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Abstract Student-constructed responses, such as essays,
short-answer questions, and think-aloud protocols, pro-
vide a valuable opportunity to gauge student learning
outcomes and comprehension strategies. However, given
the challenges of grading student-constructed responses,
instructors may be hesitant to use them. There have
been major advances in the application of natural lan-
guage processing of student-constructed responses. This
literature review focuses on two dimensions that need to
be considered when developing new systems. The first
is type of response provided by the student—namely,
meaning-making responses (e.g., think-aloud protocols,
tutorial dialogue) and products of comprehension (e.g.,
essays, open-ended questions). The second corresponds
to considerations of the type of natural language pro-
cessing systems used and how they are applied to
analyze the student responses. We argue that the appro-
priateness of the assessment protocols is, in part, con-
strained by the type of response and researchers should
use hybrid systems that rely on multiple, convergent
natural language algorithms.
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Computer-based assessment of student-constructed
responses

Educators are often faced with a difficult choice when devel-
oping tasks to evaluate student learning. Specifically, they have
the option of closed responses (e.g., multiple-choice tests, true/
false tests) or student-constructed responses (e.g., short answers
to questions or long essays). Although possible, it is not easy to
develop multiple-choice tests that target important constructs
that are fortified by cognitive theories of learning and compre-
hension (Graesser, Ozuru, & Sullins, 2009; Magliano, Millis,
Ozuru, & McNamara, 2007; VanderVeen et al., 2007). Many
would agree that open-ended responses provide a rich oppor-
tunity for students to engage in the active generation of knowl-
edge, problem solving, explanation of difficult concepts, and
reasoning that are not required or emphasized in closed-
response test items. Open-ended items also provide opportuni-
ties for instructors to provide substantive feedback to students
at a relatively fine-grained level, which is important for enhanc-
ing learning outcomes (Shute, 2008). Unfortunately, however,
educators often do not to use open-ended items, because they
do not have the time or, perhaps, expertise to evaluate them and
provide critical feedback.

Thankfully, over the past 2 decades, there have been sub-
stantial advances in the application of natural language process-
ing techniques to support the analyses of student-constructed
responses (Graesser & McNamara, 2012; Landauer,
McNamara, Dennis, & Kintsch, 2007; Shermis, Burstein, Hig-
gins, & Zechner, 2010). We define student-constructed
responses as those that require a student to produce an answer
in natural language that may range from a couple of sentences
to several paragraphs. These advances have been in the context
of computer-based assessments of explanations and think-aloud
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protocols during reading comprehension (Gilliam, Magliano,
Millis, Levinstein, & Boonthum, 2007; Magliano, Millis, the
RSAT Development Team, Levinstein, & Boonthum, 2011),
the grading of essays and text summaries (Attali & Burstein,
2006; Burstein, Marcu, & Knight, 2003; Franzke, Kintsch,
Caccamise, Johnson, & Dooley, 2005; Landauer, Laham, &
Foltz, 2003), the grading of short-answer questions (Leacock &
Chodorow, 2003), and intelligent tutoring systems and trainers
that require students to produce constructed responses during
interactive conversations (Graesser, Jeon, & Dufty, 2008;
Litman et al., 2006; McNamara, Levinstein, & Boonthum,
2004; VanLehn et al., 2007). These can take the form of
directed responses to specific questions or less directed think-
aloud and self-explanation responses. These automated systems
incorporate a variety of natural language processing tools and
algorithms to assess the responses, make inferences about
student learning, and make decisions to provide appropriate
feedback. As such, these systems have the promise to provide
assessment aides that can help ease the burden of including
student-constructed responses.

Skeptics of automated constructed response systems have
frequently raised worries about their use and accuracy
(Calfee, 2000; Ericsson & Haswell, 2006). The skeptics
point out important aspects of student responses that the
automated systems fail to capture, the ethics of using com-
puters rather than teachers to evaluate writing, and differ-
ences in the criteria that humans versus computers use in the
automated analyses. Many of these concerns could also be
raised about humans who score essays or give feedback on
constructed responses. Indeed, humans often do not have the
time or expertise to evaluate constructed verbal responses
accurately, especially when there are many to evaluate. Just
as human graders have limitations, so do the automated
systems. Their assessments will always be probabilistic,
rather than absolute. Automated systems cannot handle most
forms of metaphor, literary devices, and content that is
unrelated to the topics targeted by the automated systems,
which limits their application across disciplines. Moreover,
as noted by the critics, constructed responses may reveal
rich processing that may not be amenable to computational
analyses. To the extent that the automated systems fall prey
to these limitations, they are best used as an aid to educators,
rather than as a replacement for human graders.

Although we acknowledge these potential limitations of
automated assessments, it is equally important to appreciate
that the scoring and feedback can be useful, even when it is
only moderately accurate. For example, intelligent tutoring
and training systems have produced substantial improve-
ments in subject matter learning even when the feedback
to the student has been almost but not quite accurate
(Graesser, Lu, et al., 2004; Millis et al., in press; VanLehn
et al., 2007). Automated feedback on student writing over
weeks can improve the writing even when the automated

feedback is not quite perfect (Attali & Burstein, 2006;
Elliott, 2003; McNamara et al., 2012). For these reasons, it
is appropriate to take stock of the status of automated
assessment of constructed responses with respect to use
and accuracy and with the specific goal of making recom-
mendations for the development of new systems that have
the viability to be used in the classroom and other educa-
tional contexts.

The goal of this article is to provide a review of the
literature that identifies dimensions that one needs to
consider with developing new assessment protocols.
Researchers developing new systems should consider at
least two dimensions. First, one needs to consider the use
of different types of constructed responses and the kinds
of assessment that they can deliver. That is, the goals of
the system constrain how instructors will use them, the
length of the verbal responses, and the expected accuracy
of the computer-based educational tool. There are impor-
tant differences among (1) the assignment of a grade to
an essay in a class or a high-stakes examination, (2)
information provided to an instructor to evaluate the
overall progress of a student, and (3) timely feedback
to the student during tutorial dialogue or think-aloud
protocols during reading. Second, one needs to consider
the strengths and weakness of natural language process-
ing tools with respect to the accuracy of the assessments
and aptness of the resulting feedback. This is intimately
related to the protocols that are developed to assess
student responses and that utilize these algorithms. The
natural language processing advances all compare the
students’ verbal responses with expected responses that
are specified by some rubric, or what we call expect-
ations (words, symbolic expressions, sentences, para-
graphs, scripts, sets of essays graded in the past,
criterial dimensions). The semantic matches between the
student responses and the expectations are computed by a
variety of modules developed in computational linguis-
tics, cognitive science, and information sciences (Burgess,
Livesay, & Lund, 1998; Jurafsky &Martin, 2008; Landauer et
al., 2007). However, there are important methodological deci-
sions that need to be made when constructing the
expectations that are related to the type of response
produced by a student. Additionally, as we will argue,
given the strengths and weaknesses of different natural
language algorithms, it is advisable to incorporate mul-
tiple natural language algorithms into the assessment
protocols.

