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Abstract In a meta-analysis of intervention or group com-
parison studies, researchers often encounter the circumstance
in which the standardized mean differences (d-effect sizes) are
computed at multiple levels (e.g., individual vs. cluster).
Cluster-level d-effect sizes may be inflated and, thus, may
need to be corrected using the intraclass correlation (ICC)
before being combined with individual-level d-effect sizes.
The ICC value, however, is seldom reported in primary
studies and, thus, may need to be computed from other
sources. This article proposes a method for estimating the
ICC value from the reported standard deviations within a
particular meta-analysis (i.e., estimated ICC) when an
appropriate default ICC value (Hedges, 2009b) is unavailable.
A series of simulations provided evidence that the proposed
method yields an accurate and precise estimated ICC value,
which can then be used for correct estimation of a d-effect
size. The effects of other pertinent factors (e.g., number of
studies) were also examined, followed by discussion of
related limitations and future research in this area.

Keywords Intraclass correlation (ICC) .Meta-analysis .

Standardized mean difference .Multilevel . Level of
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The standardized mean difference (also known as the d-effect
size) has been widely used to evaluate the effects of
interventions and treatments in the social sciences and
education (Hedges, 2009b; Hedges & Hedberg, 2007). The
d-effect size has been considered a scale-free index that
quantifies the strength and direction of the intervention/

treatment effect or group mean difference (Cooper, Hedges,
& Valentine, 2009). Thus, many researchers have combined
d-effect sizes from multiple studies and have drawn a
statistical inference about the overall intervention/treatment
effect (e.g., Mol, Bus, & de Jong, 2009; Slavin, Lake,
Chambers, Chueng, & Davis, 2009) or group mean
difference (e.g., Swanson & Hsieh, 2009).

In a meta-analysis of studies in the social sciences and
education, researchers often encounter the circumstance in
which d-effect sizes are computed using summary statistics
(i.e., means and standard deviations) originating from
multiple levels (e.g., student vs. classroom or patient vs.
clinic) across studies. For example, in a meta-analysis
examining the effect of teachers’ professional development
programs on student mathematics achievement by Salinas
(2010), two studies used aggregated data at the classroom
level, while the rest of the studies were based on data at the
student level.

Because individuals (e.g., students, clients) within the
same cluster (e.g., classroom, counselors) are likely to be
nonindependent, resulting in underestimated standard errors
(Raudenbush & Bryk, 2002), d-effect sizes computed at the
cluster level tend to be inflated, as compared with d-effect
sizes computed at the individual level (Hedges, 2007,
2009a, b; What Works Clearinghouse [WWC], 2008).
Thus, d-effect sizes from different levels should not be
combined in a meta-analysis prior to the estimation of an
overall effect size that accounts for the magnitude of
nonindependence by level.

Such an issue often arises when studies included in a
meta-analysis are based on either individual- or cluster-
level data. Studies reporting findings from both cluster- and
individual-level data could provide sufficient statistics to
take account of dependency among samples within the
same cluster when computing d-effect size. However, there
are some cases in education and/or the social sciences
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where providing findings from both cluster- and individual-
level data is not feasible. For instance, a researcher using
data gathered from a state may be restricted only to
classroom data, rather than individual student data. In such
a case, no information is provided at the individual level,
which prevents the researcher from taking account of
sample dependency when computing effect size. Clearly,
in cases where only individual-level data are available, it
would be incorrect for the researcher to rely on negatively
biased standard errors that result from ignoring the nested
nature of the data.

For handling such an issue, researchers have suggested
correcting the d-effect size computed at the cluster-level
(dclusters) and its associated variance vðdclustersÞ

� �
from the

clusters using an intraclass correlation (ICC), which can
ultimately be combined with the d-effect size computed at
the individual level (dindividuals). The formulas for correcting
dclusters that can be compatible with dindividuals, which is
described in Hedges (2009b), are

dadjusted ¼ dclusters»
ffiffiffiffiffiffiffiffiffi
ICC

p
; ð1Þ

and

vðdadjustedÞ ¼ vðdclustersÞ»ICC: ð2Þ
Consequently, the cluster-level d-effect size (dadjusted)

and its variance vðdadjustedÞ
� �

adjusted by the ICC value are

no longer biased and, thus, are compatible with the
individual-level d-effect sizes.

The critical correcting factor in Eqs. 1 and 2 is the ICC
value, which represents the degree to which observations in
the same cluster are dependent due to shared variances
(Hox, 2002; Kreft & de Leeuw, 1998). Simply, the ICC
value (ρ) is the proportion of cluster-level variance
s2
clusters

� �
to total variance s2

total

� �
and is given by

r ¼ s2
clusters

s2
total

¼ s2
clusters

s2
clusters þ s2

individuals

; ð3Þ

where s2
individualsis the individual-level variance.

