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Abstract MorePower 6.0 is a flexible freeware statistical
calculator that computes sample size, effect size, and power
statistics for factorial ANOVA designs. It also calculates rela-
tional confidence intervals for ANOVA effects based on for-
mulas from Jarmasz and Hollands (Canadian Journal of
Experimental Psychology 63:124–138, 2009), as well as
Bayesian posterior probabilities for the null and alternative
hypotheses based on formulas in Masson (Behavior Research
Methods 43:679–690, 2011). The program is unique in afford-
ing direct comparison of these three approaches to the inter-
pretation of ANOVA tests. Its high numerical precision and
ability to work with complex ANOVA designs could facilitate
researchers’ attention to issues of statistical power, Bayesian
analysis, and the use of confidence intervals for data interpre-
tation. MorePower 6.0 is available at https://wiki.usask.ca/
pages/viewpageattachments.action?pageId0420413544.

Keywords Power for ANOVA . Relational confidence
intervals . Bayesian analysis

Despite criticism on a variety of grounds (e.g., Dienes,
2011; Dixon, 2003; Dixon & O’Reilly, 1999; Masson,
2011; Rozeboom, 1960; Wagenmakers, 2007), null-
hypothesis significance testing (NHST) remains the domi-
nant method of data analysis in the psychological sciences.
Presumably, this is because it continues to be widely offered
as standard training for psychology students and because of
the perception that alternative approaches are not readily
accessible. In this article, we describe a statistical calculator,

MorePower 6.0, that calculates power-related statistics
(sample size, effect size, and power) and relational confi-
dence intervals (CIs) for ANOVA effects, and that performs
Bayesian analysis of the null hypothesis (H0) versus the
alternative hypothesis (H1). Thus, the calculator provides
three alternative approaches to interpretation of ANOVA
effects. Power analysis quantifies the sensitivity of a statis-
tical test to detect an effect of a specific size (Faul, Erdfelder,
Lang, & Buchner, 2007). The use of relational CIs can
reduce reliance on NHST by affording interpretation of a
pattern of means without requiring an inference about the
statistical significance of the difference between a given pair
of the means (Jarmasz & Hollands, 2009; Masson & Loftus,
2003). Bayesian analysis affords direct comparison of the
probabilistic evidence provided by the data for the null
versus the alternative hypothesis, whereas NHST provides
only a binary decision whether or not to reject H0 (Berger,
1985; Masson, 2011). MorePower permits researchers who
normally rely on NHST methods to assess how a Bayesian
approach might alter their conclusions about data.

Many online power and sample-size applets are avail-
able, as well as standalone programs for power analysis
(e.g., G*Power 3; Faul et al., 2007), but MorePower
provides numerous unique features. Complex designs and
effects—including repeated measures (RM; i.e., within-
subjects) factors, independent measures (IM; i.e., between-
subjects) factors, or combinations of both types of factors—
can be specified easily using drop-down menus. An ANOVA
effect size may be specified in terms of the effect-related
variance explained (partial eta-squared [ηp

2]) or in terms of a
test statistic (F, mean square treatment [MST], or t). For tests
with one degree of freedom (including interactions), effect
size may be specified or calculated as the difference in the
original units of measurement, with variability specified in
terms of mean square error (MSE), standard deviation (S),
variance (S2), or standard error (SE). Along with its Bayesian
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and CI functions for ANOVA designs, these features make
MorePower 6.0 a unique and powerful analytical tool.

Power analysis for ANOVA

In NHST, a researcher assumes H0—usually that there is no
difference between the population parameters—to be true, and
rejects H0 if the observed result has a probability at least as
extreme as the critical p value (typically, .05) given that H0 is
true (see, e.g., Rozeboom, 1960;Wagenmakers, 2007). NHST
thus provides a decision criterion without the researcher hav-
ing to identify a specific quantitative alternative hypothesis
(H1). For this reason, one may reject or fail to reject H0, but
one cannot “accept” it: H0 could be false, but the statistical test
might not lead to the correct decision to reject H0. The prob-
ability of correctly rejecting H0 is the power of the test to
detect a specific H1. In general, a power of .8 is considered to
be good or adequate (Cohen, 1988), but higher levels of power
are desirable if a high priority is to detect an effect if it exists.

Power analysis in the context of NHST may be useful in
several ways (Faul et al., 2007). First, power analysis ena-
bles planning of experiments by allowing the researcher to
estimate a priori the sample size required for a given popu-
lation effect size. Second, post hoc analysis of power may be
useful after a study is completed in order to evaluate wheth-
er there was adequate power to detect a relevant population
effect size (Faul et al., 2007; Yuan & Maxwell, 2005, p.
142). The effect size may be specified on a priori grounds or
may be based on common conventions (Cohen, 1988).
Third, sensitivity analysis of power provides statements
about the precision of statistical tests (i.e., the p of detecting
a specified effect of a given size; Faul et al., 2007). For
example, one can calculate the minimum population effect
size detectable with a power of .8. Both post hoc power and
sensitivity analysis, as defined here, are equivalent to a
prospective power analysis, because they do not depend
on the specific results of a study (Yuan & Maxwell, 2005).
Specifically, they are calculated using only the relevant
population effect size, α, the power, and N, given the
ANOVA design and effect of interest (i.e., a specific main
or interaction effect). Consequently, they avoid the pitfalls
of “observed” power that is calculated as a sample-based
estimate of the population power (see, e.g., Hoenig & Heisey,
2001; Yuan&Maxwell, 2005). Post hoc power and sensitivity
analysis are valid only if researchers specify population effect
sizes on a priori grounds (Faul et al., 2007).

