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Abstract The impact of technology in the field of
intellectual assessment has, for the most part, been limited
to computerized administration and scoring. Anderson’s
(2001) theory of intelligence suggests that performance on
traditional IQ measures is acquired via two main routes,
thinking and dedicated processing systems known as
modules. Empirical data used to support this relationship
between the speed of basic processing and intellectual
functioning have been evidenced primarily by correlations
between measures of general intelligence and measures of
inspection time (IT). These IT measures allow individuals
to make a forced choice discrimination task without a motor
component. Because only the time used to cognitively solve
the problem is recorded, these responses typically occur in
milliseconds. Many theorists (e.g., Burns & Nettelbeck,
2002; Deary, 2000; Jensen, 2006) consider IT to be a more
“pure” measure of intelligence, because the influences of
verbal skills, memory, and socialization are minimized and
results are therefore considered to be more culture-fair.
Until relatively recently, IT measurement was restricted to
complex and expensive specialized laboratory equipment.
This article describes the theoretical background and
developmental process of a computer-based IT measure
that is easily adaptable to accommodate the needs of the
researcher.
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Introduction

The importance of test fairness and test bias continues to be a
matter of paramount importance to psychologists and special
educators. Each year, between 1.5 and 1.8 million intelligence
tests are administered to children in the United States as part
of special education eligibility evaluations (Gresham & Witt,
1997). The use of traditional standardized tests of cognitive
ability has a long and controversial history. Critics point to
test questions that are often characterized as culturally biased
or heavily verbally loaded or that overlap with measures of
achievement (Gardner, 1983; Gould, 1996; Murdoch, 2007).
Despite these criticisms, cognitive ability tests are among the
most commonly used measures of assessment used by
psychologists in clinical and educational settings.
Psychologists have debated how best to characterize and
quantify intelligence since the beginning of the last century
(Fasko, 2000; Sattler, 2001). As early as 1883, Galton used
sensory motor tasks to look for the simplest properties of the
nervous system that would explain individual differences in
intellectual ability. Galton’s work led directly to one of the
earliest theoretical arguments involving the nature of human
intelligence—specifically, how many cognitive abilities
exist? Spearman's (1904) two-factor model of intelligence
described specific, or s, factors (primary factors), as well
as a second-order general factor, or g. Expanding upon this
idea, Thorndike (1924) characterized intelligence as
consisting of several unique factors, while, later, Thurstone
(1938) expanded the model to include seven uncorrelated
factors. Finally, Guilford (1967) hypothesized three broad
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intelligence factors (operations, content, and products)
defined by an unworkable 120+ specific or unique factors.

In contrast to the theoretically based models of intelligence
proposed by the London school, Alfred Binet was driven by a
more pragmatic notion of using cognitive tasks for predicting
school or occupational success, often referred to in current
times as the specificity doctrine. The earliest version of his
tests included questions that solely measured specific pieces
of knowledge and learned skills. Later Binet and Simon, in
1916, defined intelligence to include “judgment, otherwise
called good sense, practical sense, initiative, the faculty of
adapting one’s self to circumstances. To judge well, to
comprehend well, to reason well, these are the essential
activities of intelligence” (as cited in Sattler, 2001, p. 136).
Binet’s definition suggested that intelligence was not fixed and
that the provision of appropriate or remedial schooling could
modify intelligence. From a slightly different perspective,
David Wechsler, in 1958, defined intelligence as ‘“the
aggregate or global capacity of the individual to act
purposefully, to think rationally and to deal effectively with
his environment” (Wechsler, 1958, p. 7). Wechsler and Binet
shared the view that such a thing as general intelligence (g)
does exist and believed that it operates across a wide spectrum
of cognitive functions and human behaviors. In this regard,
Binet’s original aspiration in creating the first widely available
intelligence test was to assess a student’s likelihood of
succeeding in school, a goal that continues to the present
time (Kamphaus, 2001).

