the first half of the module is ended
by a counterpart phase: immediately after the execution of
an executable (“post_process”), when a session ends (“ses-
sion_end”), and when the module itself is finished (“execu-
tion_end”). For example, as a module file is opened
(“execution_start”), the display of an individual user statistic
in the main window of the application could be refreshed.
When the participant starts a session (“session_start”), it
might be useful to reset the stimulus set and to save the start
time of the session. The “pre_process” phase can be used for
cleaning up the screen before the next stimulus is shown by
“execute_executable.” Afterward (“post_process”), a han-
dler could count and save the number of correct answers.
At the “session_end,” the session end time could be saved in
order to calculate the overall duration of the session, and
when the module is finished (“execution_end”), the main
window could be refreshed again to display the updated user
statistics.

Using tatool

So far, Tatool has been used for programming a wide range
of tasks in the form of executables—for example, dual tasks
(complex span or Brown–Peterson), visual matching tasks
(e.g., face matching), task switching, visual search, a trivia
quiz, and several questionnaires. Moreover, we imple-
mented several handlers for different purposes, two exam-
ples of which we will present here.

Adaptive training algorithm

Some of the tasks listed above were used as training tasks,
which means that the difficulty of the respective task was
automatically increased according to the participants’ indi-
vidual performance, for example by increasing memory load
in a dual task or reducing the display duration in switching
and matching tasks. For this purpose, we applied variations of
an adaptive training algorithm (Fig. 5). The open-source release
includes three adaptive training algorithms to choose from. The

Behav Res (2013) 45:108–115 111

simplest one is the “default points and level handler.” If a
participant’s performance is above a defined threshold (max-
Threshold) after a specified number of trials (sampleSize), task
difficulty is increased. If performance is below a certain thresh-
old (minThreshold), task difficulty is decreased. The experi-
menter can set the number of trials and the thresholds for
changing the difficulty in the module file via XML (see the
How to Get Started section).

The adaptive training algorithm is implemented as a handler,
which acts across all phases during module execution and can
be used by any executable. At the beginning of a session, it
loads the level achieved in the last session. Before the task is
executed (i.e., in the “pre_process” phase), it displays the
current level of difficulty in the status panel (in the top of

Fig. 2). After execution of the executable, the algorithm calcu-
lates the participant’s performance and, depending on the num-
ber of trials completed, checks whether the level of task
difficulty has to be increased or decreased. At the end of the
session, the algorithm saves the level of difficulty, thereby
allowing participants to start the next session on the same level.

EEG trigger handler

In another experiment, we recorded task-related brain activity
with electroencephalography (EEG). To allow communica-
tion between the Tatool application that ran the cognitive test
battery and the EEG recording device, we needed a parallel
port interface. Therefore, we used the Java native interface,

Fig. 3 Hierarchy of Tatool’s
architecture. In the XML view
(a), a module comprises
multiple elements (list,
compound, or executable
elements), which can contain
one or more handlers and one or
more nested elements, such as
executable elements. Only
executable elements can contain
executables. In the data view
(b), each execution of a module
corresponds to a session, and
each execution of an executable
corresponds to a trial

Fig. 4 Phases during the run
time of a module

112 Behav Res (2013) 45:108–115

which utilizes C code to interact with the parallel port and any
hardware attached to it. In our case, Tatool sent signals to the
pins of the parallel port that were, in turn, read by the EEG
device that set the markers needed for the analysis of the EEG
recordings. To be able to set markers at stimulus onset and
when the participants responded to this stimulus, the handler
acted during the execution of the executable (i.e., in the
“execute_executable” phase).

How to get started

Tatool can be used with different levels of complexity that
come with different levels of flexibility. At the top level of
complexity and flexibility, users can extend Tatool to meet
virtually every possible requirement and can contribute these
extensions to the Tatool main release. This requires a deep
knowledge of Java, the use of subversion, and XML. Most
prospective users will probably use Tatool to program specific
experimental or training tasks and to set up studies, which
requires basic knowledge of Java and XML. In this case, the
level of complexity is moderate, but the level of flexibility is
still very high, because the Tatool framework comprises pre-
defined functions that meet many of the needs of computer-
based experimental psychology. To program tasks with the
Tatool framework, any Java integrated development environ-
ment (IDE) can be used—for example, the open-source
Eclipse IDE (www.eclipse.org). In the Tatool documentation
available at www.tatool.ch, we provide instructions on how to

set up the development environment and step-by-step tutorials
on how to program tasks within the Tatool framework and
how to set up the XMLmodule files to run a study. Tatool can
be run with or without Tatool Online. Little knowledge of
MySQL database queries is required to install Tatool Online
on a Web server.