Bayesian analysis for ANOVA

Bayesian analysis of posterior probabilities for H0 versus H1

is poised to emerge as a widely used alternative to NHST in

psychological research (e.g., Dienes, 2011; Kruschke, 2011;
Masson, 2011; Raftery, 1995; Wagenmakers, 2007; Wetzels
et al., 2011; see also Dixon, 2003; Glover & Dixon, 2004,
for related alternatives). In NHST, statistical inference is
based on the probability of observing a certain effect size
or difference (D) if the null hypothesis is true; that is, if p(D |
H0) is less than .05, then reject H0. Of more value, however,
is knowing about the likelihood that a hypothesis is true
given the data. The probability that H0 is true given D is the
posterior probability p(H0 | D). It may seem intuitive that
p(D | H0) and p(H0 | D) will be closely linked, but this is
not necessarily the case (Berger, 1985; Wagenmakers,
2007). In fact, conditions under which p(D | H0) is less
than .05, which would lead to rejection of H0, can corre-
spond to high values of p(H0 | D) that would suggest that
H0 was in fact true (Berger, 1985; Masson, 2011).

This dissociation reflects a difference between Bayesian
analysis and NHST in the effect of sample size on the
evidence for H0 versus H1 provided by the data (Masson,
2011; Wagenmakers, 2007). In Bayesian analysis, the pos-
terior probability favoring the null hypothesis grows as
sample size grows. In contrast, the NHST p value is not
affected by sample size. Consequently, NHST p values tend
to overestimate the evidence for H1 relative to a Bayesian
analysis, and this tendency increases with the number of
observations (Masson, 2011, p. 688; Wagenmakers, 2007, p.
796). Additionally, when NHST p values are close to the
rejection region (e.g., .01 to .05), Bayesian analysis often
indicates only weak evidence favoring H1 (Wetzels et al.,
2011). Unlike Bayesian analysis, likelihood ratio calcula-
tions based on the Akaike information criterion, or AIC (see,
e.g., Akaike, 1974), assume that p is not affected by sample
size (Wagenmakers, 2007, p. 796), but like NHST,
approaches based on the AIC also have a bias to favor H1

(Rouder, Speckman, Sun, Morey, & Iverson, 2009, p. 228).
Despite concerns about the validity of NHST p values as

evidence (see also Dixon, 2003), alternative approaches
such as Bayesian analysis are not yet routine in connection
with ANOVA, perhaps because their calculations seem to be
complicated or ambiguous and their interpretation is unfamil-
iar to many (Wagenmakers, 2007). Following Wagenmakers
(2007), Masson (2011) presented a straightforward approach
to calculate and interpret the posterior probabilities p(H0 | D)
and p(H1 | D) in the context of standard ANOVA. This
approach is incorporated intoMorePower 6.0, thereby permit-
ting the user to calculate posterior probabilities for ANOVA
effects by specifying only the design, sample size, and effect
size (e.g., F or ηp

2) (see also Rouder et al., 2009, for a
Bayesian analysis of t tests, with an online applet at http://
pcl.missouri.edu/bayesfactor).

Calculation of the posterior probability for H0 is
based on the Bayes factor (BF), which is the odds
ratio p DjH0ð Þ=p DjH1ð Þ . Following Masson (2011) and
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Wagenmakers (2007), estimation of BF in MorePower is

based on the relation BF � pBIC DjH0ð Þ=pBIC DjH1ð Þ ¼
eΔBIC=2 , which uses the Bayesian information criterion
(BIC) to approximate BF (Raftery, 1995, 1999; see also
Rouder et al., 2009). The BIC provides “an objective base-
line reference for automatic Bayesian hypothesis testing”
(Wagenmakers, 2007, p. 797) and provides a good approxima-
tion of BFwhen the unit-information prior is assumed (Raftery,
1995, 1999; Wagenmakers, 2007, Appx. B). The BIC is some-
what conservative with respect to providing evidence for H1 as
compared to some other objective priors (Raftery, 1999;
Wagenmakers, 2007). Raftery (1999, p. 412) noted that this
conservative behavior favors “reporting BIC as a baseline
reference analysis even if final conclusions are drawn using a
different prior” (see, e.g., Rouder et al., 2009).

Given an estimate of BF, the posterior probability for H0

is given by pBIC H0jDð Þ � BF= BFþ 1ð Þ, and the posterior
probability for H1 is the complement pBIC H1jDð Þ ¼ 1�
pBIC H0jDð Þ.