Types of student-constructed responses

Someone naïve to the advances in the computer-based as-
sessment of natural language may assume that the types of

Behav Res (2012) 44:608–621 609



student responses that are readily handled by these systems
are limited. However, this is not the case. The same wide
variety of student-constructed responses extant in psycho-
logical and educational research and in educational practice
are represented in computer-based assessment and tutoring
systems. Moreover, the purposes for collecting and analyz-
ing these responses mirror the same reasons for collecting
them in research and educational contexts. We draw a broad
distinction between systems developed to support meaning
making (i.e., the pedagogical goal of students’ active gen-
eration of information) and systems developed to provide
insights into the quality and nature of one’s level of under-
standing (i.e., the pedagogical goal of achieving reliable or
valid information). These two classes of systems serve dif-
ferent functions in assessment and learning. However, this
distinction is important to consider a priori to the develop-
ment of assessment protocols, which will be discussed in the
next section.

Meaning-making student responses

Meaning-making student responses occur when students
engage in an activity that provides a window into what they
do to comprehend an experience, such as reading a text or
understanding a learning environment. Think-aloud and
self-explanation responses (Bråten & Strømsø, 2003; Chi,
de Leeuw, Chiu, & LaVancher, 1994; Coté, Goldman, &
Saul, 1998; McNamara et al., 2004; Trabasso & Magliano,
1996) and dialogues between tutee and tutor (Graesser,
Person, & Magliano, 1995) are examples of meaning-
making student responses that have been investigated in the
cognitive sciences and have been implemented in computer
systems during the last 15 years. The developers have the goal
of assessing and providing feedback on both the content and
dynamic processes of learning and comprehension.

Researchers who target meaning-making responses may
have participants provide them by writing, typing, or
expressing them orally, the latter of which requires tran-
scription (Magliano & Millis, 2003) or satisfactory speech
recognition (D’Mello, Dowell, & Graesser, 2011).The na-
ture and quality of oral versus typed responses are very
similar but not equivalent (D’Mello et al., 2011; Muñoz,
Magliano, Sheridan, & McNamara, 2006).

As an initial example, consider the information that is
elicited in think-aloud data when students read text. Table 1
depicts example typed think-aloud protocols produced while
texts on how cancerous tumors develop were read. The
examples reveal some processes that contribute to construct-
ing a coherent text representation (e.g., Magliano, 1999;
Trabasso & Magliano, 1996) and illustrate individual differ-
ences in the extent to which readers enact them (see the
Appendix for the text excerpt). For example, participant 1
produced a protocol that reflects a very close paraphrase of

the sentence that was just read, which reflects a shallow
approach to comprehension because the student is not con-
tributing inferences and explanations (Cote et al., 1998;
Magliano & Millis, 2003). In contrast, participants 2 and 3
produced statements that establish how the current sentence
is related to the more global discourse structure, which is
one of the primary bases for constructing a coherent repre-
sentation of the text (Graesser, Singer, & Trabasso, 1994; W.
Kintsch, 1998). The last example illustrates that some stu-
dents do elaborate beyond the discourse contexts, but these
types of responses support comprehension only to the extent
that they are relevant to the text. As we will discuss below,
detecting and classifying these kinds of elaborative responses
is a major challenge because it is difficult to anticipate the
variety of responses that students can produce (Magliano et
al., 2011; Millis, Magliano, Todaro, & McNamara, 2007).

Both think-aloud and self-explanation protocols (which are
very similar to think-aloud responses) are very time consum-
ing to analyze by hand, which of course motivated the goal of
developing computer-based algorithms (Magliano & Millis,
2003). Nonetheless, the development of automated assess-
ments is warranted because these protocols expose individual
differences in approaches to reading, particularly in the realm
of prior domain knowledge and use of comprehension strate-
gies (Chi, Bassok, Lewis, Reimann, & Glaser, 1989; Coté et
al., 1998; Magliano & Millis, 2003, Magliano et al., 2011).
For example, less skilled readers tend to paraphrase the sen-
tence they just read, whereas skilled readers tend to bridge
explicit statements in the text and elaborate the material with
text-relevant inferences (Magliano & Millis, 2003; Magliano
et al., 2011). Moreover, computer systems that train students
to think aloud or self-explain effectively have been shown to
promote comprehension (McNamara et al., 2004).

A central challenge of computer-based assessment or
training systems is to identify the processes enacted by a
reader that are readily apparent in the example protocols in
Table 1. As is discussed below, one solution to this chal-
lenge is to infer the processes on the basis of the content in
the protocols. If the readers’ content has words that match or
are close synonyms to the words in the current sentence, the
researcher can readily infer that the readers are restating or
paraphrasing the sentence. But if the words draw heavily
upon content from sentences in the prior discourse, readers
are likely to be engaging in the process of generating bridg-
ing inferences (Magliano & Millis, 2003; Magliano et al.,
2011). Strategy detection systems, such as the Reading
Strategy Assessment Tool (RSAT; Magliano et al., 2011),
provide reasonable estimates of broad categories of process/
strategy, such as paraphrasing and bridging, in the context of
generating think-aloud or self-explanation protocols while
text is read. This is accomplished by basing assessments of
processes on the content of the protocols (e.g., information
from current or prior discourse sentences).
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Another type of meaning-making responses occurs in
tutorial dialogue when a human or computer tutor interacts
with the student in natural language (Graesser, D’Mello, &
Cade, in press; Graesser et al., 2008; VanLehn et al., 2007).
That is, the student is given a difficult question to answer or
a problem to solve. The student and tutor collaboratively
interact in a multi-turn conversation in route to covering a
good answer or solution. The student’s response is distrib-
uted over many conversational turns, with tutor dialogue
moves that elicit or elaborate on student contributions.

