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Abstract When participants are asked to respond in the
same way to stimuli from different sources (e.g., auditory
and visual), responses are often observed to be substantially
faster when both stimuli are presented simultaneously
(redundancy gain). Different models account for this effect,
the two most important being race models and coactivation
models. Redundancy gains consistent with the race model
have an upper limit, however, which is given by the well-
known race model inequality (Miller, 1982). A number of
statistical tests have been proposed for testing the race
model inequality in single participants and groups of
participants. All of these tests use the race model as the
null hypothesis, and rejection of the null hypothesis is
considered evidence in favor of coactivation. We introduce
a statistical test in which the race model prediction is the
alternative hypothesis. This test controls the Type I error if a
theory predicts that the race model prediction holds in a
given experimental condition.
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Redundant-signals effect

The redundant-signals task might be considered one of the
most basic paradigms in research on cognitive architecture.
In a typical redundant-signals experiment, participants
receive stimuli from two different sources (hereafter, A
and V, for auditory and visual stimuli, respectively; of
course, the present results generalize to any combination of
signals, within or across sensory modalities). The critical
aspect is that the same speeded response is required for
both A and V—for example, a simple manual response or a
given choice. In a third condition, both stimuli are
presented simultaneously (redundant signals, AV); in this
condition, responses are often observed to be substantially
faster than in the single-signal conditions A and V. At first
glance, this redundancy gain, in itself, indicates some sort
of integration of the information provided by the two
signals. However, different models can account for the
effect, including serial, parallel, and coactivation models of
information processing (e.g., Miller, 1982; Schwarz, 1994;
Townsend & Nozawa, 1997).

In the analysis of response times observed in a
redundant-signals task, a general distinction is often made
between separate activation and coactivation models. The
information provided by the different sensory systems
might be processed in separate pathways (separate-activa-
tion models; e.g., race model, serial self-terminating
model), or it might be pooled into a common channel and
processed as a combined entity (coactivation). The most
important member of the class of separate-activation
models is the so-called race model: The race model
assumes that processing of a redundant AV stimulus occurs
in separate channels; the overall processing time Dy is then
determined by the faster of the two channels: Dy = min
(D4, Dy). If the processing-time distribution D4 is invariant
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in A and AV, and Dy is invariant in V and AV (context
invariance; see, e.g., Luce, 1986, p. 130), the minimum rule
yields, on average, faster processing of AV than of either A
or V alone. The redundancy gain according to the race
model has an upper limit, however. This upper limit is
given by the well-known race model inequality (Miller,
1982),

Fav(t) < Fa(t) + Fy(2), for allt, (1)

with F(f) = P{T < t} denoting the probability for a response
within # milliseconds, and T = D + M denoting the response
time, which is usually decomposed into the processing time
D and a context-invariant residual M (motor execution,
finger movement etc.; see Luce, 1986, chap.3). If Inequal-
ity (1) holds for all ¢, the response time distribution for AV is
consistent with the race model prediction. Under the race
model, the redundancy gain is maximal for Fay(¢¥) = Fa(?) +
Fy(f—more precisely, Fay(f) = min[l, Fa(f) + Fy(9)],
because the left side cannot exceed unity. This maximum
is attained in some serial self-terminating models (Appx. B
in Gondan, G6tze & Greenlee, 2010) and in race models for
which context invariance holds and the correlation of the
channel-specific processing times D4, Dy is maximally
negative (rank correlation —1; see, e.g., Colonius, 1990;
Townsend & Wenger, 2004).

Violation of Inequality (1) at any ¢ (Fig. 1a) rules out the
race model—and, more generally, the entire class of
separate activation models (Miller, 1982). Since the race
model inequality is based on both separate processing and
context invariance, violation of the race model prediction
rules out separate activation, or context invariance, or both.
For example, race models with mutually facilitating
channels have been shown to produce weak violations of
the race model inequality (e.g., Mordkoff & Yantis, 1991;
Townsend & Wenger, 2004). In most studies, however, a
violation of Inequality (1) is interpreted as evidence for
integrated processing of the redundant information.