Calculation ofΔBIC, which is the difference in BIC values
for the null and alternative hypothesis models, is given by
Eq. 1 for ANOVA (Masson, 2011; Wagenmakers, 2007):

ΔBIC ¼ n ln SSE1=SSE0ð Þ þ k1 � k0ð ÞlnðnÞ: ð1Þ
In Eq. 1, n is the number of independent observations

contributing to an effect, SSE1/SSE0 is the ratio of the error
sums of squares for the alternative and null hypothesis
models, and k1 – k0 is the difference between the models
in the number of free parameters. For effects composed only
of IM factors, n is the number of subjects. When the effect
of interest includes RM factors, n is equal to the number of
subjects multiplied by the degrees of freedom associated
with the RM factor(s) (Masson, 2011).1 MorePower calcu-
lates ΔBIC on the basis of two equalities pointed out by
Masson (2011, p. 682). First, the ratio SSE1/SSE0 equals the
complement of partial eta-squared, (1 – ηp

2). ηp
2 is a com-

mon measure of effect size that can be entered directly or
calculated by MorePower from the observed F value or
MST from an ANOVA. Second, the quantity k1 – k0 equals
the degrees of freedom for the effect of interest when ΔBIC
contrasts the null and alternative hypothesis models. These
substitutions produce Eq. 2, used by MorePower to calculate
ΔBIC:

ΔBIC ¼ n ln 1� η2p

� �
þ df � lnðnÞ: ð2Þ

This quantity is then used to compute the Bayes factor
and the posterior probability using the formulas presented
previously.

A fundamental advantage of the Bayesian approach is
that it affords a graded comparison of p(H0 | D) and p(H1 |
D), rather than only a binary decision to reject or not reject
H0, as in NHST (Masson, 2011; Wagenmakers, 2007).
Raftery (1995; see also Masson, 2011) proposed a graded
interpretation of the posterior probability. Values of p(H0 |
D) from .5 to .75 may be classified as “weak evidence,”
from .75 to .95 as “positive evidence,” from .95 to .99 as
“strong evidence,” and >.99 as “very strong evidence.”
Wetzels et al. (2011, p. 293) presented a more finely grad-
uated evidence scale for the interpretation of BF, adapted
from Jeffreys (1961) (see Table 1). These values provide
approximate descriptive rules of thumb to summarize the
results of Bayesian analysis.

Relational CIs for ANOVA

The use of relational CIs for ANOVA is an influential
alternative or augmentation to NHST (Cumming & Finch,
2005; Fidler, Thomason, Cumming, Finch, & Leeman,
2004; Hollands & Jarmasz, 2010; Jarmasz & Hollands,
2009; Masson & Loftus, 2003). Unlike CIs calculated for
an individual mean, relational CIs are computed to provide a
visual basis to identify a pattern of relations among means
(Loftus & Masson, 1994; Masson & Loftus, 2003). Statisti-
cal inference based on CIs is subject to the same criticisms
as NHST (see, e.g., Rouder & Morey, 2005; Rouder et al.,
2009). Nonetheless, relational CIs convey the degree of
precision in the measurement of an effect and provide a
graphic index of the replicability of effect sizes that is not

1 Masson (2011, p. 682) notes that whether n should be adjusted for
RM factors remains an open issue (see also Rouder et al., 2009;
Wagenmakers, 2007).

Table 1 Evidence categories for Bayes factors (adapted from Wetzels
et al., 2011, p. 293)

Bayes Factor Interpretation

>100 Decisive evidence for H0

30–100 Very strong evidence for H0

10–30 Strong evidence for H0

3–10 Substantial evidence for H0

1–3 Anecdotal evidence for H0

1 No evidence

0.333–1 Anecdotal evidence for H1

0.1–0.333 Substantial evidence for H1

0.0333–0.1 Strong evidence for H1

0.01–0.0333 Very strong evidence for H1

<0.01 Decisive evidence for H1

Following Masson (2011) and Wagenmakers (2007), the Bayes factor
was computed to represent the odds ratio for H0 over H1. High values
favor H0, and low values favor H1. Wetzels et al. (2011) computed BF
to represent the odds of H1 over H0; consequently, their evidence
categories for H0 over H1 were opposite those in Table 1 (i.e., substitute
H0 for H1)
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inherent in standard hypothesis testing (Rouder & Morey,
2005). Psychological journals often require error bars in
graphs that present means. Consequently, an attractive as-
pect of this approach is that it provides explicit rules for CIs
to standardize how such error bars should be constructed (cf.
Rouder & Morey, 2005). Furthermore, relational CIs for two
means bear a simple relation to NHST: The difference
between two means will be significant by an ANOVA or t
test if it is greater than the CI’s margin of error (i.e., half of
the width of the CI) multiplied by a factor of

ffiffiffi
2

p
(Jarmasz &

Hollands, 2009; Loftus & Masson, 1994).
For all ANOVA tests, MorePower calculates relational

CIs for the effect of interest on the basis of formulas pro-
posed by Loftus and Masson (1994) and Masson and Loftus
(2003) and revised for RM effects by Jarmasz and Hollands
(2009). Here, we focus on how MorePower calculates the
margin of error for the CI. For example graphs and interpre-
tative strategies, see Cumming and Finch (2005), Jarmasz and
Hollands (2009), and Masson and Loftus (2003). The general
form of the formulas presented by Jarmasz and Hollands is
shown in Eq. 3.

Mi � tcritical �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSE

n � L=r

s
ð3Þ

Mi represents the mean of any cell in the effect of interest,
and the right side of the equation is the margin of error for
the CI. The critical t value is based on the df for the MSE of
the effect of interest. MorePower follows the practice of
constructing CIs using the MSE from the corresponding
fixed-effects ANOVA (Jarmasz & Hollands, 2009; Loftus
& Masson, 1994; but see Blouin & Riopelle, 2005). In the
denominator, n is the number of participants in each IM cell
of the effect of interest, or if the effect has only RM factors,
then n equals the total sample (N). L is the product of the
number of levels of all RM factors in the design, and r is the
product of the number of levels of the RM factors in the
effect of interest. In MorePower, L is set to 1 when there are
no RM factors. Similarly, r is set to 1 when there are no RM
factors in the effect. Consequently, L/r 0 1 when there are no
RM factors (i.e., this term drops out of the equation), and
L/r 0 L when there are RM factors in the design but not
in the effect. The denominator term n·L/r is the number of
observations contributing to each mean being compared in
the effect (Jarmasz & Hollands, 2009).