However, the correcting factor given in Eqs. 1 and 2, the
ICC value, is seldom reported in studies (Hedges, 2009b),
which makes it difficult to correct for differences in the
cluster-level d-effect sizes. As a resolution, some researchers
have suggested imputing a plausible default ICC value from
other sources. For instance, the WWC (2008) recommended
using default ICC values of .20 for achievement outcomes
and .10 for behavioral and attitudinal outcomes. These default
values, which may not take ICC variation among different
achievement variables or behavioral and attitudinal outcomes
into account, were based on an analysis of the empirical
literature in the field of education. Following the WWC’s
guideline, Salinas (2010) and Scher and O’Reilly (2009)

adjusted the cluster-level d-effect sizes using the default ICC
value of .20 in their meta-analyses, both of which examined
the effect of teachers’ professional development programs on
student achievement.

In addition, Hedges (2009b) proposed the computation of
a default ICC value from a probability-based survey data set
such as the National Assessment of Educational Progress
(NAEP). For instance, Hedges and Hedberg (2007) have
provided a summary of the ICC values for mathematics and
reading computed from the national probability samples at
different grade levels and in different regions of the United
States (i.e., urban, suburban, rural). In their study, Hedges
and Hedberg found that the average ICC across all grade
levels was .22, which was computed using four existing
national data sets (e.g., the Early Childhood Longitudinal
Study and the Longitudinal Study of American Youth).

Although the method for extracting a default ICC value
described above would be a reasonable option in certain
circumstances, it is not practical for every context in which the
clustering of observations occurs. For example, the suggested
sources for the ICC value, such as the data set with the
national probability samples or empirical studies reporting the
ICC value, would not always be available. Moreover, even if
they exist, these values may be limited for some specific
subpopulations with unique characteristics. For instance, the
default ICC value of .20 for student achievement suggested by
WWC (2008) and Hedges (2009b) may not be appropriate
for samples composed mostly of students from nonmajority
ethnic backgrounds. For instance, Maerten-Rivera, Myers,
Lee, and Penfield (2010) reported the ICC value of .13 for
science achievements based on 23,854 fifth-grade students
from 198 elementary schools in a large urban school district
with a diverse student population. The ethnic background of
the student population in their study consisted of 60%
Hispanic, 28% African American, 11% White NonHispanic,
and 1% Asian or Native American. Another instance in
which a default ICC value of .20 may not be appropriate was
provided by Myers, Feltz, Maier, Wolfe, and Reckase
(2006), who provided evidence for an average ICC value
of approximately .33 across physical education variables.

In resolving the practical limitations of the existing
approach, the present study proposes using information
from the included studies of any particular meta-analysis.
Specifically, the ICC value, which is the proportion of
between-cluster variance to total variance, can be estimated
from variances/standard deviations and sample sizes that
are typically reported in treatment/intervention or comparison
studies. Thus, the estimated ICC value is not dependent on
either the availability of external sources (e.g., a synthesis of
probability-based survey national data sets) or the ICC value
being provided in each study of a meta-analysis.

In the following sections, we first present how to estimate
the ICC value from the reported standard deviations/variances
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and sample sizes. Then, by using a Monte Carlo simulation,
the performance of the ICC estimation was examined under
different conditions, such as number of cluster (l) and
individual (m) levels and the population ICC values (ρ).
Finally, the application of the ICC estimation in a series of
hypothetical meta-analyses that varied by both study features
[e.g., the population mean difference between control and
treatment groups (γtrt − γctr) and the number of studies
included (l + m)] was investigated. Specifically, the overall
effect-size estimator after correcting for differences in levels,
using the estimated ICC value, was compared with one
without the ICC correction and the other with a default ICC
value (i.e., ρ = .20) correction in relation to other study
features.

Estimating the ICC value

Suppose that a hypothetical meta-analysis of l number of
studies at the cluster level (e.g., classrooms) and m number of
studies at the individual level (e.g., students) was undertaken.
And from those studies, the variances/standard deviations and
sample sizes for control and treatment groups were reported.
From the l number of cluster- and the m number of
individual-level variances/standard deviations for both control
and treatment groups, let us define the lth cluster-level
standard deviation (= square root of variance) and the mth
individual-level standard deviation as SDl (l = 1, 2, . . . , l −
1, l) and SDm (m = 1, 2, . . . , m − 1, m), respectively. These
individual-level and cluster-level standard deviations are
closely related to the population ICC.

As is described in Raudenbush and Bryk (2002), the
logarithmic transformed standard deviation is normally
distributed with a sample mean of log SDð Þ þ 1= 2»ð½
n� 1ð ÞÞ� and an approximate variance of 1= 2» n� 1ð Þð Þ.
From the sampling distribution of the logarithmic transformed
standard deviation, the weighted average cluster-level standard
deviation can be estimated on the logarithmic scale by

logðbsclusterÞ ¼
Pl
l¼1

wlsl

Pl
l¼1

wl

; ð4Þ

where sl is defined as log SDlð Þ þ 1= 2» nl � 1ð Þð Þ½ � for the lth
cluster-level study, where nl is the number of clusters for lth
cluster-level study; wl is defined as 1/ vl, where vl is
1= 2» nl � 1ð Þð Þ.