The race model inequality can be generalized in a
number of ways—for example, to stimuli presented with
onset asynchrony (Miller, 1986), to experiments with catch
trials (“kill-the-twin” correction; Eriksen, 1988; Gondan &
Heckel, 2008), and to factorial manipulations within the
two modalities (Theorem 1 in Townsend & Nozawa, 1995).
Here, we focus on an issue related to statistical tests of
Inequality (1), but the results hold for these generalizations
as well.

As a motivating example, consider a prototypical
scenario with two experimental conditions A and B.
Theoretical considerations suggest that Inequality (1) is
violated in Condition A, whereas it is expected to hold in
Condition B (e.g., Feintuch & Cohen, 2002; Schréter, Frei,
Ulrich, & Miller, 2009). Feintuch and Cohen presented two

features of a redundant signal either in spatial correspon-
dence (Condition A) or spatially separated (Condition B).
In Condition A, the theory predicts coactivation of feature-
specific response selectors, whereas in Condition B,
redundancy gains were expected to be consistent with
separate activation. In tests related to Condition A, the race
model takes the role of the null hypothesis. Two types of
tests have been developed for this situation, depending on
whether Inequality (1) is tested in a single participant
(Miller, 1986, pp. 336-337; Maris & Maris, 2003; Vorberg,
2008) or in a group (Gondan, 2010; Miller, 1982; Ulrich,
Miller, & Schroter, 2007). We denote these tests as
“standard tests” of the race model inequality. These tests
demonstrate, at a controlled Type I error, that Inequality (1)
is violated at some ¢ In contrast, for Condition B, the
appropriate statistical test has to demonstrate that the
observed results are consistent with Inequality (1),

%Hy 1 Fav(t) > Fa(t) + Fy(t), for some ¢, versus
MCH, : Fav(t) < Fa(t) + Fy(t), for all ¢.

In the inequalities in (2), the race model prediction takes
the role of the alternative hypothesis. It is well known that
standard significance tests cannot be used to “prove” the
null hypothesis. In other words, P values greater than 5%
resulting from standard tests of the race model inequality
(e.g., Gondan, 2010; Miller, 1986) do not demonstrate that
Fav(t) < Fa(f) + Fy(?) holds for all ¢.

Here, we describe a significance test that should be used
when theoretical considerations predict that the race model
inequality holds (i.e., Condition B). The proposed test
controls the Type I error rate if the race model does not
hold. In the alternative, the test is consistent—that is, the
power increases with sample size when the race model
holds. However, as null hypotheses with strict inequalities
(2) are difficult to test within the classical null hypothesis
testing framework, a so-called noninferiority margin needs
to be introduced.

Noninferiority tests

Noninferiority tests are members of a more general class of
equivalence tests. In applied disciplines, these tests are
recommended if the study is designed to establish similarity
between two groups or experimental conditions (see
D’Agostino, Massaro, & Sullivan, 2003, for an overview).
In psychology, only a few claims have been made in favor
of equivalence tests—for example, to demonstrate that two
therapeutic techniques have similar effects (e.g., Rogers,
Howard, & Vessey, 1993; Seaman & Serlin, 1998; Tryon,
2001). For a noninferiority test, a margin § > 0 is specified,
which denotes a small effect in the wrong direction that one
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Fig. 1 Tests of the race model. (a) The distribution function for AV is
greater than the summed distributions for A and V, violating the race
model inequality. The significance test is used to demonstrate that
FA\/(t) > FA(t) + F\/(t), or, equivalently, that FA\/(t) - FA(t) - F\/(t) is
significantly greater than zero, for some ¢ The direction of the
significance test is illustrated by confidence-interval-like gray bars
(CI). (b) Showing that the race model inequality holds: A significance

is willing to tolerate when deciding for the alternative
hypothesis. The test is then used for demonstrating non-
inferiority; that is, the observed difference is significantly
below this margin.