The publication of the bell curve in 1994 (Herrnstein &
Murray, 1994) transformed the discussion about what
constitutes intelligence from academic circles into public
controversy. At the time, most of the public, as well as
reviews of the book, were highly critical, frequently
challenging the scientific rigor of the conclusions (Devlin,
Fienberg, Resnick & Roeder 1997; Gould, 1996; Kincheloe,
Steinberg, & Greeson, 1997). However, in a subsequent
Wall Street Journal editorial statement later that year, 52
prominent researchers agreed that the conclusions of the
bell curve were basically accurate. This sentiment was
subsequently echoed 2 years later in an official task force
report prepared by the American Psychological Association
(Neisser, Boodoo, Bouchard, Boykin, Brody, Ceci and
Urbina 1996).

Intelligence and IQ tests

Many currently available, commercial tests of intelligence
have been increasingly criticized for their lack of a strong
theoretical foundation (Kush, 1996). Successive revisions
of many IQ tests have evolved to measure increasing
numbers of “intelligences.” For example, the newest
editions of both the Stanford Binet (Stanford Binet V;
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Roid, 2003) and the Wechsler Intelligence Scale for
Children—Fourth Edition (WISC-IV; Wechsler, 2003) now
claim to measure multiple intelligence “factors,” with only
implicit corresponding changes in the theories underlying
the tests. Because it remains unclear how many “types” of
intelligence are being measured by these scales, there
currently exists marked disagreement among psychologists
regarding their level of diagnostic interpretability (Canivez,
2008; DiStefano & Dombrowski, 2006; Kush, 1996;
Watkins, 2006; Watkins, Lei, & Canivez, 2007). While
several theories of intelligence suggest that Spearman’s
(1904, 1927) general, g factor underlies all aspects of the
construct (e.g., Brand, 1996; Jensen, 1998), the most
widely accepted current views suggest that multiple
independent mental abilities are nested under this general
factor (Carroll, 1993; Gustafsson, 1994; Horn, 1988).

To a large extent, the current unitary versus multidimen-
sional intelligence debate appears to be best represented by
Carroll’s (1993, 2003) three-stratum theory. Specifically,
Carroll (2003) theorized that human cognitive abilities exist
at three levels, or strata, that include a first, lower-order
stratum comprising some 50— 60 narrow abilities, a second
stratum comprising approximately 8-10 or more broad
abilities, and a third still higher stratum containing a single,
general intellectual ability commonly represented as g.
Subsequent research has, however, shown that these strata
do a poor job capturing first-order variance, while the g
factor captures the greatest share of the common and total
variance when apportioned with Schmid-Leiman’s (1957)
procedure (Watkins, 2006). Recent alternatives to Carroll’s
work are the models proposed by Gustafsson (Gustafsson &
Undheim, 1996), wherein G (General) and Gf (G-Fluid) are
held to be identical, and by Gignac (2005, 2006, 2008), who
has proposed a bi-factor model where psychometric g
directly relates to subtests, rather than being fully mediated
through first-order factors. As a result, the modern day
question may now be how well intelligence tests measure
general intelligence as well as broad ability factors.