Table 2 presents an example dialogue between AutoTutor
and student s who were collaboratively answering a main
question: “The sun exerts a gravitational force on the earth
as the earth moves in its orbit around the sun. Does the earth
pull equally on the sun? Explain why” (see Graesser &
McNamara, 2011). The students’ contributions in these col-
laborations vary widely in volume and quality. AutoTutor
classifies their contributions into different speech act catego-
ries, such as metacognitive statements (conversational turns 2
and 14), questions (turns 4 and 10), short answers (turn 6),

Table 1 Example typed think-aloud protocols for the sentence “A message within each receptor cell becomes activated” (from the text “How
Cancer Develops”)

Participant Clause Protocol Process

1 1. A message is activated paraphrase

2 1. The growth factor attaches to the cell and bridge

2. A message is activated paraphrase

3 1. Cells influence their surroundings. bridge

2. They transmit signals: for example growth signals. bridge

4 1. I am wondering how they can use this information elaboration

2. to find a cure for cancer. elaboration

Table 2 Example AutoTutor–student dialogue with classified dialogue moves of AutoTutor, classified speech acts of the student, and comments
(reprinted from Graesser & McNamara, 2010)

AutoTutor-1: The sun exerts a gravitational force on the earth as the earth moves in its orbit around the sun. Does the earth pull equally on the
sun? Explain why. (MAIN QUESTION)

Student-2: I don't know. (A metacognitive speech act that expresses what the student knows.)

AutoTutor-3: Could you at least try to give me an answer? That way, we'll have something as a starting place to work from. (PUMP. This dialogue
move encourages the student to say more, but does not direct the student to express particular information.) How does Newton's third law of
motion apply to this situation? (HINT. This dialogue move leads the student to articulate a particular sentence, clause, or proposition.)

Student-4: Does Newton's law apply to opposite forces? (This is a YES/NO Verification Question; the student wants confirmation that the idea is
correct.)

AutoTutor-5: Yes, right! (ANSWER. AutoTutor answers the student’s question.) Hum. (DISCOURSE MARKER. This connects different dialogue
moves within a turn.)

There's still something missing from your explanation. (DISCOURSE MARKER. AutoTutor lets the student know more is expected.) Newton's
Third Law refers to the forces exerted by one body on another ______? (PROMPT. This dialogue move encourages the student to fill in a
particular word or phrase. Prompts are needed for students who have lower knowledge and verbal ability).

Student-6: body (Short Answer)

AutoTutor-7: Bravo! (POSITIVE FEEDBACK)

Let's move on. (DISCOURSE MARKER) What can you say about the magnitude of the force that the earth exerts on the sun? (HINT)

Student-10: What is the difference between a force and a vector? (Student question.)

AutoTutor-11: Force is any influence that tends to accelerate an object; a push or pull; measured in Newtons. Force is a vector quantity and vector
is an arrow whose length represents the magnitude of a quantity and whose direction represents the direction of the quantity. (ANSWER. This
answer is fetched from the textbook)

Okay, I bet you can get this! (DISCOURSE MARKER) What is going on in this situation between the earth and sun? (HINT)

Student-12: The sun is pulling on the earth because it is bigger. (Student misconception).

AutoTutor-13: No. (NEGATIVE FEEDBACK) the forces are equal in magnitude. Um, well, for every force there is a reaction force, such that the
two forces constitute an action reaction force pair. The two forces have opposite direction and equal magnitude. No matter how different the
masses of the two objects are, they will exert reaction forces on each other in the same magnitude. (CORRECTION AutoTutor corrects the
student’s misconception.)

Do you understand? (COMPREHENSION GAUGING QUESTION)

Student-14: Yeah. I see. (Metacomprehension judgement)
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misconceptions (turn 12), and lengthier assertions that are not
represented in the protocol. The length of a student contribu-
tion in one conversational turn is quite short, only one word to
two sentences over 90 % of the time in both human tutoring
and AutoTutor (Graesser et al., 1995; Graesser, Jeon, Yang, &
Cai, 2007). The tutor needs to formulate dialoguemoves to get
the student to express more information and to be responsive
to what the student is saying.

Both human tutors and AutoTutor have a number of
dialogue moves that guide the tutorial interaction. The initial
dialogue move is frequently feedback on the quality of what
the student just expressed in the previous turn, as exempli-
fied in turns 5, 7, and 13 in Table 2. The short feedback can
vary from extremely negative to neutral to very positive.
The tutor has a number of dialogue moves that try to get the
student to express a good piece of information (i.e., a word-
or sentence-length expectation), such as pumps (turn 3),
hints (turns 3, 7, and 11), and prompts for specific words
(turn 5). Instead of trying to extract information from the
student, the tutor also delivers information to the student in
the form of assertions, answers to student questions (turn
11), corrections (turn 13), and summaries. However, a good
tutor and AutoTutor try to get the student to do the talking
and doing, rather than lecturing to the student. Tutors period-
ically ask comprehension-gauging questions (turn 13) on
whether the student is understanding the recent collaborative
changes. Students often give incorrect answers to the
comprehension-gauging questions because their metacogni-
tive knowledge is modest (Graesser, D’Mello, & Person,
2009). Indeed, it is the high-knowledge students who tend to
answer that they don’t quite understand (Graesser et al., 1995).

The conversations managed by AutoTutor are not always
perfect but are sufficient for students to get through the sessions
with minimal difficulties. Person, Graesser, and the Tutoring
ResearchGroup (TRG) (2002) reported a study inwhich half of
the turns were generated by AutoTutor and half were substitut-
ed by a human expert tutor on the basis of the dialogue history.
Participants who did not undergo tutoring (called third-person
bystanders) were presented these tutoring moves in a written
transcript and were asked to decide whether eachwas generated
by a computer or a human. Signal detection analyses revealed
that the bystanders had zero d′ scores in making these discrim-
inations. AutoTutor therefore passed a bystander Turing test for
individual tutoring turns. Of course, a bystander would pre-
sumably be able to discriminate whether a sequence of turns
was part of a dialogue with AutoTutor versus a human tutor.
AutoTutor is close enough to human tutorial dialogue to keep
the conversation going and also to promote active learning.