Freitag, Lange, and Munk (2006) proposed a nonpara-
metric noninferiority test for comparison of two distribu-
tions: Denote the population distribution functions by G,(?),
G»(1), with their respective sample distributions G1(7), G,(f).
The test is used to demonstrate that G(#) stochastically
dominates G,(f)—that is, G(¢) < G,(¢), for all . Restated in
terms of a noninferiority test, G(f) < G,(¢) + 6, for all ¢. The
vertical difference G(¢) — G,(¢) should, thus, never reach or
exceed 6,

Gi(t) — G2(¢1) < 8, for all ¢. (3)

An intuitive test for the above hypothesis can be
constructed using point-wise one-sided confidence intervals
for the difference of the sample distributions G,() — Gx(?).
If the upper 95% limit of this confidence interval does not
include 9, for all ¢, violations of stochastic dominance are
significantly below the noninferiority margin.

The point-wise approach is, of course, very conservative
(see, e.g., Table 1 in Freitag et al., 2006). Bootstrapping can
be used to improve the power of the test: If G(¢) — G,(?) is
everywhere below §, the maximum of this difference is
below 9, as well:

max,[G; (1) — G2(¢)] < 6.
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test is used to demonstrate that violations are negligible—that is,
significantly below the noninferiority margin (NI), Fay(f) — Fa(f) —
Fy(f) <0, for all ¢. (¢) Numeric estimate for violation of the race model
inequality predicted by the diffusion superposition model (Schwarz,
1994). This estimate can be used for the definition of a noninferiority
margin (see the Discussion in the main text)

This can be shown again statistically using a one-sided
confidence interval for the maximum of the vertical
distance between the two observed distributions, dp,.x =
max, [G,(f) — G»(#)]. The confidence interval for this
maximum can be determined using so-called hybrid boot-
strapping (Eq. 4 in Freitag et al., 2006). If the upper 95%
limit of the confidence interval around d,.,, is below 6,
noninferiority is established over the entire range of t.
Compared to the point-wise test in Inequality (3), the
bootstrap distribution of d,,.x preserves the positive correla-
tion of consecutive values of G(f), which substantially
increases statistical power (Table 1 in Freitag et al., 2000).

Application to the test of the race model inequality

In order to apply Freitag et al.’s (2006) test to data from a
redundant-signals task, an appropriate noninferiority margin
must be specified, say d = 0.1. The hypotheses in (2) are
then restated using the noninferiority margin:

O 0 Fay(t) > Fa(t) + Fy(t) + 8, for some 7, versus
raceH15 : FAv(I) < FA(t) + Fv(t) + 6, for all ¢.
(4)

In the reformulation of the problem in (4), the non-
inferiority margin is defined in probability units (“vertical”
test; a horizontal test with the noninferiority margin defined
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Table 1 Simulated power for different sample sizes N and non-
inferiority margins o

Test N=30 N=50 N=100 N=200 N=400
(A) Independent racers

6=.02 12 12 15 .19 31
6=.05 12 26 32 .50 1
6=.10 33 44 .63 .84 97
Classical .02 .02 .01 .00 .00
(B) Race model with maximum redundancy gain

6=.02 .04 .04 .05 .06 A1
6=.05 .05 11 13 22 37
60=".10 15 25 37 .58 .83
Classical .07 .05 .05 .05 .06
(C) Superposition model

6=.02 .02 .01 .00 .00 .00
0=.05 .02 .02 .01 .00 .00
0=".10 .05 .06 .04 .04 .02
Classical 13 18 33 ) .83

Proportions of significant results (P < .05, 1,000 simulations) for
vertical noninferiority tests of the race model inequality with
noninferiority margins J. Classical: proportions of P > .05 when
testing for violations of the race model inequality (Miller, 1986).

on the milliseconds scale is outlined in Appx. A). If the
violation of the race model inequality does not exceed 9, for
all ¢, the null hypothesis in (4) is rejected (Fig. 1b).

Whereas Fay(f) never exceeds unity, the right-hand side
must be transformed into a proper distribution function,
Fav(f) £min[1, Fa(f) + Fy(?)]. The shape of min[1, F(f) +
Fy(#)] corresponds to the shape of the lower half of the 1 : 1
mixture of F, and Fy (Maris & Maris, 2003). A one-tailed
1 — «a confidence interval for the observed maximum
violation of the race model inequality is then built using
Freitag et al.’s (2006) algorithm. If the upper limit of the
confidence interval is greater than ¢, the coactivation Hy in
(4) is retained—namely, that violations of the race model
inequality are greater than or equal to d. If the upper limit of
the confidence interval is below d, violations of the race
model inequality are significantly below the noninferiority
margin, which favors the race model H, (Fig. 1b). The
noninferiority test then demonstrates that for a given
participant, the observed distribution on the left-hand side
of the race model inequality does not substantially exceed
the summed distributions of the right-hand side. For this
decision, the Type I error is controlled.