The relational CI function in MorePower 6.0 implements
Formulas 1–5 in Table 4 of Jarmasz and Hollands (2009,
p. 130). These apply, respectively, to (1) an IM main
effect (IM designs), (2) an RM main effect (RM and
mixed IM–RM designs), (3) an RM interaction (RM
and mixed IM–RM designs), 4) an IM main effect
(mixed IM–RM designs), and (5) a mixed IM–RM inter-
action (comparing RM conditions).

Overview of MorePower 6.0

The following sections provide an introduction to More-
Power 6.0 and explain a series of built-in examples that
illustrate its application to ANOVA.2 MorePower was de-
veloped under Microsoft Windows, but it can be installed on
other platforms that will run MS Windows as a virtual
machine or an alternative OS. The calculator uses high-
precision algorithms, but the validity of its calculations
requires that the relevant statistical assumptions for ANOVA
be satisfied (i.e., normal distributions, sphericity, and homo-
geneity of the variances and covariances; see, e.g., Hays,
1994). Probabilities for the noncentral F distribution are
calculated to eight digits of precision using the CDFDNF
algorithm (Reeve, 1986; see also Bradley, Russell, & Reeve,
1996). To obtain the calculator, go to https://wiki.usask.ca/
pages/viewpageattachments.action?pageId0420413544 and
download MorePower6_setup.zip. Unzip the file in a tem-
porary directory, open the Package folder, and run setup.exe.
This will install the latest version of MorePower.

The MorePower interface (see Fig. 1) consists of a col-
lection of framed sections allowing the user to select from
various options and to enter numerical input into a text field.
Placing the cursor over any of these objects displays a short
description of it. There is also a main text output window
in which a detailed summary (described later) of the last
calculation is presented.

The radio buttons in the Analysis section allow the user
to select from a set of six analysis types, including ANOVA,
one- or two-sample t test, one or two-sample z test of
proportions, and simple correlation. The Design Factors
and Effect of Interest sections are used to specify the
ANOVA design and effect (see the following section for
details). The text field in the Alpha section specifies the
desired Type I error rate and can be toggled between tests
for one side or two sides, which is mandatory for ANOVA.
The Sample and Power text fields contain the specified or
calculated total sample size and power, respectively.

The Effect Size section provides several options for spec-
ification of the desired or computed effect size. When the
upper radio button is selected, effect size may be specified in
terms of ηp

2 or the difference in original units when treat-
ment df 0 1 (i.e., when the effect of interest is composed
exclusively of factors with two levels). The upper radio
button is automatically selected when solving for sample
size. Selection of the lower radio button in the Effect Size

2 The focus here is on ANOVA, but MorePower 6.0 includes power
calculations for t tests of means and simple correlation and z tests of
binomial proportions. These use the power formulas for df 0 1 tests
described by Campbell and Thompson (2002). Supplementary docu-
mentation of these procedures is included in the distribution software
for MorePower 6.0.
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section allows the user to specify (or request) effect size in
terms of a test statistic, including the F ratio, MST, or t.

In the Variability section, the user may select the lower
button for MSE, which is the default for ANOVA. Alterna-
tively, for tests with treatment df 0 1, the user may select the
upper radio button in the Variability section, which allows
the user to scroll and click to select standard deviation (S,
the default), variance (S2), or standard error (SE). The SE
option is not available when solving for sample size. If eta2

is selected for effect size (the default), the value specified for
variability has no bearing on the calculation of sample size,
effect size, or power. If there is no value in the appropriate
Variability field when an analysis type is selected, then a
value of 1 is assigned. For tests with df 0 1, the value
specified in Variability is used for the calculation of the
mean difference in original units and its variability (see
Eqs. 4 and 5, discussed later).3

The Solve For section allows the user to toggle among
solving for power, effect size, or sample size. The user
selects one of these to be solved for and supplies values

for the other two. Once selected, the corresponding Sample,
Power, or Effect Size text field turns light blue, indicating
where the result of the calculation will appear. Click the
Solve button to run the calculator using the current infor-
mation in the relevant input fields. The up–down arrows
next to the Solve button scroll forward or backward through
session calculations, with the current total number of calcu-
lations displayed at the bottom left corner of the calculator.

Finally, the five buttons at the bottom of the calculator
provide the following functions: Clicking on ANOVA
Examples displays a list of examples that are discussed later
in this document. Enter the number for the desired example
and press return. The result of running an example is equiv-
alent to entering the example input information into the
appropriate fields and clicking Solve. The Clear Values
button initializes all of the input fields. Clear Output clears
the main output window. Clear Session deletes the record of
all calculations since the calculator was started and resets the
session calculation count to 0. Program Information displays
the current version information and contact information.