At its lowest level of complexity and flexibility, users can
easily modify the parameters of already-programmed experi-
ments or training implementations (e.g., number of trials, dis-
play durations of the stimuli, or performance thresholds for
adaptive training algorithms) within the module file, written
in XML. In the following example, we show how to modify
single parameters in a working experimental task that is includ-
ed in the Tatool demo client available at www.tatool.ch/
demo.htm. In this Stroop-like task (Stroop, 1935), the words
GREEN and BLUE are randomly presented on the screen in
the color green or blue, and the correct color has to be identi-
fied as quickly and accurately as possible by a keypress. To
modify the experimental parameters of this task, the module
file for the demo client has to be downloaded from www.
tatool.ch/download.htm. The text file, with a .xml extension,
can be opened with any text editor. Next, the Tatool demo
client (www.tatool.ch/demo.htm) has to be downloaded, fol-
lowing the instructions. Instead of (or in addition to) adding the
module file from Tatool Online, the option “Module from local
file” should be selected, in order to open the previously down-
loaded module file from its location on the hard drive.

Table 1 gives an overview of the experimental parameters
that can be modified in the example module file and their

sampleSize

LEVEL UP
increase level of difficulty

Performance < minThreshold Performance > maxThreshold

CHECK PERFORMANCE
(= individual accuracy)

START

LEVEL DOWN
decrease level of difficulty

Fig. 5 Algorithm handler that
adjust the level of task difficulty
to individual changes in
performance. Terms in italics
are parameters that can be set in
the module file

Behav Res (2013) 45:108–115 113

http://www.eclipse.org
http://www.tatool.ch
http://www.tatool.ch/demo.htm
http://www.tatool.ch/demo.htm
http://www.tatool.ch/download.htm
http://www.tatool.ch/download.htm
http://www.tatool.ch/demo.htm

possible ranges. The parameters can easily be found within
the module file by using the built-in search function of the
text editor used (e.g., in Windows programs, pressing the
keys CTRL+f). After changing the value of a parameter, the
file has to be saved. Importantly, after saving the module
file, it has to be reloaded in Tatool via the option “Module
from local file,” so that the modifications will be applied.

Limitations and future directions

Tatool offers a multitude of features and high flexibility.
Importantly, Tatool is a programming framework, and not
a graphical experiment builder. Therefore, Tatool’s high
flexibility entails that developing tasks with Tatool is
code-heavy, and prospective users thus will need basic
knowledge of Java and XML. Several well-written tutorials
on Java are available in the form of books or on the Web for
free. On our webpage, we also offer step-by-step tutorials
for novices using the Tatool framework. An accompanying
discussion board on our webpage allows users to exchange
code snippets and experimental tasks and to get help from
the community concerning programming issues. Once an
application is programmed in Java, experimental parameters
can easily be modified via module files written in XML. To
further facilitate the modification of experimental parame-
ters, in the near future we plan to implement a graphical user
interface for setting up module files more quickly.

The Tatool programming framework was developed
mainly to facilitate cognitive training research, but it can
be used for any computer-based experiment. For specific
paradigms, however, specialized software packages may be
more suitable. For example, the Functional Measurement
Experiment Builder Suite (Mairesse et al., 2008), for con-
ducting experiments using the functional measurement par-
adigm, or WebExp (Keller, Subahshini, Mayo, & Corley,
2009), for conducting simple Web experiments, are both
Java-based applications, and therefore are also platform

independent, but they require a lot less prior programming
knowledge.

Another possible limitation of Tatool concerns timing.
Generally, the timing implementation in Java does not offer
the same accuracy offered by programming languages that
generate native machine code or external timing hardware.
The accuracy of timing in Tatool relies heavily on the timer
precision provided by the underlying operating system. The
nanoTime method, available since Java 1.5, uses the highest
resolution clock available on the platform, and while its return
value is in nanoseconds, the update resolution is typically only
in microseconds. Onmodern hardware and operating systems,
the Java methods can deliver accuracy and precision in the
microsecond range. Java’s timing performance can be im-
proved by using the Java native interface, which calls func-
tions provided by a low-level programming language such as
C (cf. the implementation of the EEG trigger handler above).

To date, Tatool is available in German and in English, but
translations into other languages might be required. Tatool is
internationalized following the coding practice of the i18n
approach. This means that strings (e.g., names of buttons)
are stored externally in separate resource files that can be
translated with minor effort.

Conclusion

Tatool is a Java-based open-source programming framework
that comprises a large library of functions useful for running
psychological experiments. It is particularly useful for cog-
nitive training studies and boasts multiple features, such as
configurable training schedules, adaptive training algo-
rithms, and an optional Web-based interface that supports
monitoring of participants’ commitment. It has high porta-
bility, can be flexibly adapted to virtually every requirement,
and is published open source, and hence is available for free.
Future plans include extending the documentation and tuto-
rials already available and developing a graphical interface
to facilitate the creation and modification of module files.

Table 1 Modifiable parameters of the example module file

Experimental Parameter Description Possible Values

defaultInterElementPauseDuration Duration in milliseconds of a pause (i.e., a blank screen) between the study
components

Any integera

numIterations Defines the number of iterations of elements within a list (i.e., number of trials) Any integer

sampleSize Number of trials that are used to calculate the user’s accuracy for the adaptive
training algorithm

Any integer

maxThreshold If the accuracy in a specified number of trials (sampleSize) is above this value,
task difficulty will be increased.