Type I error and power

Assuming a specific distribution for the response times in
conditions A and V, and assuming that the race model

holds, simulations can be used to generate samples of a
specific size. For a given noninferiority margin, it is then
possible to estimate the power of the test—that is, the
probability that the noninferiority test actually detects that
the race model holds, at some prespecified significance
level. This power estimate can be used for planning the
number of trials required in an experiment. Rejection rates
for different sample sizes and noninferiority margins are
shown in Table 1 for three scenarios: In the first scenario
(Table 1a), a race of stochastically independent (e.g., Eq. 1
in Miller, 1982) channels is assumed, with Fay(f) = Fa(f) +
Fy(t) — Fa())Fy(f). Response times were generated for
condition V67A measured in participant B.D. in Miller
(1986). V67A means that AV stimuli were not presented
synchronously, but with an onset asynchrony of 67 ms; in
this condition, the response time distributions for A and V
overlapped maximally. In the second scenario (Table 1b), a
separate-activation model with maximum redundancy gain
was chosen, Fay(f) = min[1, Fa(¢) + Fy(?)]. Not surprisingly,
the standard test of the race model inequality (Miller, 1986)
rejects the race model in about 5% (i.e., «) of the
simulations of Table 1b, mostly independent of the sample
size. In contrast, the noninferiority test is consistent, with a
positive relationship between power and sample size.
However, especially for strict noninferiority margins, the
power to detect that the race model inequality holds is
rather low, with lowest power at the boundary of the
maximally possible redundancy gain. Hence, if the exper-
iment is designed to demonstrate that the race model
inequality holds in a given experimental condition, 400
trials per condition or more should be considered (see, e.g.,
Miller, 1986).

In a third scenario, response times for the same
conditions were generated assuming a coactivation model
that assumes linear superposition of channel-specific
diffusion processes (Schwarz, 1994). Using the parameters
of Table 1 in Schwarz (1994, ppm = 0), the superposition
model predicts a substantial violation of the race model
inequality (see also Appx. A in Gondan et al., 2010).
Table 1c shows that for this setting, the noninferiority keeps
the nominal significance level, while the power of a
standard test of the race model inequality (Miller, 1986)
increases with sample size.

Discussion

Standard procedures for testing the race model use the race
model prediction as the null hypothesis (Gondan, 2010;
Maris & Maris, 2003; Miller, 1986; Ulrich et al., 2007;
Vorberg, 2008). These tests control the Type I error if a
theory predicts that the race model inequality is violated in
a given experimental condition. In other experimental
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conditions, however, theoretical considerations might pre-
dict that the race model holds (e.g., Feintuch & Cohen,
2002; Schroter et al., 2009). Standard tests of the race
model inequality would then be expected to yield a
nonsignificant result. A nonsignificant violation of the race
model prediction should, however, not be taken as support
for the race model (e.g., Corballis, Hamm, Barnett, &
Corballis, 2002; Feintuch & Cohen, 2002, Exp. 1; Grice,
Canham, & Gwynne, 1984, Exp. 4). More generally, a
nonsignificant test result should not be considered as
evidence for the null hypothesis (Altman & Bland, 1995).
Classical null hypothesis tests are consistent in the
alternative hypothesis only (e.g., Rouder, Speckman, Sun,
Morey, & Iverson, 2009): If the alternative hypothesis
holds, the power to reject the null hypothesis increases with
the precision of the measurement (e.g., sample size). Stated
differently, standard tests of the race model inequality can
be biased in favor of the race model by collecting small and
noisy sets of data, thereby reducing the power of the test to
detect violations of the race model prediction.