Specification of ANOVA design factors and the effect
of interest

The overall design of the experiment is specified using the
IM and RM fields in the Design Factors section (see Fig. 1).
To do this, the user enters the number of levels for each of
the IM factors in the IM field and the number of levels for
RM factors in the RM field. For example, if the experiment
consisted of two IM and two RM factors, each with two
levels, enter 22 for IM and 22 for RM. For a 2 × 2 × 3 RM
design, enter the sequence 223 (or 232 or 322) for RM and
leave IM blank. To simplify this process, there is a drop
down menu for each of the IM and RM fields that lists
common designs. Any design may be specified, however,
by typing a series of single digits numbers in the RM and IM
fields (a factor can have a maximum of nine levels). Once
the design factors have been entered, specify the effect using
the corresponding RM and IM fields in the Effect of Interest
section. The user may enter a digit sequence representing
the levels of factors in each field, but the down arrows
provide a drop-down list of relevant effects, given the de-
sign factors already specified.

Specification of effect size for ANOVA

MorePower 6.0 provides several options for entering or
computing effect size for ANOVA. Either the upper Effect
Size field (eta2 or difference) or the lower Effect Size field
(F, MST, or t) may be selected. The default is partial eta-
squared. Denoted ηp

2, it is based on the sums of squares for

Fig. 1 MorePower 6.0 interface and output window (showing
ANOVA Example 1)

3 If difference is selected rather than eta2 for effect size, then with S 0
1, the difference specified or calculated is in standard deviation units
(dz). This is another common measure of effect size (see, e.g., the one-
sample t tests of means in G*Power 3; Faul et al., 2007).
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the effect of interest: SStreatment= SStreatment þ SSerrorð Þ . ηp2
therefore ranges between 0 and 1. This quantity represents
the amount of total variability in the effect attributable to the
independent variable(s). In other words, ηp

2 is the amount of
unique variance explained by the effect of interest, divided
by the proportion of variance unexplained by all of the other
main and interaction effects in the design (Levine & Hullett,
2002).4 As a measure of ANOVA effect size, ηp

2 is fre-
quently used by psychological researchers, and it is the
effect size measure reported in example manuscripts pre-
sented in the Publication Manual of the American Psycho-
logical Association, Sixth Edition (2010; see, e.g., p. 46).
The general linear model (GLM) procedure for repeated
measures ANOVA in IBM SPSS 19.0 also computes ηp

2 to
represent the observed effect size. Thus, ηp

2 is a common
effect size measure for ANOVA. Cohen’s f, another com-
mon effect measure for ANOVA, can be derived from ηp

2 by

the relation f ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2 � 1� η2ð Þp

(see Cohen, 1988, p. 281).
MorePower includes the conversion of ηp

2 to f in its
ANOVA output. By convention, values of .10, .25, and .40
of Cohen’s f correspond to small, medium, and large effect
sizes, respectively (Cohen, 1988, p. 355). For ηp

2, these
conventional values convert to .01, .06, and .14.

Effects with one degree of freedom For ANOVA effects with
numerator df 0 1, effect size may be specified (or calculated
by MorePower) as the mean difference in the original units
(percentage correct, milliseconds, etc.). This allows the user
to calculate sample size or power for an effect of a particular
size specified in familiar units (e.g., the sample size required
to detect a 10-ms difference with a power of .8). Selecting
the upper radio button in the Effect Size section and clicking
on difference enables this option. This can be used for any 2k

effect in the design, where k is the number of two-level
factors in the effect of interest. Any such effect will have
numerator df 0 1 and may consist of RM, IM, or combined
RM × IM effects, even when the 2k effect is nested in a
design that includes factors with more than two levels
(Campbell & Thompson, 2002). The difference (d) is the
size of the observed or specified difference that one is
interested in. For a two-level main effect, d is the absolute
difference between the means for the two levels of the factor
of interest, averaged over the levels of any other factors. For
a 2 × 2 interaction, d is the mean difference of differences |
M11 – M12| – |M21 – M22| averaged over the levels of other
factors, and for a 2 × 2 × 2 interaction it is the mean
difference between the mean differences of differences [|

M111 – M112| – |M121 – M122|] – [|M211 – M212| – |M221 –
M222|], and so on for all 2

k effects. For example, ifM11,M12,
M21, and M22 were equal to 60, 30, 20, and 10, respectively,
then d for the 2 × 2 interaction would equal |60 – 30| – |20 –
10| or 20.

In MorePower, d is calculated using Eq. 4, developed by
Campbell and Thompson (2002). B is the number of two-
level IM (i.e., between-subjects) factors in the effect of
interest, W is the number of two-level RM (i.e., within-
subjects) factors in the effect, and L is the total number of
RM cells in the design (i.e., the product of all RM factor
levels). The quantity n is the number of observations for each
treatment level in the effect of interest. For a 2k effect com-
posed entirely of RM factors (i.e., no IM factors), n is the total
number of participants (N). If the 2k effect includes one IM
factor, then n is the number of observations contributing to
each level of that factor (n 0 N/2); if the effect includes two IM
factors (e.g., a 2 × 2 × 2 interaction involving two IM factors
and one RM factor), then n is the number of observations in
each of the four IM cells (n 0 N/4), and so forth. The value of n
is derived by MorePower from the specification of the design
and the effect, and from the totalN entered in the Sample field.