Because the estimate is on a logarithmic scale, it is
transformed back to the original scale via

bscluster ¼ expðlogðbsclusterÞÞ: ð5Þ

Following Eqs. 4 and 5, the cluster-level variances for
both control bscluster ctrð Þ and treatment bscluster trtð Þ groups
can be estimated.

Similarly, the weighted-average total standard deviation
is estimated on the logarithmic scale:

logðbs totalÞ ¼
Pm
m¼1

wmsm

Pm
m¼1

wm

; ð6Þ

where sm is log SDmð Þ þ 1= 2» nm � 1ð Þð Þ½ � for the mth
individual-level study, where nm is sample size for the
mth individual-level study; wm is defined as 1/ vm, where vm
is 1/(2 * (nm − 1)). Then, the value is transformed back to
the original scale, using

bs total ¼ expðlogðbs totalÞÞ: ð7Þ
Again, using Eqs. 6 and 7, the total variances for controlbs total ctrð Þ and treatment bs total trtð Þ groups would be

estimated.
Finally, the ICC value can be estimated on the basis of

the cluster-level standard deviation estimate and total
standard deviation estimate,

br ¼ bscluster ctr þ bscluster trtð Þ2
bs total ctr þ bs total trtð Þ2 ; ð8Þ

where ctr and trt refer to control and treatment groups,
respectively.

The ICC value estimated using Eq. 8, which is indeed a
ratio of the estimated cluster-level variance to the estimated
total variance, is independent of variations in the scale of
the measures across studies.1 Hence, the estimated scale-
independent ICC value can be used to adjust differences on
effect sizes by level, in cases in which the included studies
in a meta-analysis employ widely varying scales of
measures to represent the underlying construct of interest,
which is often observed in practice.

Simulation 1: ICC estimation

The first simulation examined the performance of the
estimated ICC value on the basis of Eqs. 4–8 under

1 In order to test whether or not the computed ICC value was sensitive to
variation in the scale of measures, the authors of the present study
conducted a small simulation study, in which the scale of measures was
varied when computing the ICC value (Eq. 8). Mean bias and MSE
values of the computed ICC value were .03 and < .00001, respectively,
suggesting that the computed ICC was not affected by variation in the
scale of measures. Such a result was found irrespective of any study
features, including number of measures with different scales, population
ICC value, sample size, and number of effect sizes. Full results of this
simulation study are available by request to the first author.
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different conditions. These conditions were determined
by relevant factors (i.e., l, m, nl, and nm) that might affect
the estimation of the ICC value. In this section, data
generation and parameters used in the simulation were
first discussed, followed by the presentation of simulation
results.

Data generation

Using R (R Development Core Team, 2008) version 2.11.1,
data for the population experimental and control groups,
each having 30 individuals per cluster, were generated from
the normal distributions with means (i.e., γctr and γtrt ) and
respective total variances (i.e., s2

ctr and s2
trt). Total variances

were the sum of between-level variance (i.e., τctr and τtrt)
and within-level variance (i.e., s2

within ctr and s2
within trt),

which were determined by the population intraclass
correlation (i.e., ρ). The between-level variances were
generated from the normal distribution with a mean of 0
and respective between-level variances (i.e., τctr and τtrt).
The within-level variances were generated from the normal
distribution with a mean of 0 and respective within-level
variances (i.e., s2

within ctr and s2
within trt).

From the generated population data for control and
treatment groups, the l number of the v clusters and the m
number of the w individuals were randomly sampled, and
their standard deviations of the scores for the l number of
clusters and the m number of individuals were computed
for both treatment and control groups. From these observed
standard deviations, the ICC value was estimated using
Eqs. 4–8.

Choice of parameters

The relevant factors that would affect the estimation of the
ICC value used in the simulation included the number of
cluster levels (l), cluster sample size (v), the number of
individual levels (m), individual sample size (w), the
population mean difference between control and treatment
groups (γtrt−γctr), and the population ICC value (ρ).

First, four population ICC values of .05, .15, .25, and .33
were used to represent the true population proportion of
between-level variance to total variance. These were chosen
to represent the small, small to medium, medium to large,
and large between-level variances, respectively (Hox &
Maas, 2001; Hox, Maas, & Brinkhuis, 2010). Second, three
population mean differences between the control and
treatment groups were set to 0.2, 0.5, and 0.7, indicating
small, medium, and large group mean difference (Cohen,
1988). Last, the numbers of cluster-level and individual-
level studies (i.e., [l , m]) were set to [5, 5], [10, 10], [20,
20], [30, 30], and [60, 60] with the fixed cluster size and

individual size of 30. In reality, the numbers of cluster and
individual levels typically vary, and sample sizes often
differ across studies as well. For simplicity, however, the
fixed sample size of 30 equal for control and treatment
groups were used to compute d-effect sizes for both cluster-
and individual-level data..