While research in intelligence conducted during the first
half of the 20th century was heavily influenced by factor
analysis, multifaceted descriptions of intelligence have
more recently been offered that include noncognitive
abilities as indices of intelligence. These theories have
been influenced by the disciplines of cognitive psychology,
neuropsychology, biopsychology, and cultural psychology.
These include Sternberg's (1997) triarchic theory (how
people solve problems, how we adapt to our environment,
and how we use past experiences to solve problems),
Gardner's (1983) theory of multiple intelligences, and
Goleman’s (1995) theory of emotional intelligence (EI).
Each of these theories attempts to expand intelligence
theory beyond the prediction of academic achievement to
include possible psychological, personality, or environmental
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influences in exploring the manner in which intelligence
develops. For Gardner, intelligence includes different domains
of activities, while in contrast, Sternberg attempts to
define intelligence with underlying psychological processes.
Relatedly, two slightly different forms of EI have been
posited, with EI defined either as a type of intelligence
connected to the cognitive processing of emotions or, in
contrast, as grouping intelligence with personality and
motivational factors. While these newer, alternative models
have stimulated a renewed debate over the nature of
intelligence these theories have a limited history of from 15
to 20 years, as compared with the 100 years of research
examining traditional psychometric models of IQ and
intelligence. Rather than a replacement of traditional cognitive
models, it is possible that these newer theories may reflect
something of a threshold level of cognitive ability, with
minimal incremental improvement beyond a level that defines
adequate competence (Nettelbeck & Wilson, 2005a). That is,
some minimum level of EI, for example, may be necessary
for adequate interpersonal communication and social
exchanges; however, advanced levels of the construct may
not correspond to any increased competence or noticeable
behavioral changes.

The search for a more precise definition

The move toward a more parsimonious definition of
intelligence has been termed reductionism. Typically,
reductionist research can be understood through two broad
models. In the first model, which emphasizes neural
efficiency, researchers have examined psychometric intelli-
gence functions related to the brain. Established physiological
correlates with intelligence include electroencephalograph
estimates, brain size and weight, nerve conduction velocity,
and brain glucose metabolism (Deary & Stough, 1996).
Additionally, Kail (2000) has argued that reaction time
improvements with age are, in part, due to myelination and
changes in the number of synaptic connections, both of
which change over childhood and adolescence. Relatedly,
cognitive aging involves slowing of processing speed
(Salthouse, 1996), which has been found to be associated with
decreases in myelination in older adults (Bartzokis, 2004).
Research examining intelligence as a property of the
brain has shown that smarter people work more quickly and
efficiently because they transmit electrical nerve impulses
faster and use less glucose (Gottfredson, 2000). Historically,
the speed at which a problem can be solved (strategy free)
has commonly been thought of as an index related to
overall cognitive ability (Nettelbeck, 1998, 2001). Early
attempts to measure learning speed failed, however, to
distinguish between the time the individual took to
“mentally” solve the problem and the amount of “physical”

time it took for the individual to provide the correct answer.
Only when scientists began to consider how technology could
be integrated into the solution was a new paradigm for
assessment created. For example, the Hick paradigm utilizes
the measurement of simple or choice reaction time. Simple
reaction time reflects the amount of time it takes a subject to
lift their finger from a “home” button following the
presentation of a single light. Choice reaction time is similar;
however, the subject does not know which of several lights
will go on. When prompted, the subject still lifts his finger as
quickly as possible off the home button (reaction time), but he
or she is now required to press a second button that is paired
with the light (movement time). Research utilizing the Hick
paradigm has consistently confirmed what has come to be
known as Hick’s law: Reaction time increases linearly as a
function of the number of bits of information (lights to choose
from) made available to the subject (Bates & Rock, 2004;
Deary & Stough, 1996; Jensen, 1982; Nettelbeck, 1987,
Vernon, 1987).

A second area of chronometric research has focused on the
cognitive processes utilized by subjects and attempts to
identify the relationship between these basic psychological
tasks and scores from traditional IQ measures. Recently,
researchers have begun to identify the particular psychological
processes that are involved in the performance of speeded
cognitive tasks (Deary, 2000). The selection of these
elementary tasks is typically based on the assumption that
they are so simple or elemental in nature that any subject
could solve the tasks, given unlimited time. While Vickers is
typically credited with the original theoretical development of
cognitive speed or inspection time (IT) research, one of his
doctoral students, Nettelbeck, conducted some of the earliest
empirical studies (Nettelbeck & Lally 1976). Although the
theoretical rationale underlying this field of research is almost
30 years old (Vickers, 1970, 1979), the sophistication and
accuracy of empirical studies has paralleled advances in
technology and has been born of cross-disciplinary discussion
and collaboration.