For such situations, we propose an alternative testing
procedure in which the race model prediction takes the role
of the alternative hypothesis. The test can be applied to data
from single participants (for multiple participants, see
Appx. B). For construction of the appropriate test, it was
necessary to restate the nonstrict alternative hypothesis
[Ineq. (2), ™°°H,] as its strict counterpart [Ineq. (3), “°H,°],
thereby introducing a noninferiority margin 4. It can then be
tested whether violations of the race model inequality are
significantly below the noninferiority margin. Powerful
tests for noninferiority and stochastic dominance have been
proposed by Freitag et al. (2006) and Davidson and Duclos
(2009). The following technical aspect of these tests should
be pointed out: In the classical comparison of two
distributions (e.g., the one-tailed Kolmogorov—Smirnov
test; see also the above references to standard tests of the
race model inequality), the null hypothesis states that
stochastic dominance holds, G(¢f) < Gy(¢) for all ¢. The
alternative hypothesis assumes that stochastic dominance
does not hold, G(¥) > G,(f) for some t. In contrast, in
Freitag et al. and Davidson and Duclos, the alternative
hypothesis establishes stochastic dominance—that is, G/(¢)
< Gy(?) for all t. Tt is this important property that enables
testing the race model prediction over its entire range, at a
controlled Type I error probability. Such an alternative
hypothesis is much more informative than the alternative
hypothesis of the standard test of the race model, but comes
at a cost: The new tests are rather conservative, and large
samples are needed to obtain reasonable power.

In applied disciplines—in particular, biomedical
research—the idea and the principle of equivalence
testing and noninferiority testing is certainly not new
(e.g., Blackwelder, 1982). Equivalence tests and non-
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inferiority tests are now considered standard techniques
for showing the similarity of two therapeutic arms (e.g.,
Allen & Seaman, 2006; Food and Drug Administration,
2001; Wellek, 2003; Westlake, 1988). For the assessment
of formal models that are more complex than simple two-
group comparisons, equivalence tests and noninferiority
tests have only rarely been employed (for a forest growth
model, see, e.g., Robinson & Froese, 2004). Rather,
Bayesian model comparisons have been suggested for
the choice between multiple model candidates (Gallistel,
2009; Wagenmakers, 2007; Wagenmakers, Lee, Lodewyckx,
& Iverson, 2008). For the present application, in which only
a single model prediction is under consideration, researchers
are often satisfied to show that the results are consistent with
the prediction, as reflected by a nonsignificant discrepancy
measure—for example, a nonsignificant goodness-of-fit
statistic, or P > .05 in the test of the race model inequality.
In these situations, equivalence tests and noninferiority tests
seem more appropriate, because they switch the roles of the
null and the alternative hypotheses, and consistency of the
theory and data is supported by statistical significance.

The new tests have a drawback, however: It is clear that
the margin & must be strictly positive—otherwise, data
generated by a race model with Fay(f) = Fa(t) + Fy(f) would
not belong to the alternative hypothesis in (4). As a
consequence, the model prediction and observed data
cannot be said to fit exactly anymore. Rather, close
correspondence of the model and data is accepted. In the
test outlined in (4), the race model is said to hold if

deviations between the observed F av(?) and F Al + F v(?)
are significantly below the noninferiority margin. This
conclusion should be given emphasis, because it might be
considered one of the main limitations of the proposed new
test: Whereas it would be desirable to have a test that
indicates that the race model inequality “holds exactly,” the
proposed test only states that violations of the model
prediction are significantly below the tolerance defined by
0. Stated differently, and perhaps more optimistically, the
noninferiority test takes into account that the predictions of
abstract models and observed data can rarely be expected to
fit exactly. Given a reasonable noninferiority margin, the
test rather provides a means to determine if the model
describes the data “well enough” (e.g., Serlin & Lapsley,
1993). The latter is again closely related to the definition of
the noninferiority margin: If the experimenter desires to test
the model prediction with high precision, a small margin is
chosen, which in turn requires large samples (Table 1). If a
more liberal margin is chosen, precision is lower, and the
required sample size will decrease (in the extreme case,
0 > 1, noninferiority trivially holds).