In all, from the 12 populations (i.e., [γtrt − γctr] = 0.2,
0.5, 0.7 by ρ = .05. .15, .25, .33), a total of 60 unique
conditions (i.e., [l ,m] = [5, 5], [10,10], [20,20], [30, 30],
[60, 60]) were generated. These 60 different conditions
were replicated 1,000 times, yielding 60,000 estimated ICC
values.

Evaluation of estimator

Two criteria were used to evaluate the performance of
the ICC estimation. One was the relative bias of the
estimated ICC value (Hoogland & Boomsma, 1998),
which is defined by

BiasðbrÞ ¼ br� r
r

; ð9Þ

where br is the mean of the ICC estimates across all replications
for each condition, and ρ is the population ICC value. The
absolute value of relative bias [Bias(br)] less than |−0.05| is
considered to be an acceptable range of the relative bias value
(Hoogland & Boomsma, 1998). And, the second index was
the mean square error (MSE) of the ICC estimates, which is
computed as

MSEðbrÞ ¼ br� r
h i2

� varðbrÞ; ð10Þ

where E(br) is computed as the mean br value and var(br) is
the empirical variance of the br values across the 1,000
replications for each combination.

Results

Table 1 displays the descriptive statistics of the relative bias
and MSE values of the estimated ICC by all the conditions
manipulated in the simulation. The average relative bias
values of the estimated ICC ranged from 0.001 to 0.007,
and the average MSE values were from 0.001 to 0.006,
indicating that the ICC value was estimated accurately and
precisely across three population mean differences and four
population ICC values. In particular, the absolute value of
the average relative bias values for all conditions was less
than |−0.05|, indicating that both the relative bias values of
the estimated ICC were in an acceptable range. The mean
relative bias and MSE values of the estimated ICC were
largest when the population ICC was set to .05 and .33,
respectively. Because there were both negligible bias and
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similar precision across conditions (see Table 1), explaining
the variance in these two outcomes was not undertaken.
Simply, the estimated ICC was unbiased and relatively
precise across conditions.

Simulation 2: use of the estimated ICC in meta-analysis

The second simulation examined the application of the
estimated ICC value to a set of hypothetical meta-analyses
that varied by study features. Specifically, we used a
simulation to examine the effect of incorporating the
estimated ICC value from studies in meta-analyses of
standardized mean differences (ds). We looked at the
relative bias and MSE values of the estimators of mean
effects, which varied by the ICC correction methods (i.e.,
no ICC correction, default ICC correction, and estimated
ICC correction).We further compared the relative bias and
MSE values of three overall mean effect-size estimators
with different ICC correction methods in relation to the
population mean difference, the number of studies (l + m),
and the ratio of the number of cluster-level ds (l) to the
number of individual-level ds (m) [l : m].

Data generation

From 12 population control and treatment groups that were
generated in simulation 1 (i.e., 3 population mean differences
of 0.2, 0.5, and 0.7 × 4 population ICC values of .05, .15, .25,
and .33), the set of hypothetical meta-analyses having l (i.e.,
number of studies using clusters) + m (i.e., number of studies
using individuals) studies were created. From the included l +
m studies, the cluster-level d-effect sizes were corrected using
the estimated ICC value, and then the average variance-

weighted d-effect size2 was computed and compared with the
average weighted d-effect sizes without ICC correction and
with a default ICC (i.e., .20) correction.

Choice of parameters

In addition to the two parameters used to generate the
population data in simulation 1 (i.e., the population mean
difference between control and treatment groups and the
population ICC value), two other factors were added. One
was the total number of studies included in the meta-
analysis (l + m), and the other was the proportion of the
number of studies using clusters (l) to the number of studies
using individuals (m) [l : m].

Number of studies included (l + m) Ahn and Becker (2011)
found that the number of studies included in meta-analysis
ranged from 12 to 180, on the basis of a review of 71 meta-
analyses published in the Review of Educational Research
from 1990 to 2004 and the Psychological Bulletin from 1995
to 2004. Of 71 meta-analyses, Ahn and Becker showed that
almost half of the studies included fewer than 50 studies in
their studies. Therefore, two values of 12 (i.e., meta-analysis
with the least numbers of studies) and 30 (i.e., meta-analysis
with the average number of 12 and 50 studies) were set to
total number of studies (l + m).