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MST � 2B � 2

W �2

L

� �
=n

s
ð4Þ

The MST value used by MorePower to calculate d is
based on the relation MST 0 MSE × F. F may be input
directly if the lower radio button in the Effect Size section is
selected, but if the upper radio button in that section is
selected, F is calculated from η2 and the MSE value speci-
fied in the box in the Variability section. Instead of F,
however, the user can alternatively select MST or t. The t
option reflects the fact that F with numerator df 0 1 is equal
to t2. Similarly, instead of MSE, one may select the upper
radio button in the Variability section, which allows the user
to alternatively specify the variability of d in terms of
variance, standard deviation, or standard error. This gives
great flexibility in specifying the variability for 2k effects.
These options are based on Eq. 5, derived by Campbell and
Thompson (2002). This equation calculates the variance of
the difference (sd

2) from the MSE for any 2k effect, with B,
W, and L as defined previously. The standard deviation (sd)
is the square root of sd

2. The standard error (SE) is Sd=
ffiffiffi
n

p
.

s2d ¼ MSE � 2B � 2
W �2

L
ð5Þ

Contents of the output window for ANOVA calculations

Figure 1 shows the MorePower interface after running the
built-in Example 1, which calculates the sample size re-
quired (with power 0 .8) for a 2 × 2 × 2 interaction in a

4 It is important to distinguish ηp
2 from η2, which is the proportion of

explained variance relative to the total sums of squares including all
experimental effects. These quantities are the same if the design has
only one factor, but ηp

2 is larger than η2 in multifactor designs (Levine
& Hullett, 2002; Pierce, Block, & Aguinis, 2004).
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design with two RM factors and one IM factor (the built-in
examples are described in detail in the next section). Here,
we describe the contents of the output window for ANOVA
calculations. MorePower’s main text output window first
presents power and total sample (N), followed by ηp

2 and
Cohen’s f. The following two lines contain output associated
with the Bayesian analysis, including ΔBIC (dBIC in the
display), the estimated Bayes factor (BF), and estimated
posterior probabilities pBIC(H0 | D) and pBIC(H1 | D). The
next two lines report information about the Jarmasz and
Hollands (2009) CI for this interaction. Examples related
to the Bayesian analysis and CI functions in MorePower are
discussed in the subsequent sections. As the 2 × 2 × 2
interaction has df treatment 0 1, the mean difference (d) in
original units (1.003) is presented on the basis of Eq. 4. This
number represents the magnitude of the interaction effect in
original units. The SE of the difference (d) based on Eq. 5 is
included, as well as the 95% [i.e., 100(1 – α)] CI based on
the SE and t, with df equal to the dferror for the interaction.
Next, the output displays the design and effect in factorial
format (e.g., 2r is a two-level RM factor; 3i is a three-level
IM factor). The remaining lines in the output present the
standard test of the null hypothesis for the interaction,
including the observed F ratio, the observed significance
level (p), the error and treatment df for the effect of interest,
the MST and MSE, and the critical F ratio. Of course, not all
of this information will always be relevant, but any part or
all of the output may be copied and pasted to be used as
needed.

Built-in examples 1–4: calculating sample size and effect
size for ANOVA designs

MorePower calculates the required sample size given the
current values for the design and effect of interest, effect
size, α, and power. Alpha is set by default to .05 two-sided
and does not need to be entered except to change it from the
default. The calculator solves for n per IM cell and multi-
plies this result by the number of IM cells to obtain the total
sample size (N). Calculation of the sample size for ANOVA
has a maximum limit of n 0 2,500 per IM cell or a total N 0

2,500 for an all-RM design. This largely avoids long waits
(e.g., 30 s) owing to slow processing by CDFDNF. If the
limit is reached, a warning appears, and the result is suspect.
This limit does not apply to calculation of power or effect
size for ANOVA. Sample size is a discrete variable in More-
Power, whereas power is a continuous variable; consequent-
ly, the calculated sample size will not correspond exactly to
the power specified. To find the exact power for a calculated
sample size, the user can select Power under Solve For and
click Solve, which displays the exact power given the
calculated N.

Built-in Example 1 (see Fig. 1) illustrates the use of
MorePower to calculate the sample size required for a 2 ×
2 × 2 interaction in a design with two RM factors and one
IM factor. The design and effect were specified by entering
22 in the RM field and 2 in the IM field of the Design
Factors and Effect of Interest sections; alternatively, the
drop-down lists could be used. The desired power of .80
was entered in the Power field, and a medium effect size of
.06 for eta2 was specified in the Effect Size field. An entry in
the Variability section (e.g., MSE) is required, although this
value does not affect the calculation of the required sample
size. This is because error variability is implicit in ηp

2 [i.e., it
is SST/(SST + SSE)]. Enter a value if prompted (the calcu-
lator will initialize to a default value of 1). The required
sample of 128 appears in the Sample field after a second or
two. Thus, a total sample of at least 128 is required to have a
.8 probability to correctly reject the null hypothesis (i.e.,
power 0 .8) given a medium effect size (ηp

2 0 .06) for the
2 × 2 × 2 mixed RM–IM interaction.

Built-in Examples 2 and 3 specify a five-factor mixed
RM–IM design with 2 × 2 RM (within-subjects) factors
combined with 2 × 2 × 3 IM (between-subjects) factors. In
Example 2, MorePower calculates the sample size required
with ηp

2 0 .06 and power ≥ .8 for an IM–RM 2 × 2
interaction (required N ≥ 144). Example 3 illustrates a
sensitivity analysis and calculates the minimum population
effect size required (ηp

2 > .144) for the five-way interaction,
given power 0 . 8 and sample size 0 72. Example 4 illustrates
a 3 × 3 RM design and calculates the sample size required
(N ≥ 26) for a large-effect-size interaction (ηp

2 0 .14) and
power 0 .9.