A more critical analysis of automated tutors like AutoTutor
has unveiled four major challenges (Graesser et al., 2008).

1. Errors in interpreting the content of student turns.
AutoTutor’s evaluation of whether an expectation (or

misconception) is expressed by a student is significantly
correlated with the evaluation of experts (r 0 .50) and almost
as high as the correlation between two experts (r 0 .63), but
the correlation is far from perfect. Sometimes when such
errors occur, the students get frustrated and conclude that the
tutor is not listening.
2. Misclassification of the speech acts in student turns. The
student turns are segmented into speech acts, and each
speech act is assigned to 1 of approximately 20 speech act
categories. The accuracy of classifying the student speech
acts into categories varies from .87 to .96, which is almost
but not quite perfect. The dialogue coherence breaks down
when some misclassification errors occur, which ends up
confusing students.
3. Ignoring student contributions that fail to match any
expectation or misconception. The student may conclude
that AutoTutor is unresponsive to the extent that this occurs.
It should be noted that human tutors also fail to meaning-
fully respond to student contributions that are not on their
content radar (Chi et al., 2004; Graesser et al., 1995).
4. Failure to answer student questions. Human and auto-
mated tutors can handle only a subset of student questions,
so the student eventually stops asking them. Student ques-
tions are not prevalent in human tutoring (Graesser et al.,
1995), so this is not a serious obstacle in automated tutors.
However, active inquiry and self-regulated learning is en-
couraged in most pedagogical theories.

In sum, meaning-making responses provide opportunities
to assess how a student is comprehending a text or co-
constructing meanings with a tutor. In the context of reading
or engaging in simulated dialogue, they can potentially
provide insights into the dynamic processes that support
learning. The successful detection of the target processes
and outcomes rests on developing a set expectations or
benchmarks that are representative of these processes and
having the appropriate computational linguistic tools to com-
pare the protocols with these expectations. In the section on
natural language approaches for analyzing responses, we will
discuss some approaches and guidelines for accomplishing
this task.

Responses reflecting the products of comprehension

A second type of system for handling student-constructed
responses is developed for the purpose of assessing the
products of comprehension. These types of responses are
generally used to assess student proficiencies in some task,
rather than focused tracing of the process of accomplishing
that task. These systems are beginning to be used for high-
stakes assessments in addition to the formative assessments
that facilitate the learning process. Students are asked to
produce responses to prompts (i.e., questions, essay specifi-
cations) that are intended to evaluate their level of
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understanding of the material that they have learned. These
can take the form of short-answer questions (Cai et al.,
2011; Leacock & Chodorow, 2003; Magliano et al., 2011)
that require about one to three sentences to answer. Al-
though one-word responses are possible, these typically do
not require natural language processing algorithms to ana-
lyze. The more common span of texts in these assessments
is longer essays or summaries (Attali & Burstein, 2006;
Britt, Wiemer-Hastings, Larson, & Perfetti, 2004; Rudner,
Garcia, & Welsch, 2006).

Although developing systems to code these types of
responses is a challenge, quite surprisingly, many of these
systems are as reliable as human raters (Elliott, 2003;
Landauer et al., 2003; Shermis et al., 2010). These systems
have had exact agreements with humans on a 5-point scale
as high as the mid-80s, adjacent agreements in the high mid-
90s, and correlations as high as the mid-80s. These perfor-
mance measures are, surprisingly, a bit higher than agree-
ment between trained human raters. Although these
automated essay graders have impressive accuracy for some
subject matters according to virtually any criteria, the per-
formance is not sufficient for some subject matters. Defend-
ers of high-stakes tests require extremely high reliability
scores with human graders. Insufficient accuracy in grading
is a frequent criticism of the skeptics, even though the
criteria and accuracy of human essay graders is theoretically
suspect and frequently limited (McNamara, Crossley, &
McCarthy, 2010). There is no ideal gold standard for essay
grading, but the performance of the automated systems is
quite impressive, as compared with human grading, for
many tasks and subject matters.

These short and long responses present different chal-
lenges for automatic scoring. Consider the short-answer
questions that occur in the RSAT (Magliano et al., 2011).
These questions are embedded in the text so that the test
takers answer the questions while they are reading. Table 3
shows a text excerpt, question prompt, an expert answer,
and sample student answers for one text used in RSAT. The
excerpt contains the first six sentences from a text describ-
ing the first Battle of Bull Run from the U.S. Civil War. The
question provides an assessment of how well the test takers
comprehend the story and are able to draw upon world
knowledge. Specifically, the text takers need to access
knowledge from the text that the Confederates had made a
decision to move their capital further north and access
geographical knowledge that this would place their capital
closer to Washington, D.C. The example student answers
reflect the range of responses, and as can be seen, they vary
in the extent to which the student answers contain semantic
overlap with the expert answer (once again, the expect-
ations). Scoring these protocols is a matter of assessing
semantic overlap with the expert answer (Magliano et al.,
2011) or a family of answers that range in quality (Attali &

Burstein, 2006; Landauer et al., 2003; Shermis et al., 2010)
and the extent to which they contain common misconcep-
tions (VanLehn et al., 2007). Regardless, the assessment
task for the computer is relatively straightforward because
there is a relatively closed set of appropriate responses to the
question.

Longer essays enjoy both advantages and disadvantages,
as compared with shorter responses. A major advantage of
length is that the reliability is higher by virtue of the fact that
there is more information in the student discourse. However,
a major liability is that there is a greater range of acceptable
responses and more variability in the quality and composi-
tion of the essays. There also are more potential aspects of
the essays that one could score. For example, one may want
to assess the internal coherence of the essays that students
write (Burstein et al. 2003; Foltz, Kintsch, & Landuaer,
1998; E. Kintsch, Caccamise, Franzke, Johnson, & Dooley,
2007). If readers are basing their essays on a text or set of
texts, one may want to evaluate how effectively the essays
cover content from the essays and whether the readers are
appropriately sourcing where their ideas come from or wheth-
er they are plagiarizing the texts (Britt et al., 2004). Another
challenge of these essays is that they are typically written in a
context where students do not have the opportunity to reflect
and revise their essays, so the quality of the student writing is
considerably less than optimal (McNamara et al., 2012). It is
up to the developer to decide whether the mechanics of

Table 3 Sample text excerpt, short answer question prompt, and
expert answer from RSAT

The Battle of Bull Run

1. The First Battle of Bull Run was the first real battle of the Civil War.

2. Union officials felt it would be an easy victory and would lead to a
quick conclusion of the war.

3. History would prove otherwise.

4. At the end, the Confederacy was the winner, routing inexperienced
Union forces and sending them fleeing all the way back to
Washington.