Ratio of l to the m (l : m) Of the l + m number of the
included studies, the following three sets of l : m [1:1 (i.e.,
l = 6, m = 6; l = 15, m = 15)], [2:1 (i.e., l = 8, m = 4; l = 20,

2 More details about the average variance-weighted effect size can be
found in Cooper et al. (2009).

Table 1 Relative bias and MSE
value of the estimated ICC Population

Mean
Difference

Population
ICC Value

Relative Bias MSE

Min Max M SD Min Max M SD

.2 .05 0.007 0.008 0.007 0.0005 0.001 0.003 0.002 0.001

.15 0.002 0.003 0.002 0.0004 0.001 0.007 0.002 0.003

.25 0.001 0.001 0.001 0.0002 0.0003 0.011 0.003 0.005

.33 0.001 0.002 0.001 0.0004 0.001 0.023 0.006 0.010

.5 .05 0.006 0.007 0.006 0.0004 0.001 0.002 0.001 0.001

.15 0.002 0.003 0.002 0.0003 0.001 0.006 0.002 0.002

.25 0.001 0.002 0.002 0.0003 0.001 0.015 0.005 0.006

.33 0.001 0.001 0.001 0.0004 0.000 0.020 0.005 0.008

.7 .05 0.006 0.007 0.007 0.0004 0.001 0.002 0.001 0.001

.15 0.001 0.002 0.002 0.0003 0.001 0.006 0.002 0.002

.25 0.001 0.002 0.001 0.0002 0.001 0.012 0.004 0.005

.33 0.0005 0.001 0.001 0.0004 0.0003 0.021 0.005 0.009
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m = 10)], and [1:2 (i.e., l = 4, m = 8; l = 10, m = 20)] were
chosen as a ratio of cluster-level studies to individual-level
studies. In reality, the ratio of cluster-level studies to
individual-level studies would likely vary considerably;
yet, for parsimony, these three patterns were chosen.

Estimators

The overall variance-weighted mean effect-size (dest.) with
the cluster-level ds adjusted by the estimated ICC value
using Eqs. 4–8 were computed and compared with the
overall variance-weighted mean effect size (dwithout) with no
corrected cluster-level ds and the overall variance-weighted
mean effect size with the cluster-level ds (ddefault) adjusted
by the default ICC value of .20 (which was suggested by
WWC, 2008, for educational outcomes). These three mean
effect-size estimators were computed for each condition
that varied by the population mean difference, the population
ICC value, the number of studies included, and the ratio of
cluster-level studies to individual-level studies.

To sum up, from 12 populations (i.e., 3 population mean
differences of 0.2, 0.5, and 0.7 × 4 population ICC values of
.05, .15, .25, and .33), 72 unique conditions (i.e., 2 values of
total number of studies (i.e., 12 and 30) × 3 values of a ratio of
cluster-level studies to individual-level studies (i.e., [1:1],
[1:2], and [2:1]) were generated. For each condition with
1,000 replications, three variance-weighted overall effect sizes
(i.e., dwithout, ddefault, and dest) were computed. Therefore, a
total of 216,000 effect-size estimators were obtained from 72
different conditions, which were replicated 1,000 times.

Evaluation of estimators

Two criteria— the relative bias and MSE values—were used
to evaluate the overall effect-size estimators. Representing

the overall d-effect size as bd and the population effect size as
δ, the relative bias and MSE values of the estimated d-effect
size is computed by

BiasðbdÞ ¼ bd � d
d

; ð11Þ

and

MSEðbdÞ ¼ bd � d
h i2

þ varðbdÞ; ð12Þ

where bd was computed as the mean bd value, and var(bd) is the
empirical variance of the bd values across the 1,000
replications for each combination. The absolute value of Bias

(bd) less than |−0.05| is considered to be an acceptable range of
the relative bias value (Hoogland & Boomsma, 1998).

Descriptive statistics were first computed for the relative
bias and MSE values of three estimators across the 72
conditions. Then two sets of ANOVAs were conducted to
compare the relative bias and MSE of three variance-
weighted overall effect sizes with different ICC correction
methods (i.e., dwithout, ddefault, and dest ) in relation to the
simulation parameters. The factors modeled in the
ANOVAs included the population mean difference, the
population ICC value, the total number of studies included,
and the ratio of cluster-level studies to individual-level
studies. The main effect of each parameter and the
interaction effects with type of the ICC correction method
were modeled in the ANOVAs as predictors of the relative
bias and MSE values. In the ANOVAs, the significance
level was set to .015, and the partial eta-squared value (ĥ2),
which is a relatively less sample-size-sensitive measure,
was used to describe the impact of each predictor.