Of course, the noninferiority margin should be defined
before actually running the experiment. In applied disci-
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plines, “biocreep” is avoided by choosing a noninferiority
margin that reflects a therapeutically irrelevant effect in
comparison to the best treatment available (D’Agostino et
al., 2003). In contrast, in fundamental research, it would be
difficult to justify a specific margin, and for a test of the
race model inequality, any choice of 4 will be somehow
arbitrary.! A reasonable size for the noninferiority margin
can be determined from parametric coactivation models—
for example, the diffusion superposition model (Schwarz,
1994; Townsend & Wenger, 2004, Figs. 14 & 15). For
example, with ua = 1.34, 0o = 11.7, py = 0.53, oy = 4.3,
and a criterion fixed at 100 (Table 1 in Schwarz, 1994), the
predicted detection times violate Inequality (1) by a
maximum amount of 12% (Fig. 1c). This percentage might
be too optimistic, because the observed response times
include more than just stimulus detection (e.g., response
execution, finger movement; see, e.g., the discussion in
Schwarz, 1994). The violation predicted by specific
coactivation models can, however, serve as a starting point
for the definition of a realistic noninferiority margin for the
experiment.

In our motivating example, coactivation was expected
for Condition A, while separate activation was expected for
Condition B. Thus, strictly speaking, both condition-
specific predictions should be confirmed in order to support
the theory. It is, of course, possible to directly compare the
sizes of the violation observed in the two conditions (e.g.,
by a confidence interval approach; see Miller, 1986, p. 337,
right column). Results would be considered consistent with
the theory if the size of the race model violation observed in
A were significantly higher than the size of the race model
violation observed in B. Although this test does not
demonstrate that the race model holds in Condition B, the
violation observed in Condition A might serve to determine
a reasonable limit for the noninferiority margin, as well. In
any case, the specific choice of § should be made
transparent to the reader.

We have outlined a test that can be used if the race model
is predicted to hold in a given experimental condition. Of
course, the test cannot “confirm” the race model in a strict
sense. In general, it is not possible to conclude that a given
model is correct, just because a single prediction of the
model holds in a given set of data. Another, completely
different architecture might make the same prediction. More
specifically, just because the race model inequality is not
violated in a given set of response times, one cannot
unambiguously conclude that participants actually pro-
cessed the information in parallel (see, e.g., Table 1 in
Ulrich & Miller, 1997). Our method, thus, cannot overcome

! A similar argument holds, of course, for the significance level. Why
should the consumer risk be exactly av = 5% when testing a specific
model prediction?

the general limitations of abstract model testing, especially
in one-way situations in which only a single model
prediction is to be tested. However, we propose a valid
statistical procedure to investigate whether this prediction
of the model is met by the results. Although the decision of
the test depends, by design, on the specific choice of the
noninferiority margin, we think it is preferable to use an
appropriate statistical test that adequately controls the
Type 1 error and is consistent in the hypothesis of interest,
instead of relying on the nonsignificant P value of an
inappropriate test.

Author note This research was supported by the German Research
Foundation (DFG, GO 1855/1-1 and GR 988/20-2). The authors thank
Haiyuan Yang and James Townsend for very helpful comments on our
manuscript. The online supplemental materials of this article include a
script (written in R statistical language, R Development Core Team,
2011) that can readily be used for testing whether the race model
prediction holds in a given data set, and which may be downloaded
from www.springerlink.com.

Appendix A: Showing that the race model inequality
horizontally holds

Inequality (1) states that Fay(?) is below Fa(?) + Fy(?), for
all #; the inequality can, however, be read horizontally, as
well: The race model predicts that Fay(?) is to the right of
Fa(t) + Fy(t) over its entire range. Thus, there is an
alternative way to specify the noninferiority test,

o 0 s Fay(t — €) > Fa(t) + Fy(t) + 6, for some ¢, versus
raceH15 : FAV([ — 5) < FA(f) +Fv(t) + 6, for all .
(A1)