NEW PARAGRAPH

5. Confederate leaders were eager to prove their mettle against the
North and announced intentions to move the capital to Richmond,
Virginia.

6. The Union government was angered by this prospect.

QUESTION: Why were they angry?

EXPERT ANSWER: The Confederate South decided to move its
capital further north to Richmond Virginia near Washington D.C.
closer to the Union capital.

SAMPLE STUDENT ANSWERS

1. Because of the Confederacy.

2. Because they were trying to make a move on the ground. Who
wouldn’t be angry?

3. Because the Confederates wanted to move the Capital to Richmond
Virginia, which is pretty close to Washington.
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writing under these situations should be taken into consider-
ation when evaluating the essays.

One very important issue is whether the student
responses are based on source texts or reflect extemporane-
ous writing. When source text(s) exist, the sources impose
constraints on the semantic content that should be in the
essays. The developer can anticipate what kinds of informa-
tion will be in the essays, which simplifies the development
of assessment protocols. On the other hand, extemporaneous
writing on a general topic creates a situation in which there
will be dramatic variability in what students choose to write
about or incorporate into their essays. This limits the assess-
ments to an evaluation of the quality of the writing style or
rhetorical format, as opposed to the richness of the semantic
aspects of the essays. For example, one may want to detect
the presence of a thesis statement, main ideas, supporting
ideas, and conclusion in an argumentative essay on a specific
subject matter (Burstein et al., 2003). This constrained writing
assessment would be very different from the structure and
wide-open content of a narrative of life’s experiences.

In summary, there are a variety of different uses and types
of student-constructed responses that are evaluated and con-
strained by the goals of the automated system. The systems
vary in their accuracy of assessment when compared with
human scoring of the open-ended responses. The goals and
constraints of the system determine what type of response
will be elicited from the user and what natural language
processing approaches are needed for optimal analyses of
these responses. We argue that the type of response has
implications for the approach one uses to develop expect-
ations to analyze those responses.

Computational approaches for analyzing
student-constructed response

At the outset of this article, the claim was made that there
have been dramatic successes in the automatic assessment of
student-constructed responses (Graesser & McNamara,
2012). These successes can be attributed to landmark advan-
ces in computational linguistics (Jurafsky & Martin, 2008;
Shermis & Burstein, 2003), discourse processes (W.
Kintsch, 1998; McNamara & Magliano, 2009), statistical
representations of world knowledge (Landauer et al.,
2007), corpus analyses (Biber, Conrad, & Reppen, 1998),
word dictionaries with psychological attributes (Pennebaker,
Booth, & Francis, 2007), and automated analyses of dis-
course cohesion (Graesser & McNamara, 2011; Graesser,
McNamara, Louwerse, & Cai, 2004). These advances en-
able one to evaluate semantic overlap between words, sen-
tences, paragraphs, and entire texts.

One explanation of the successes has been the advent of
statistical representations of world knowledge that are based

on large corpora, instead of relying entirely on highly struc-
tured representations that attempt to capture precise and
accurate meanings. Twenty years ago, the typical models
in computational linguistics had highly structured lexicons,
syntactic parsers, semantic analyzers, and representations of
world knowledge (Allen, 1995; Lehmann, 1985). However,
these traditional structured representations were brittle and
could not account for the human language contributions that
were frequently ungrammatical, vague, and imprecise. The
statistical, corpus-based representations of meaning are
somewhat simple but, nevertheless, powerful estimates of
the extent to which the student responses reflect key con-
structs and expectations (Britt et al., 2012; Graesser &
McNamara, 2012; Landauer et al., 2007). The ideal systems
are a hybrid between symbolic and statistical representations
of meaning (Cai et al., 2011; Jurafsky & Martin, 2008; Rus,
McCarthy, McNamara, & Graesser, 2008).

This section identifies a variety of computational mod-
ules that have been used in analyses of student-constructed
responses. The appropriateness of a module depends on the
semantic complexity of the responses and the relationships
to the expectations that comprise the assessment targets. By
way of preview, we advocate the use of hybrid algorithms
that make use of multiple computational mechanisms when-
ever the goal is to optimize the accuracy of the assessments.
This section also describes general approaches used by
many computational systems that tap different semantic
and conceptual levels of meaning.

Natural language algorithms

A variety of natural language algorithms have been imple-
mented to make the semantic comparisons between the
student verbal responses and the assessment targets. For
example, we might designate the student responses in an
essay or a conversational turn as a set of n sentences (S1, S2,
. . . Sn) and the assessment target as a set of m expectations
(E1, E2, . . . Em). Computations would be needed to assess
the semantic similarity between a student sentence Si and an
expectation expression Ej. The output of the computation
would a semantic similarity score that varies between 0 and
1. When the expectation expression is also a sentence, the
computation would assess the semantic overlap between
two sentences.

Perhaps the simplest algorithm in computing semantic
similarity is word matching. This algorithm computes the
specific words that overlap between the student response Si
and the assessment target Ej. The similarity scores is com-
puted as [(2 \ast C)/(A + B)], given there are C common
words, A words in the student response and B words in the
expectation. However, this simple word overlap algorithm is
limited by the fact that some words are more important than
others (e.g., content > function words), words with the same
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semantic stems have different spellings (e.g., run, runner,
running, runs, etc.), and some words are misspelled. Fortu-
nately, there are tools that compute semantic overlap in a
manner that handles these variations (Jurafsky & Martin,
2008; McCarthy & Boonthum-Denecke, 2012). Part-of-
speech taggers identify different syntactic classes of words
on the basis of a word lexicon and the syntactic context of a
word in a sentence. Algorithms such as Soundex (Christian,
1998) are able to identify key words even with misspelling
or word transformations. Lemmatizers are available to ex-
tract core morphemes from words (e.g., the lemma “run”
from run, ran, runner, runners, running, etc.). Words or
lemmas are sometimes weighted in these overlap measures
so that a higher weight goes to content words, rare words, or
words directly relevant to the subject matter. Researchers
can compute semantic similarity with each of these variants
of operationally defining relevant linguistic units and
weighting schemes.