Results

Table 2 displays the descriptive statistics of the relative bias
and MSE values of three overall mean effect-size estimators
(dest., dwithout, ddefault) by the population mean difference
and the population ICC value. As is shown in Table 2, the
dest. had average relative bias values ranging from 0.03 to
0.26 and average MSE values ranging from 0.002 to 0.003.
dest, had an average relative bias of less than |−.05|, except
in two conditions. The two exceptions showing a bias larger
than |−.05| were when the population value was negligible,
in which the ICC correction by level was not necessary. Yet
dest had approximately zero average MSE values across
conditions. These results indicated that the estimated overall
effect-size estimator with an estimated ICC correction was an
accurate and precise one.

On the other hand, the estimated overall effect size without a
correction (dwithout) had an average relative bias ranging from
0.27 to 1.71 and average MSE values ranging from 0.005 to
0.035. This result showed that the overall effect-size estimator
without an ICC correction was biased and contained sizable
errors. Similarly, the estimated overall effect size with a
default ICC value of .20 correction (ddefault) had an average
relative bias that was frequently bigger than an acceptable

range of relative bias of |−.05| (i.e., Bias = |− 0.15| to |−0.75|)
and MSE values between 0.002 and 0.006, showing that
ddefault was also biased and inaccurate.

As is shown in the last three columns of Table 2,
Cohen’s d-effect size comparing mean differences between
dwithout and dest ranged from 3.43 to 4.62 in the absolute
magnitude of bias values and from 1.26 to 2.43 in the MSE
values, suggesting that the bias and MSE values of dwithout
are bigger than those of dest to a large degree. And Cohen’s
d-effect sizes for differences in the absolute magnitude of
the bias values between ddefault and dest ranged from 0.15 to
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5.78, indicating that the dest was more accurate than ddefault,
yet the differences were small (with ρ of .25 for γtrt − γctr
of .20, ρ of .15 for γtrt − γctr of .70) to large. For the MSE
values, Cohen’s d-effect size between ddefault and dest
ranged from 0 to 3.00, indicating that the dest was more
precise, except when ρ was either .15 or .25, whose MSE
values were identical at 0.001. Overall, the dest was the
most accurate and precise, as compared with dwithout and
ddefault, with exceptions on the identical MSE values of dest
and ddefault when ρ was either .15 or .25

As is displayed in Table 3, the relative bias and MSE
values of the estimators differed depending on the ICC
correction method (F(2, 120) = 13,598.56, p < .01, for the
relative bias value; F(2, 120) = 684.33, p < .01, for the MSE
value). A post hoc comparison using Tukey’s adjustment
showed that both relative bias and MSE values of dest were
lower than those of dwithout (Mdiff = −0.64, p < .01, for the
relative bias value and Mdiff = 0.015, p < .01, for the MSE
value). And the relative bias and MSE values of dest were
lower than ddefault, yet mean differences were not statistically
significant (Mdiff = −0.068, p = .13, for the relative bias value
and Mdiff = −0.001, p = .43, for the MSE value).

These three overall effect-size estimators (i.e., dwithout,
ddefault, and dest.) were next compared in relation to several
study features manipulated in the simulation. These
comparisons were based on two separate ANOVAs on the
relative bias and MSE values of the overall mean effect-size
estimators. Because the main purpose of each ANOVA was
to compare three effect-size estimators in relation to other
study features manipulated in the simulation, only the
interaction effect related to type of ICC corrections (i.e., no

ICC correction, default ICC correction, and estimated ICC
correction) with other study factors (i.e., the population
mean difference, the population ICC value, the number of
studies included, and ratio of number of cluster-levels to
number of individual-levels) were modeled.

As is displayed in Table 3, results from ANOVAs
indicated that there were significant three-way interactions
of the ICC correction methods with the population mean
difference, the population ICC value, and the ratio of
numbers of clusters to individual levels on both relative
bias and MSE values of the overall effect-size estimators.
Because the higher-order interactions superseded main
effects, only significant three-way interaction effects were
investigated further.

Figure 1 displays the significant three-way interactions
of the ICC correction methods (i.e., no ICC correction,
default correction, and estimated ICC correction) with the
relative bias values. The effect of the population mean
difference on the relative bias of the overall effect-size
estimators was relatively large, when the population ICC
was set to .05 (see Fig. 1a). However, when the population
ICC was set to either .15 or .25, mean differences in the
relative biases of ddefault, and dest were almost identical
across all the population mean difference. However, mean
differences in the relative bias values of ddefault and dest
increased when the population ICC value was .33. In
particular, when the population ICC value was equal to .33,
the relative bias value of ddefault.was larger in a negative
direction, as compared with that of dest. As is shown in
second column from the last of Table 2, Cohen’s d-effect
size for differences in the absolute magnitude of the bias

Table 3 ANOVA results on the relative bias and MSE values of effect-size estimators