with the noninferiority margin € now being defined in the
horizontal direction. Davidson and Duclos (2009) proposed
a likelihood ratio test for demonstrating restricted stochastic
dominance—that is, G1(¢) < G,(¢), for some interval #; < ¢ <
. In a first step, the test determines the maximum of the
empirical likelihood (Owen, 2001) under the alternative
hypothesis—namely, strict stochastic dominance for ¢; < <
t,. If there is dominance in the two-sample distributions
G1(f) and G»(?), the constraint is satisfied. Maximization is
then unconstrained, and the maximum only depends on the
sample size: Zp.( © ) = —N; log Ny — N, log N, (Eq. 4 in
Davidson & Duclos, 2009). In a second step, the empirical
likelihood is maximized subject to the constraint that the
two distributions touch, G1(f) = G,(t), for some t; <t < t,
(i.e., the null hypothesis). This constrained maximum
/max( °|?) can again be determined analytically (Eq. 12 in
Davidson & Duclos, 2009). It can be shown that if the null
hypothesis holds, twice the log likelihood ratio of the
unconstrained and the constrained maximum ¢#,,.( -|Hp) =
Max, /pa( —1) asymptotically follows a x> distribution. If
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the null hypothesis is rejected, stochastic dominance is
established for the interval of interest (¢, £,). It should be
underlined that £, corresponds again to a point-wise test
for all possible touch points within the interval of interest.
The test is, therefore, very conservative. Davidson and
Duclos (Theorem 3) described a weighted bootstrap
procedure that can be used to increase the power of the
test.

The test proposed by Davidson and Duclos (2009) can
easily be generalized to the horizontal noninferiority test of
the race model inequality outlined in (Al): Having
specified a suitable noninferiority margin (¢ = 10 ms,
say), the response time distribution for AV is shifted ¢
milliseconds to the right. The right-hand side of the race
model inequality corresponds again to the lower 50% of the
mixture of the response times for unimodal stimuli. If the
test indicates that the shifted AV distribution dominates the
sum of the unimodal distributions in some interval of
interest (e.g., 150 . . . 300 ms), the race model inequality
has been shown to hold at a controlled Type I error.

A critical aspect of Definition (Al) is that the non-
inferiority margin ¢ is then expressed in milliseconds and,
therefore, corresponds to the original scale of the response
time measurement. Whereas this might be considered an
advantage over the vertical definition in (4), the horizontal
test depends on the overall speed of the participant.
Consider two participants, with Participant 1 responding
twice as fast as Participant 2 in all experimental conditions.
In this case, the horizontal distance between Fay(z) and
FA(f) + Fy(¢) shrinks by a factor of 2. This affects the result
of the horizontal noninferiority test; if the noninferiority
margin is unchanged, it is well possible that the response
times of Participant 2 are in line with the race model
prediction, whereas the response times of Participant 1 are
not. The vertical test described in the main text uses only
the ranks of the data; it is, thus, invariant with respect to
order-preserving transformations of the time scale (e.g.,
logarithm of f). For this reason, we recommend using the
vertical noninferiority test.

Appendix B: Multiple participants

The noninferiority test proposed here requires a sub-
stantial number of trials (see Table 1) and can be applied
to data from single participants only (cf. Maris & Maris,
2003; Miller, 1986; Vorberg, 2008). It is not straightfor-
ward to combine results across multiple participants.
Strictly speaking, the race model inequality holds for a
group of M participants if it holds in each single
participant. This argument suggests an intersection—union
approach (e.g., Berger, 1982) in which the alternative
hypothesis for the group is accepted if and only if all
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participant-specific alternative hypotheses are accepted.
(Conversely, if the theory predicts that the race model
inequality is violated, it would, in principle, suffice to
demonstrate that it is violated in a single participant or in
the “average participant”; see, e.g., Gondan, 2010; Miller,
1982; Ulrich et al., 2007).

Of course, showing that the race model prediction holds in
every participant would be a very conservative approach, and
the global test would not be consistent, because statistical
power to detect the alternative would decline with increasing
M. A less strict approach would be based on the response
time distributions of the “average participant”: As in Miller
(1982; see also Ulrich et al., 2007), percentiles differences
between Fay(f) and Fa(f) + Fy(f) are determined for each
participant i, d,; = Fay | 2 [?A +?V]7l(p),p =5%, 10%, . . .,
50%. If the race model prediction holds, d,; < 0, and so is the
average d,, < 0, for all p. This prediction could be tested using
percentile-specific 7-tests with a horizontal noninferiority
margin € > 0: If ¢-tests indicate that d), is significantly below
e for all percentiles p, the race model inequality is satisfied
for the average participant. This test is consistent in both
trials and participants.
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