Built-in examples 5–8: Bayesian analysis

ANOVA Examples 5 through 8 are included to illustrate
MorePower’s calculations for the estimated Bayesian poste-
rior probabilities. They are based on previously published
examples from Masson (2011) and Wagenmakers (2007).
Example 5 refers to the ANOVA design with one three-level
RM factor in Table 1 of Masson (2011, p. 683). To create
this example, only three quantities were required: the design
(three-level RM factor in the Design Factors and Effect of
Interest fields), the sample size (40 in the Sample field), and
the observed F value from Masson’s Table 1 (F 0 12.9,
although the MST of .178 could be used instead).5

Figure 2 shows MorePower 6.0 after running Example 5.
Masson (2011, p. 683) reported ΔBIC 0 –14.21, BF 0

5 In this example, MSE affects only the value of MST in the output;
consequently, any positive value may be entered for MSE and the rest
of the output will be unaffected. The MSE 0 .014 used in Example 5 is
from Table 1 in Masson (2011).
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0.000859, pBIC(Ho | D) 0 .00086, and pBIC(H1 | D) 0 .9991.
The corresponding quantities calculated by MorePower are
ΔBIC 0 –14.10, BF 0 0.00087, pBIC(Ho | D) 0 .00086817,
and pBIC(H1 | D) 0 .9991. Using F to represent effect size,
the Bayesian analysis calculated by MorePower is in very
close agreement, even though F was specified to only one
decimal place. Using Raftery’s (1995) rules of thumb, the
Bayesian results provided “very strong” evidence in favor of
the alternative hypothesis.

Bayesian Examples 6 and 7 refer to the 2 × 2 RM
ANOVA reported in Table 3 of Masson (2011, p. 685).
Example 6 is the main effect of alignment for which Masson
reports ΔBIC 0 –3.15, BF 0 0.2070, pBIC(H0 | D) 0 .171,
and pBIC(H1 | D) 0 .829. This provides positive evidence for
H1. Example 7 is the 2 × 2 (Alignment × Delay) interaction
for which Masson reports ΔBIC 0 –10.44, BF 0 0.0054,
pBIC(H0 | D) 0 .005, and pBIC(H1 | D) 0 .995. This indicates
“decisive” evidence for H1 (Table 1 above). Finally, Exam-
ple 8 refers to the Bayesian analysis of the 2 × 2 IM
interaction reported in Table 4 of Wagenmakers (2007, p.
799), who reports ΔBIC 0 –4.31, pBIC(H0 | D) ≈ .10, and
pBIC(H1 | D) ≈ .90. These examples demonstrate that
MorePower accurately reproduces the estimated Bayesian
posterior probabilities based on Masson (2011) and
Wagenmakers (2007) in each case.

Built-in examples 9–13: relational confidence intervals

The relational CIs calculated by MorePower correspond to
Formulas 1–5 in Jarmasz and Hollands (2009, Table 4). The
confidence level (e.g., 99%, 95%, or 90%) for the CI is
controlled by setting alpha (e.g., .01, .05, or .10, respective-
ly), which is .05 by default; thus, the 95% CI is calculated
by default. To demonstrate MorePower’s CI function, the
built-in ANOVA examples include the illustrative cases
presented by Jarmasz and Hollands. Their example design
had one IM factor with four levels (6 participants in each)
and four RM factors in a 4 × 2 × 2 × 2 design. Figure 3
shows MorePower after running Example 9. The Design
Factors RM field contains 4 × 2 × 2 × 2, and the IM field
contains 4, which, together, represent the five-factor mixed
IM–RM design. The Effect of Interest section contains a 2 in
the RM field, and the IM field is blank. Thus, the effect of
interest is the main effect of a two-level RM factor (the
within-subjects Direction factor; see Jarmasz & Hollands,
2009, p. 129). Apart from the design and effect, MorePower
also required input of the total Sample size (24), the ob-
served F ratio (11.8), and theMSE for this effect (1462) (see
Jarmasz & Hollands, 2009, Table 5, p. 131).

Fig. 2 ANOVA Example 5 refers to the Bayesian analysis of a three-
level RM ANOVA (based on Table 1 in Masson, 2011)

Fig. 3 ANOVA Example 9 refers to the relational confidence interval
calculations for a repeated measures main effect in a mixed IM–RM
design (Jarmasz & Hollands, 2009, p. 129)
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The output window (see Fig. 3) presents the information
discussed previously, but we will focus here on the Jarmasz
and Hollands (2009) CI, which is reported as J&H 95%
CI +/-4.07, with a critical value of t(20) 0 2.086, MSE 0
1,462, n 0 24, L 0 32 (i.e., 4 × 2 × 2 × 2), r 0 2 (i.e.,
the effect of interest has two RM cells), and #obs (i.e.,
number of observations) 0 384. These results correspond
to the solution presented by Jarmasz and Hollands (2009,
p. 129) as follows.