Source Relative Bias MSE

SS df MS F η2 SS df MS F η2

[γtrt − γctr] 0.51 2 0.26 389.80** .87 0.002 2 0.001 145.34** 0.71

ρ 13.30 3 4.43 6773.50** .99 0.0007 3 0.0002 33.94** 0.46

[l + m] 2.31E-05 1 2.31E-05 0.04 .00 0.0003 1 0.0003 43.15** 0.26

[l : m] 0.98 2 0.49 750.64** .93 0.0008 2 0.0004 56.25** 0.48

ρcorrection 17.80 2 8.90 13598.56** 1.00 0.0095 2 0.005 684.33** 0.92

[γtrt − γctr]* ρ * ρcorrection 1.40 18 0.08 118.98** .95 0.0006 18 3.39E-05 4.90** 0.42

[l : m] * ρ * ρcorrection 1.64 18 0.09 139.25** .95 0.0018 18 0.0001 14.75** 0.69

[l + m] *ρ * ρcorrection 0.001 9 0.0002 0.24 .02 1.97E-06 9 2.19E-07 .03 0.002

[γtrt − γctr]*[l : m] * ρcorrection 0.02 12 0.0016 2.40** .19 0.001 12 9.29E-05 13.40** 0.57

[γtrt − γctr]* [l + m] * ρcorrection 0.001 6 0.0002 0.28 .01 3.95E-07 6 6.58E-08 .01 0.0005

[l + m] * [l : m] * ρcorrection 0.0003 6 4.23E-05 0.06 .003 3.04E-06 6 5.06E-07 .07 0.004

Error 0.08 120 0.0007 0.0008 120 6.93E-06

Total 42.03 215 0.02 215

Note. ** p < .01; [γtrt − γctr] = the population mean difference between treatment and control groups; ρ = the population ICC value; [l + m] = the
number of studies; [l : m] = [# of cluster-levels : # of individual-levels]; ρcorrection = type of the ICC correction method
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values between ddefault and dest were all over 5, indicating
that dest.has lower bias values, as compared with ddefault.

The relative bias value of dest was consistent across the
four population ICC values regardless of the ratio of the
number of cluster-level studies to the number of individual-
level studies. And across all population ICC values, the
differences between dest and ddefault in the relative bias were
negligible. However, the effects of different ratios of cluster
and individual levels on the relative bias value of dwithout
and ddefault were different across four ICC values. In
particular, the overall mean-effect estimators (i.e., dwithout
and ddefault ) with more individual-level studies were more
accurate (see Fig. 1b).

In addition, the effects of different proportions of cluster
levels and individual levels on the relative bias of dest were
fairly consistent for all population mean difference (see
Fig. 1c). However, as is shown in Fig. 1c, both ddefault and
dwithout had smaller relative bias values when the individual
levels were twice the cluster-levels, while these had larger
relative bias values with the same numbers of individual
and cluster levels included.

Figure 2 presents the significant three-way interactions of
the ICC correction methods on the MSE value of the overall
effect-size estimators. As is shown in Fig. 2a, the MSE value
of dest was consistently low (almost zero) regardless of the
population mean difference and the population ICC value.
However, the MSE values of ddefault and dwithout differed
considerably by both the population ICC value and the
population mean difference. Specifically, ddefault had almost
zero MSE values when the population ICC was either .15 or
.25, but its MSE values increased as the population mean
difference got bigger only with the population ICC value of
.05 and .33. For the MSE values, Cohen’s d-effect size
between ddefault and dest was over 1 when the population ICC
values was either .05 or .33, indicating that the dest was more
precise, except when ρ was either .15 or .25. And the
differences in the MSE value of dwithout by the population
mean difference became smaller when the population ICC
became larger (see Fig. 2a).

As is displayed in Fig. 2b, differences in MSE values of
ddefault and dwithout by different ratios of cluster and
individual levels were bigger as the population mean
difference became larger. However, the MSE values of dest
were consistently low (almost zero) regardless of the
population mean difference or the population ICC. And
having more cluster levels yielded slightly bigger MSE
values of both ddefault and dest , yet produced smaller MSE
values of dwithout .

Lastly, having a different ratio of the number of cluster-
level studies to the number of individual-level studies on
the MSE values of dest was consistent across four
population ICC values. However, the effect of different
ratios of cluster and individual levels on the MSE values of

dwithout were not consistent across four ICC values, showing
that having more individual-level studies made the MSE
values of dwithout smaller (see Fig. 2c).

General discussion

The present study focused on the central issue of
synthesizing d-effect sizes originating from different levels
(e.g., students and classrooms). This issue often arises when
the included studies examine the effect of an intervention or
treatment that can be implemented at different levels. Also,
a mixture of studies providing d-effect sizes from both
cluster-level and individual-level data can be found when
comparing naturally occurring groups. For instance, the
effect of teachers’ having a bachelor degree (BA) in
mathematics on student math achievement can be studied
by either comparing mean scores from classrooms of
teachers with BAs with those of teachers without BAs or
comparing students mean scores of two teacher groups.