Inspection time origins

The distinguishing factor of the IT paradigm is that the
cognitive or mental time needed to solve the problem is
recorded separately from the time needed to physically
indicate the correct answer. Anderson and Miller (1998),
have defined IT as “the stimulus exposure duration required
by a subject to make a simple perceptual judgment, for
example, the relative length of two lines” (p. 239). That is,
IT is the minimum exposure time required to make an
accurate determination concerning some highly evident
feature of a stimulus under backward-masking conditions.
Because of the elemental nature and simplicity associated
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with IT measures, they reflect a stronger connection to
biological processes than do psychometric test scores
(Jensen, 2006). The interval of time between that point
and when the answer is provided is characterized as the
movement time. The first interval, IT, reflects the amount of
time that the subject needs to cognitively solve the problem.
This subsequent interval is considered more important to
understanding the speed of problem solving than is the
second interval, which merely reflects the amount of time
the subject needs to motorically indicate their answer.

The genesis of research that began to examine cognitively
based IT has paralleled technological advances that have been
incorporated into research designs. In the majority of IT
studies, the stimulus has consisted of a pi figure (two vertical
lines, one long and one short, connected by a horizontal line at
the top), where subjects were instructed to select the side of
the figure that contained the longer leg. To prevent afterimages
or storage in iconic memory, a backward mask consisting of
longer and wider bars has been placed over the vertical lines
immediately after the presentation. Examples of these stimuli
are shown in Fig. 1.

Typically, to begin a trial, subjects are instructed to hold
down a button that will randomly present one of the stimuli.
When the subject determines which leg is longer, he or she
is instructed to press one of two other buttons (on either
side of the first button) that corresponds to the side of the
figure that contains the longer line. As indicated previously,
given unlimited time, even very young children can make
this discrimination with nearly perfect accuracy. In IT
research in the early 1980s, these measurements were made
using a tachistoscope, and research has begun to include
computer-based IT measures. Computers have subsequently
been used both to display the stimuli (Anderson, 1986;
Deary, 1999; Deary, Caryl, Egan, & Wight, 1989) and to
determine stimulus exposure thresholds, using adaptive
staircase procedures (e.g., Egan, 1994).

In a recent meta-analysis of over 90 studies and 4,200
subjects, Grudnik and Kranzler (2001) showed that IT has
consistently been found to correlate with standardized
measures of intelligence—most often, performance IQ.

Fig. 1 Geometric pi figures
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This finding is consistent with an abundance of evidence
from other researchers (Burns & Nettelbeck, 2002; Grudnik
& Kranzler, 2001; Kranzler & Jensen, 1989; Nettelbeck,
1987, 2001). The best estimates of this relationship suggest
that the correlation coefficient is in the region of -.50,
although Deary (2000) has proposed that the strength of the
relationship may be as high as -.75. Most cognitive
theorists posit that the relationship between IT and IQ is
causal, with individual differences in IT producing individ-
ual differences in 1Q. Specifically, speed of processing is
believed to be the attribute underlying this causal relation-
ship (Anderson, 1992; Neubauer, 1997).

Most attempts to place IT into a broad theoretical
framework have connected the construct with the Horn—Cattell
or Cattell, Horn, Carroll models of intelligence (Carroll, 1993,
2003; Horn, 1988); Gf (fluid)-Gc (crystallized) theory has
described IT as a factor called correct decision speed—the
speed at which people provide correct answers to a variety of
tests (Carroll, 1993, 1995). However, it has long been
recognized (Eysenck, 1987; Vigil-Colet & Codorniu-Raga,
2002) that not all measures of processing speed are equally
correlated with general intelligence. Researchers such as
Mackintosh (1998) and Burns, Nettelbeck, and Cooper
(1999) have suggested that the relationship between IT and
IQ exists not because IT correlates with a general factor of
intelligence but, rather, because it measures a unique
component characterized as cognitive speed. IT has been
linked to a range of cognitive abilities, including fluid
reasoning, visualization, and short-term memory (Grudnik
& Kranzler, 2001).