Mi � 2:086 �
ffiffiffiffiffiffiffiffiffiffiffiffi
1462

24:32=2

q
Mi � 4:1

As this effect has one degree of freedom in the numerator,
MorePower also displays the mean difference in original
units (9.48% from Eq. 4), the standard error of the difference
(2.76 from Eq. 5), and the 95% confidence interval of the
difference (±5.76%). The difference between the CI con-
structed using Eq. 3 (±4.07%) and the 95% CI based on the
SE (±5.76%) reflects the relation between relational CIs and
significance tests described previously; specifically, differ-
ences between means greater than the CI margin of error

multiplied by
ffiffiffi
2

p
are significant at the specified α level (.05

by default). Consistent with this, the relational CI margin of

error (4.07) multiplied by
ffiffiffi
2

p
equals 5.76, the margin of

error for the NHST-based 95% CI.
ANOVA Examples 10–12 further demonstrate the J&H

CI function in MorePower using Jarmasz and Hollands’s
(2009) illustrative analyses. Example 10 corresponds to the
CI for the 4 × 2 RM effect (±3.4 on p. 131). Example 11 is
the CI to compare RM conditions within IM cells for the 4 ×
2 mixed IM–RM effect (±3.2 on p. 133). Example 12 refers
to the CI for the main effect of the four-level IM factor
(±6.3 on p. 134). This experimental design included only
one IM factor, and therefore did not afford a demonstra-
tion for interactions in multifactor IM designs with no RM
factors. Example 13 confirms the application of More-
Power’s CI function for the case of a 2 × 2 IM interaction
(n 0 12 per group) taken from Masson and Loftus (2003;
CI ±0.055 on p. 209). These built-in examples allow the
reader to confirm that MorePower generates the appropri-
ate quantities to reproduce the desired relational CI in
each case.

MorePower`s CI function for mixed IM–RM effects does
not apply, however, when the researcher wishes to compare
IM means within levels of RM factors. The calculator uses
the MSE for the IM–RM interaction, which is the error
variability for the RM factor computed within IM conditions
(Jarmasz & Hollands, 2009, p. 128). This fact is reflected in
the source table of any mixed IM–RM ANOVA, which
shows that both the MSE and dferror are the same for an
RM effect and for any interactions of the RM factor(s) with
IM factors. Consequently, in contrast to Example 11, where

the CI based on the MSE affords comparison of RM means
within an IM condition, the CI to compare IM means within
an RM condition requires calculation of the “pooled mean
square within cells”(MSwc) and a corresponding df (MSwc)
(see Jarmasz & Hollands, 2009, pp. 128–129; Formula 6 on
p. 130). One can enter the MSwc rather than MSE in More-
Power, but the dferror cannot be specified directly (it is
derived from the design and effect information). Conse-
quently, the calculator will compute the correct CI for IM-
within-RM comparisons only when df(MSwc) 0 df(MSE).
This will rarely be the case. Nonetheless, MorePower can
be used to compute the number of observations (i.e., n L/r in
Eq. 3) required for the hand calculation of the CI, because
the number of observations is based on the total sample size,
design, and effect information, regardless of which type of
comparison is desired.

MorePower 6.0 and reducing errors in statistical reports

Another useful application of MorePower 6.0 is to check for
errors in reporting of statistical analyses. Bakker and
Wicherts (2011) estimated that a high percentage (perhaps
18%) of statistical results in the psychological literature
contain errors. In many instances, the errors are simple typos
or oversights (e.g., copying an ANOVA description as a
template for a similar analysis, but failing to make all of
the necessary changes). MorePower allows the user to
quickly specify an ANOVA effect of practically arbitrary
complexity and then to review the p value, degrees of
freedom, effect size (ηp

2 or original units for one-degree-
of-freedom tests), and so forth. This makes it straightfor-
ward to confirm that components of reported statistical tests
are internally consistent and correspond to the intended
analysis. It should be noted that the APA manual stipulates
reporting effect size measures such as ηp

2, but such
measures provide no more information than the test sta-
tistic itself (e.g., F, t, or z). Reporting a measure of error
variability (e.g., MSE or SE) provides valuable additional
diagnostic information about the accuracy of statistical
reports.

Error handling and help

If required input is missing or invalid, MorePower 6.0
identifies the problem item with a query, and the cursor
appears in the corresponding input field. The program also
generates a warning message on any internal error; simply
follow the instructions, or click the Clear Values button
and retry. If a persistent error occurs, please e-mail
jamie.campbell@usask.ca with the error number and a
screenshot of the calculator.
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Summary and conclusions

MorePower 6.0 computes exact power, sample size, and
effect size statistics for factorial ANOVA designs. The
calculator also provides a straightforward process for esti-
mating Bayesian posterior probabilities for the null and
alternative hypotheses based on Masson (2011), and also
computes CIs based on the Jarmasz and Hollands (2009)
formulas. A unique feature of MorePower is that it affords
direct comparison of these three approaches for interpreting
ANOVA. Other functions include power analyses for one-
or two-sample t tests or proportions, as well as simple
correlation (see Campbell & Thompson, 2002, and the sup-
plementary document included in the calculator download)
and a probability calculator for the F, t, and z distributions.
The program’s high numerical precision for ANOVA and
ability to work with complex ANOVA designs could further
facilitate researchers’ attention to issues of statistical power,
the use of relational CIs for data interpretation, and Bayesian
analysis for ANOVA. The program may be especially useful
to researchers as they consider a transition from standard
NHST to Bayesian analysis. Of course, the Bayesian anal-
ysis based on the BIC in MorePower is one approach among
a variety of likelihood-ratio methods that offer practical
alternatives to NHST (see, e.g., Dixon, 2003; Glover &
Dixon, 2004; Rouder et al., 2009; see also Wagenmakers,
2007, p. 794).
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