There are algorithms that consider sequences of words
(n-grams) and structured configurations of words or lemmas
in regular expression templates (Cai et al., 2011; Jurafsky &
Martin, 2008). N-grams are simply sequences of particular
words, such as b-grams (word pairs), trigrams (word trip-
lets), or more generally, sequences of N words. Algorithms
can compute overlap of n-grams in its assessment of simi-
larity. A very powerful technique for assessing semantic
similarity is to represent an expectation Ej as a regular
expression. Regular expressions represent the meaning of
an expectation as a structured sequence of lemma-like units.
For example, suppose that expectation Ej is the sentence
“The dependent variable needs to be accurate, sensitive, and
precise,” with key words or phrases being “dependent var-
iable,” “accurate,” “sensitive,” and “precise.” Different
forms of words are recognized through regular expressions
by creating abbreviated expressions such as “sensitiv,”
which allows for “sensitivity” and “sensitive.” The regular
expression (“/bdependent variable”) for “dependent vari-
able” is constrained, thereby keeping students from getting
appropriate credit by saying “independent variable.” Syno-
nyms or functionally equivalent meanings of a word are also
exemplified in the following type of expression: “b/depen-
dent variable|DV|dv|outcome|criteri.” Complex logical
structured expressions can similarly be set up with regular
expressions. Semantic matches between student sentences Si
and expectations Ej allow greater flexibility in student artic-
ulations and yield much higher accuracy than does any word
overlap measure (Cai et al., 2011; Jurafsky & Martin, 2008).

High-dimensional semantic spaces, such as latent seman-
tic analysis (LSA; Landauer & Dumais, 1997; Landauer et
al., 2007), HAL (Burgess et al., 1998), and holographic
models (Jones, Kintsch, & Mewhort, 2006), are also used
in many systems to perform semantic matches. LSA is the

most widely used statistical technique of this class of
approaches to natural language processing, so it is the pri-
mary focus in this discussion. LSA is an important method
of computing the conceptual similarity between text docu-
ments (e.g., words, sentences, paragraphs, or essays) be-
cause it considers implicit knowledge in addition to the
explicit words. LSA is a mathematical, statistical technique
for representing knowledge about words and the world on
the basis of a large corpus of texts that attempts to capture
the knowledge of a typical test taker. The central intuition of
LSA is that the meaning of a word W is reflected in the
company of other words that surround word W in naturalis-
tic documents; two words are similar in meaning to the
extent that they share similar surrounding words. For exam-
ple, the word car is highly associated with words of the
same functional context, such as engine, race, wheels, park-
ing, and transportation. These words are not synonyms or
antonyms that would occur in a dictionary or thesaurus, but
more like the co-occurrence of words in an encyclopedia
article. LSA uses a statistical technique called singular value
decomposition to condense a very large corpus of texts to
100–500 statistical dimensions (Landauer et al., 2007). The
conceptual similarity between any two text excerpts (e.g.,
word, clause, sentence, entire essay) is computed as the
geometric cosine between the values and weighted dimen-
sions of the two text excerpts. The value of the cosine
typically varies from approximately 0 to 1. For example,
the cosines between doctor and physician, nurse, office, and
dog are .61 .52, .29, and .03, respectively.

LSA is useful in the analysis of student-constructed
responses because it is sensitive to inferences and to both
proximal and distal semantic relationships. Consider sit-
uations in which the constructed responses are compared
with the expectations in a source document. Students
may use words in that document, words associated with
inferences, synonyms, antonyms, and completely unrelat-
ed words. LSA is sensitive to the semantic distance of
the words used by a student and the words in the source
document. LSA can also evaluate how sentences and
lengthier student responses can compare with the source
document in meaning.

Researchers have performed systematic analyses to ex-
amine which of the natural language algorithms provide
the best semantic matches to expectations (Cai et al.,
2011; Graesser, Penumatsa, Ventura, Cai, & Hu, 2007;
McNamara, Boonthum, Levinstein, & Millis, 2007; Rus
et al., 2008). These analyses have confirmed that the best
semantic similarity modules use hybrid models that take
advantage of weighted keyword overlap, regular expres-
sions, and high-dimensional semantic spaces. However,
there are a few rules of thumb when deciding which
system to explore and whether to consider developing
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hybrid systems. When the responses are based on specific
word- or sentence-length expectations and are likely to be
constrained by specific source texts, keyword matching
and regular expressions are often sufficient. This is be-
cause there is a narrow band of variation in the answers
that semantically map onto the different assessment tar-
gets. Consequently, the higher dimensional spaces typical-
ly yield a modest improvement in the accuracy of the
system. However, when responses are ill formed, are not
strongly based on a source text, or are long (several
sentences or even several paragraphs), using high-
dimensional semantic spaces become critical for dealing
with the variability in student responses.

Two approaches for developing assessment targets

All of the automated systems involve semantic comparisons
between the student response and a set of assessment tar-
gets. There are two general approaches for developing the
assessment targets, each requiring the development of
expectations that reflect assessment targets. The construct-
based approach involves developing expectations that re-
flect theoretical constructs, such as correct answers to a
question or particular classes of inferences that a reader
might generate. The normative-based approach involves
developing expectations on the basis of a set of responses
that are representative of different levels of student out-
comes, such as essays that are reflective of receiving a grade
of A, B, C, D, or F or responses that are representative of
different types of misconceptions.

The construct-based approach requires the development
of models of the students’ cognitions, tasks, and a range of
student products that should underlie the key constructs
delineated by theory (Britt et al., 2012; Mislevy, 2007;
Pellegrino & Chudowsky, 2003). That is, the assessment
components of a computational system would ideally follow
the tenets of an evidence-centered design approach to as-
sessment development. This approach incorporates (1) a
student model that identifies relevant cognitive states and
processes, (2) a task model that specifies the task require-
ments and how to the map onto the constructs specified by
the student cognitive model, and (3) guidelines for how to
interpret a student’s task performance with respect to the key
constructs. In the first section, we mentioned that the type of
response has implications for the protocols that one devel-
ops to analyze those responses. As such, we strongly advise
that this approach be adopted whenever one is analyzing
meaning-making responses, because it is typically the case
that the developer wants to assess specific types of “events”
that are reflected in the responses. Theory determines the
importance of these events when developing coding proto-
cols developed by human judges (e.g., Trabasso &

Magliano, 1996), and the same should be true for automated
assessments.