While a growing body of research (e.g., Nettelbeck &
Wilson, 1985, 2004) has suggested that IT improves
throughout childhood and declines in the elderly (Nettelbeck,
1987; Nettelbeck & Wilson, 2004, 2005b; Nettelbeck &
Young, 1989, 1990), Anderson (1986, 1992, 2001) has
argued that the speed of processing actually remains constant
across the lifespan. While Nettelbeck and Wilson (1985)
suggested that longitudinal changes in IT are due to
maturation, Anderson argued that young children perform
poorly on cognitive measures because they are more affected
by task demands and task experience; reducing the load on
attention is thought to improve the performance of younger
children (Anderson, 1986, 1992). Additionally, Anderson,
Reid, and Nelson (2001) demonstrated that a single exposure
to an IT task resulted in an improvement in IT scores 1 year
later that was greater than the effect of 1 year's aging.
Anderson posited that the development of age-related
learning strategies, rather than maturation, underlies this
observed developmental trend. As Brody (2001) has
suggested, IT research may “provide the intellectual
foundation for the development of a method for experimental
interventions designed to increase intelligence” (p. 540). This
suggestion has been supported by several additional studies
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that propose, yet not conclusively, that IT may be malleable
(Bors, Stokes, Forrin, & Hodder, 1999).

Methodological problems associated with inspection
time

While the goal of including a backward mask is to prevent
storage of the initial stimuli in iconic memory, the introduction
of the mask has actually been found by some researchers to
produce an unfortunate new problem—the addition of
apparent movement. Specifically, some participants have
reported that they have been able to use the apparent
movement of the mask (covering the shorter leg of the test
stimuli) as a cue or strategy to facilitate their performance
(Chaiken & Young, 1993; Egan, 1986, 1994; Nettelbeck,
1982). Because the goal of IT research is to eliminate
influences other then mental speed, it is critical that measures
attempt to eliminate this movement effect. That is, IT should
be as pure a measure as possible of the speed of transmission
of the central nervous system—specifically, the rate at which
oscillation between excitation and refractoriness occurs
(Jensen, 1982).

Attempts to eliminate or reduce apparent movement
artifacts have proven inconsistent (Chaiken & Young, 1993;
Nettelbeck, 1982; Vickers, Nettelbeck, & Wilson, 1972).
For example, some researchers have devised a form of
mask that uses randomly selected patterns or visual noise
(e.g., LED lights) to counter the use of the visual cue.
Additionally, some researchers have employed a dynamic
mask that minimizes, if not entirely removes, movement
artifacts (Evans & Nettlebeck, 1993; Knibb, 1992; Stough,
Bates, Mangan, & Colrain, 2001). Bors et al. (1999) have
pointed out that most of these studies used adult populations
with widely different ages, and older participants have been
shown to be less likely to employ strategies in other, similar
cognitive tasks (Craik, 1977). Furthermore, when movement
artifacts are found, they may actually represent preconscious,
rather than meta-cognitive, processes (Egan & Deary, 1992).

Additional procedural limitations have resulted in very
few studies of IT with young children. Although presumed
to be simple enough even for young children, the standard
pi figure stimulus has proven to be difficult for many young
children. As a result, a number of modifications to the
stimuli have been recommended, including coloring the
lines or presenting the stimuli in a game-type format such
as alien antenna of different lengths or the Benny Bee IT
task (Williams, Turley, Nettelbeck, & Burns, 2009).
Additionally, research with young children has shown that
many display left and right confusion and, in some cases,
demonstrate considerable difficulty remaining on task.
Expanding what is known regarding the relationship
between IT and intelligence to include children is very

important, since it may be possible to identify early
learning difficulties or strengths in specific areas of
intelligence, such as information-processing speed (Deary,
2000; Nettelbeck, 2001). However, to date, IT studies with
young children remain sparse.