Although the danger of drawing inferences about
individual behavior on the basis of cluster data (WWC,
2008), which is referred to as the fallacy of ecological
inference (Robinson, 1950), has long been discussed, many
researchers still utilize aggregated data, and many meta-
analyst may include these studies in their syntheses. The
use of aggregated data could be done for the convenience of
the researchers and/or because the meaning of the effect is
similar across levels. There are also some situations in
which the individual-level group assignments are not
feasible for political or practical reasons (Hedges &
Hedberg, 2007) or the individual-level data are not
accessible (e.g., the restricted use of individual-level data).
In all of these cases, the proposed method may assist in
combining studies originating at different levels.

The correction of the cluster-level d-effect sizes using
the ICC value is necessary because the cluster-level d-effect
sizes are upwardly biased. However, it can be challenging
to obtain the ICC value because the studies using clustered
data do not often report it (Hedges, 2009b). Although the
existing recommendations for extracting a default ICC
value, particularly on the basis of empirical searches of
previous studies or data sets using the national-level
probability samples, might be reasonable in some cases,
practical limitations remain. In resolving such limitations,
the present study proposes incorporating the estimated ICC
from standard deviations/variances that are often reported
(unlike the ICC value) in the included studies for any
particular meta-analysis.

As was shown in the first simulation, the ICC value was
accurately and precisely estimated from the standard
deviations, with the average relative bias less than an
acceptable range of |−.05| and MSE values approximately
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close to zero. Also, the ICC value was not sensitive to
variation in the scale of the measures that represented the
same underlying construct of interest. The accuracy and
precision of the ICC estimation were consistent irrespective
of any study features. In other words, the proposed model
produced the accurate and precise estimation of the ICC
value, which eventually affects the correct estimation of the
overall effect size in a meta-analysis.

In general, the estimated overall effect size after
correcting the cluster-level d-effect size using the estimated
ICC value was unbiased and accurate, having average
relative bias less than |−.05| and MSE values close to zero.
Specifically, the overall effect-size estimator with the
estimated ICC correction had significantly lower mean
relative bias and MSE values, as compared with no ICC
correction. Even though the mean difference in the relative
bias and MSE values of the effect-size estimators was not
statistically significant, the overall effect size with the
estimated ICC correction was lower than that with a default
ICC correction (Mdiff = −0.068 for the relative bias value
and Mdiff = −0.001 for the MSE value).

The relative bias and MSE values of the overall effect-
size estimators with different ICC corrections varied
depending on the population mean difference, the popula-
tion ICC value, and the ratio of cluster-level studies to
individual-level studies. Specifically, the relative bias and
MSE values of the overall effect size with the estimated
ICC correction were similar to that of the overall effect size
with a default ICC correction, when the population ICC value
was set to either .15 or .25. This makes sense because the
computed overall effect size with a default ICC correction was
based on the cluster-level d-effect sizes corrected by a default
ICC value of .20. However, relative bias and MSE values of
the overall effect size with a default ICC correction were
bigger than those with the estimated ICC correction when the
population ICC value was set to either .05 or .33.

The advantage of the proposed method largely comes
from the accuracy and precision of the ICC estimation,
which does not appear to be sensitive to variation in the
scale of measures, and leads to the correct estimation of the
overall effect size in a meta-analysis. In addition, the ease
of utilizing the proposed method for any contexts of interest
is quite appealing. Specifically, the estimation of both
between and total variances for the ICC computation is a
simple application of the regular meta-analytic procedure.
Therefore, any meta-analysts can easily extract the ICC
value from the reported standard deviations and sample
sizes. Moreover, the estimated ICC value from studies
would be better to represent the unique characteristics of
the population whose data are nested in nature.

In spite of these practical advantages of the proposed
method, there are a few methodological concerns. First, the
present study assumes that standard deviations/variances are

from the same population, and thus the fixed-effect model is
used to estimate the between and within variances. In cases
where the fixed effect of standard deviation is suspicious, the
random-effects model should be used to estimate the average
variances (Raudenbush, 1994). Second, the proposed method
assumes that standard deviations and sample sizes are
available from the included studies. Such concern would be
relatively trivial, since most intervention and comparison
studies report summary statistics. Lastly, the parameters used
in simulations 1 and 2 might be too hypothetical to represent
the reality. For instance, in reality, the numbers of cluster and
individual levels vary considerably, and sample sizes often
differ across studies as well.

In spite of these methodological concerns, the proposed
method appears to be both practical and applicable to many
contexts of research synthesis. Also, the estimated overall
effect size after correcting cluster-level effect sizes is unbiased
and accurate, which is due mainly to the correctly estimated
ICC value incorporated into the overall effect-size estimation.
However, it should be reemphasized that the practicality of the
proposed method is dependent on the primary studies
providing the necessary information for estimating the ICC
value, particularly standard deviations and sample sizes.
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