As an example, an evidence-centered approach was used
for the development of RSAT for the analysis of some of the
types of responses produced by students (Magliano et al.,
2011). RSAT is a computer-administered test that is
designed to assess a student’s level of comprehension and
the processes that support it while the student is reading
(Gilliam et al., 2007; Magliano et al., 2011). Students read
texts one sentence at a time and are prompted to answer
indirect questions (“what are you thinking now”) that re-
quire responses that are akin to thinking aloud (Trabassso &
Magliano, 1996).

The evidence-based approach guided the development of
semantic benchmarks that were associated with four types of
processing theoretically important for comprehension (see
McNamara & Magliano, 2009, for an extensive review):
paraphrasing the current sentences, local bridging inferen-
ces, distal bridging inferences, and elaborative inferences.
As is illustrated in Table 1, many of these processes can be
induced by the informational content of the protocols. One
version of RSAT relies solely on keyword matching for
content words (Magliano et al., 2011) to theoretically de-
rived expectations reflecting the processes described above
(although we are currently exploring the development of
hybrid systems that combine keyword spotting and LSA).
The expectation for detecting paraphrasing consists of con-
tent words (nouns, verbs adjectives, adverbs) in the current
sentences, whereas the expectation associated with bridging
inferences consists of content words that are in the local
sentence or distal sentences. RSAT detects elaboration by
counting content words in the protocols that are not explic-
itly in the current sentence or prior discourse context. This is
not a perfect measure, because synonyms for content words
in the discourse context are counted as mere elaboration.
Clearly, student elaborations need to be scored on a contin-
uum from being relevant to the content to moving away
from the discourse content (Magliano et al., 2011). Despite
the simplicity of this approach, RSAT processing scores are
highly correlated with human judgments of the verbal pro-
tocols (rs ranging from .48 to .78; Magliano et al., 2011).
Elaboration scores are the lowest correlations with human
judgments, perhaps in part because of the synonym prob-
lem, but another reason is the need to differentiate relevant
versus irrelevant elaborations. Elaborations generally pres-
ent a challenge to automatic detection, so future research is
needed to understand these open-ended constructions
(McNamara et al., 2007a; Millis et al. 2007; Rus et al., 2008).

ISTART (Interactive Strategy Trainer for Automated
Reading and Thinking; McNamara, O’Reilly, Rowe,
Boonthum, & Levinstein, 2007) is another example of the
evidence-centered approach. ISTART is a reading strategy
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training system that is intended to promote the comprehen-
sion of challenging texts by teaching students to self-explain
during reading. For the purpose of this article, we are
particularly interested in how iSTART analyzes and uses
the practice self-explanations produced by the student user.
Importantly, it implements a hybrid system involving word
matching and LSA. ISTART algorithms are designed to
provide a global assessment of the self-explanation based
on a theoretical analysis of knowledge building when self-
explaining (Coté et al., 1998). The algorithms attempt to
provide an assessment of the protocols that range from
vague and uninformative responses to responses that reflect
building a rich mental model for a text. Word counts on the
length and LSA cosine match scores between the student
response and the text (i.e., the current sentence) provide the
basis for determining the extent to which the students pro-
duce a sufficiently rich and relevant response, as opposed to
simply repeating the current sentence or producing a vague
and uninformative response (e.g., “Ok,” “I get this,”
“sounds interesting”). If, for example, the word counts fall
below a threshold, the student is prompted to say more. If
the LSA cosine match scores are too similar to the current
sentence, the student is prompted to produce self-explanations
that go beyond the sentence that they just read. Self-
explanations that are deemed rich enough are subjected to an
assessment algorithm that takes advantage of word counts and
LSA cosines between the self-explanation and assessment
targets, including the current sentence, prior discourse con-
texts (local and distal sentences), and text title. The agreement
between the algorithms and human judgments of the different
levels of processing has been impressive, with 62 %–64 %
agreement between the two (McNamara et al., 2007b). More-
over, algorithms generated from one text significantly gener-
alize to other texts (Jackson, Guss, & McNamara, 2010).

An alternative construct-based approach is to use assess-
ment targets with very specific semantic content that varies
in quality and correctness. For example, the AutoTutor
system developed by Graesser and colleagues has adopted
such an approach (Graesser et al., 2008; Graesser, Lu, et al.,
2004; VanLehn et al., 2007), as does also an AutoTutor
derivative called Operation ARIES (Cai et al., 2011; Millis
et al., in press). Students are asked to answer challenging
questions (posed by an animated tutor agent) in a multi-turn
conversation between the student and computer tutor. The
students’ responses are semantically compared with expect-
ations that cover the set of expected sentence-length expres-
sions in a good answer and also common misconceptions
derived from a normative sample. The computational algo-
rithms in the semantic matches include frequency-weighted
content-word overlap (i.e., less frequent words get higher
weight), LSAs (Landauer et al., 2007), and regular expres-
sions (Jurafsky & Martin, 2008). The moves that the Auto-
Tutor and Operation ARIES systems make when providing

feedback are based on these semantic assessments. Again,
consistent with the claim that an evidence-based approach is
optimal, these expectations are developed on the basis of
theories of tutoring and a cognitive model of student learn-
ing of the subject matter.

As was discussed earlier, there is an alternative to the
construct-based approach—namely, a normative-based ap-
proach. In normative-based approaches, assessment targets
are based on exemplar responses that vary in quality (Attali
& Burstein, 2006; Foltz, Gilliam, & Kendall, 2000;
Landauer et al., 2003). For example, there might be five
grade levels for essays, and each grade would have a large
set of example essays with the particular grade. When a new
essay is to be graded, it is matched to the exemplars in the
various grades; the grade received reflects higher matches to
the exemplars in the grade category than to exemplars in
other grade categories. This approach does not have as
strong an alliance with an evidence-centered design unless
there is a theoretically based method of classifying exemplar
essays.