Integer between 0 and 100
(inclusive)

minThreshold If the accuracy in a specified number of trials (sampleSize) is below this value,
task difficulty will be decreased.

Integer between 0 and 100
(inclusive)

aWhole numbers

114 Behav Res (2013) 45:108–115

Author note This work was supported by a grant to the first author
from the Forschungskredit of the University of Zurich. We thank
Nicole Cruz, Simone Eberhart, Julia Herkert, and the experimenters
of past studies for testing earlier versions of Tatool and for their
valuable feedback. We also thank Klaus Oberauer for his helpful
comments on an earlier version of the manuscript.

References

Brainard, D. H. (1997). The Psychophysics Toolbox. Spatial Vision,
10, 433–436. doi:10.1163/156856897X00357

Brown, J. (1958). Some tests of the decay theory of immediate mem-
ory. The Quarterly Journal of Experimental Psychology, 10, 12–
21. doi:10.1080/17470215808416249

Daneman,M., & Carpenter, P. A. (1980). Individual differences in working
memory and reading. Journal of Verbal Learning and Verbal Behav-
ior, 19, 450–466. doi:10.1016/S0022-5371(80)90312-6

Draine, S. (1989). Inquisit [Computer software]. Seattle, WA: Milli-
second Software.

Geller, A. S., Schleifer, I. K., Sederberg, P. B., Jacobs, J., & Kahana, M. J.
(2007). PyEPL: A cross-platform experiment-programming library.
Behavior ResearchMethods, 39, 950–058. doi:10.3758/BF03192990

Haxby, J. V., Parasuraman, R., Lalonde, F., & Abboud, H. (1993).
SuperLab: General-purpose Macintosh software for human exper-
imental psychology and psychological testing. Behavior Research
Methods, 25, 400–405. doi:10.3758/BF03204531

Keller, F., Subahshini, G., Mayo, N., & Corley, M. (2009). Timing
accuracy of web experiments: A case study using the WebExp
software package. Behavior Research Methods, 41, 1–12.
doi:10.3758/BRM.41.1.12

Mairesse, O., Hofmans, J., & Theuns, P. (2008). The Functional
Measurement Experiment Builder Suite: Two Java-based pro-
grams to generate and run functional measurement experiments.
Behavior Research Methods, 40, 408–412. doi:10.3758/
BRM.40.2.408

Pelli, D. G. (1997). The VideoToolbox software for visual psychophy-
sics: Transforming numbers into movies. Spatial Vision, 10, 437–
442. doi:10.1163/156856897X00366

Schmiedek, F., Bauer, C., Lövden, M., Brose, A., & Lindenberger, U.
(2010). Cognitive enrichment in old age. GeroPsych, 23, 59–67.
doi:10.1024/1662-9647/a000013

Schneider, W., Eschman, A., & Zuccolotto, A. (2002). E-Prime
[Computer software]. Pittsburgh, PA: Psychology Software
Tools.

Stevens, M., Lammertyn, J., Verbruggen, F., & Vandierendonck, A.
(2006). Tscope: A C library for programming cognitive experi-
ments on the MS Windows platform. Behavior Research Meth-
ods, 38, 280–286. doi:10.3758/BF03192779

Stoet, G. (2010). PsyToolkit: A software package for programming
psychological experiments using Linux. Behavior Research Meth-
ods, 42, 1096–1104. doi:10.3758/BRM.42.4.1096

Stroop, J. R. (1935). Studies of interference in serial verbal reactions.
Journal of Experimental Psychology, 18, 643–662. doi:10.1037/
0096-3445.121.1.15

Behav Res (2013) 45:108–115 115

http://dx.doi.org/10.1163/156856897X00357
http://dx.doi.org/10.1080/17470215808416249
http://dx.doi.org/10.1016/S0022-5371(80)90312-6
http://dx.doi.org/10.3758/BF03192990
http://dx.doi.org/10.3758/BF03204531
http://dx.doi.org/10.3758/BRM.41.1.12
http://dx.doi.org/10.3758/BRM.40.2.408
http://dx.doi.org/10.3758/BRM.40.2.408
http://dx.doi.org/10.1163/156856897X00366
http://dx.doi.org/10.1024/1662-9647/a000013
http://dx.doi.org/10.3758/BF03192779
http://dx.doi.org/10.3758/BRM.42.4.1096
http://dx.doi.org/10.1037/0096-3445.121.1.15
http://dx.doi.org/10.1037/0096-3445.121.1.15

	Tatool: A Java-based open-source programming framework for psychological studies
	Abstract
	Architecture
	Using tatool
	Adaptive training algorithm
	EEG trigger handler

	How to get started
	Limitations and future directions
	Conclusion
	References