When is it appropriate to use a construct-based versus a
normative-based approach? We argue that one should al-
ways rely upon a construct-based approach when analyzing
meaning-making responses. This recommendation stems
from the fact that most of these approaches are based on a
rich empirical and theoretical history, which is certainly the
case for systems that are designed to promote reading com-
prehension. Theories and research can and should provide a
basis for detecting processes that support comprehension
and deep learning. Normative approaches are appropriate
when analyzing responses that reflect products of compre-
hension and understanding (e.g., Foltz et al., 2000), partic-
ularly when ideal answers and constructs are not available
and the goal is to give global feedback. In this case, it is
useful to identify a family of exemplar responses that reflect
qualitative differences in student responses. That said, these
approaches are by no means mutually exclusive and can be
drawn upon to support different kinds of assessment. When
one wants to evaluate and provide feedback regarding spe-
cific types of processing or products in a response, the
construct-based approach should be used, whereas the
normative-based approach can be useful for gauging overall
quality that could support computer-aided grading.

In summary, as we have discussed, there are a variety of
natural language algorithms that compute the extent to
which the student response matches expectations in the
theoretical rubric. These include word overlap, lemma over-
lap, regular expressions, and higher dimensional semantic
spaces. Whenever possible, it is advisable to develop hybrid
systems that take advantage of the strengths of the different
approaches, and semantic spaces should always be consid-
ered with complex, variable, and longer responses. Regard-
less of the natural language algorithms one uses, one will
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usually have to develop expectations that are compared with
the protocols and that provide the basis for assessments of
the quality and nature of the protocols. We have discussed
two general approaches, and their appropriateness is, in part,
contingent on the type of student response.

Conclusions

This review can be used to generate a few simple yet
important recommendations for the development of fu-
ture systems. First, it is important to explicitly identify
whether the responses reflect meaning making or prod-
ucts of comprehension. If the latter, it is always advis-
able to identify expectations via a construct-based
approach. Although a normative approach is very useful
for providing global assessments of the quality of
response that reflect products of comprehension, a
construct-based approach should be used when there is
a theoretical basis for developing an assessment proto-
col. Although simple word- and pattern-matching algo-
rithms may be sufficient to analyze responses that are
short and are likely to have a relatively narrow semantic
range, it is advisable to utilize high-dimensional seman-
tic spaces for longer responses. Moreover, we advise the
use of hybrid systems that make use of both pattern-
matching and high-dimensional semantic spaces.

As is evident in this review, computer-based assessments
of student-constructed responses handle the same variety of
responses that are used in research and educational contexts.
Although sometimes imperfect, these systems are remark-
ably successful in categorizing critical dimensions of the
student responses. The successes of many of the systems
discussed in this article can be attributed to the adoption of a
statistical approach for estimating the content of the student
responses, in addition to some modicum of structured rep-
resentations. It is remarkable how well these systems have
performed when classifying and scoring open-ended
responses (Graesser & McNamara, 2012), despite the fact
that they do not attempt to engage in a precise symbolic
computation of meaning. This is not to say that some aspects
of student responses may be outside of current technological
advances to detect (Calfee, 2000; Ericsson & Haswell,
2006). To be sure, there are imperfections in the systems
from the standpoint of use and accuracy, but the case can be
made that the technologies are ready for applications to
diverse learning environments. However, we would hesitate
to use them for high-stakes assessments in the league of
SAT or ACT.

What are the most important future directions for this
field? While we have advocated the use of hybrid systems,
this review did not provide specific recommendations re-
garding how to develop improved systems. There are

relatively few systems that use hybrid approaches to date
(Britt et al., 2004; Cai et al., 2011; Graesser & McNamara
2012; McNamara et al., 2004), and each focuses on different
types of protocols. We do know that the shorter responses
require well- engineered word spotting in the expectations,
with large gains from structured regular expressions and n-
grams. We also know that LSA and other high-dimensional
spaces are important for capturing the inferential meaning in
longer essays. However, more research is needed to explore
a broader landscape of hybrid systems. And once again, the
solutions will depend on the type of response and assess-
ment context.

A second line of important research should be directed at
making these systems more accessible to practitioners and
teachers. Many of these systems require extensive engineer-
ing to develop and, in particular, in the development of the
expectations and algorithms used to analyze the protocols.
Teachers and school districts will want to choose materials
that map onto mandated curricula or reflect topics covered
on high-stakes tests. Some systems, such as iSTART and
Summary Street (Franzke et al., 2005) have been developed
with this constraint in mind, and the algorithms for analyz-
ing student responses were created such that they did not
need extensive engineering to implement with new texts.
This can be achieved by automatically identifying expect-
ations based on features of the text (e.g., the current sen-
tence being read is a semantic benchmark for detecting
paraphrasing of the current sentence, whereas prior senten-
ces are a benchmark for detecting bridging inferences), but
this still requires developing algorithms that can generalize
to new texts (Jackson et al., 2010). Additionally, although
all the systems discussed in this article involve developing
expectations that provide the assessment targets, this may not
always be necessary. For example, Coh-Metrix (Graesser &
McNamara, 2011; Graesser, McNamara, & Kulikowich,
2011; McNamara, Louwerse, McCarthy, & Graesser, 2010)
automatically analyzes texts on a wide range of linguistic and
discourse features that correspond to genre, referential cohe-
sion, situation model cohesion, syntax, and word concrete-
ness. Although there are challenges to developing systems that
can be flexibly integrated into existing curricula, it is our hope
that putting the control in the hands of the teacher will lead to a
wider use of student-constructed responses in educational
contexts.
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(DNA).

Genes contain the instructions to make proteins, molecular laborers that serve as building blocks of cells, control chemical reactions, or transport
materials to and from cells.

In a cancerous cell, permanent gene alterations, or mutations, cause the cell to malfunction.

For a cell to become cancerous, usually three to seven different mutations must occur in a single cell.

Cancer may take many years to accumulate.

Understanding how cells communicate with one another is an important part of the story.

While each human cell performs its own specialized function, it also exerts influence on the cells around it.

Cells communicate with one another via receptors, protein molecules on the cell surface.

A cell may instruct other cells in its neighborhood to divide, for example, by releasing a growth-promoting signal, or growth factor.

The growth factor binds to receptors on adjacent cells.

A message within each receptor cell becomes activated.
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