Finally, as was noted by McCrory and Cooper (2007), very
few empirical studies have examined whether different
presumed measures of IT actually measure the same construct.
The most commonly held current belief is that performance
on IT measures reflects some basic biological process in
addition to some task-specific individual differences, skills, or
strategies. Because current extant IT research has included
widely varying modes of presentation (each reflective of
different cognitive demands), it remains difficult to determine
how specific skills associated with IT fit within the larger
paradigm of processing speed.

Architecture of the solution

This article describes a prototype software program that
utilizes a PC to assess reaction time and IT. The current
program was written in Java programming language and is
designed to run on any platform that supports Java Runtime
Environment (JRE; i.e., Mac, Unix, Windows, etc.). Jensen
(2006) has cogently pointed out the advantages of a
standardized computer program to assess the IT paradigm
particularly in the elimination of method variance. Specifically,
computer usage allows for a uniform stimulus display screen
and subject response console (keyboard), both of which are
critical for IT standardization. Additionally, the portability of
the program allows researchers to select computers connected
to monitors with specific vertical refresh rates, a factor that has
been found to influence minimal exposure durations.
Following traditional chronometric research, the current
IT program utilizes the following sequence. Subjects are
first presented a short introduction to the task (direction
slides can be easily modified for the developmental age of
the participants), provide basic demographic information,
and complete practice trials. Video directions can also be
inserted so that the influence of reading as a confounding
variable is minimized or eliminated. At the beginning of the
assessment phase, subjects are briefly exposed to an
orienting dot in the middle of the screen to alert them that
the trial is about to begin. Subjects are then instructed to
hold down the space bar, which, in turn, presents either of
the two stimuli. Finally, subjects are told to release the
space bar and press the correct Alt key on either side of the
space bar, as soon they know the answer. IT is the interval
of time between when the stimulus is presented on the
screen and the time at which the space bar is released by the
subject. The length of time it takes the subject to move his/
her finger from the space bar to the answer key is

@ Springer



130

Behav Res (2012) 44:125-134

considered movement time and is not included in the
measurement of IT. Adults typically make this decision
in milliseconds, and their IT is the average speed of all
correctly completed trials. The recording of responses in
milliseconds reflects measurement on a ratio scale, a
feature that offers numerous psychometric advantages
(Jensen, 2006).

The program allows the researcher to easily modify both the
stimuli and the test conditions to accommodate a wide range of
subjects and research questions. Specifically, the program
allows the researcher to individualize the instructions to the
subjects and create unique stimuli slides, as well as unique
blank, focus, and mask slides. Additionally, the length of time
the focus slide and blank slides are presented can be easily
adjusted. The ability to provide standardized instructions is one
of the most basic steps in the psychometric standardization of a
psychological test. This feature allows the researcher to select
testing conditions that are task specific or that are based on the
developmental age of the subject. Researchers can make use of
a widely available program, such as PowerPoint, to create and
import these individualized images and can then import their
results in a variety of image formats—for example, TIFF, PNG,
GIF, JPEG, and so forth. The availability of this feature will
allow researchers to better examine the use of specific
cognitive strategies by systematically manipulating the
complexity of the stimulus (see Alexander & Mackenzie,
1992; Bowling & Mackenzie, 1996; Frings & Neubauer,
2005). At this point, the program allows for the modification
only of visual stimuli, although it is anticipated that a future
version will allow for auditory stimuli as well.

Because the stimuli slides can be easily modified,
researchers will also be able to directly compare subject
performance on the standard pi stimuli with the speed at
which differences between other stimuli, such as letters,
colors, or geometric shapes, are processed. The presentation
of a variety of IT stimuli will allow researchers to better
understand the underlying relationships between IT and
specific cognitive processes. This feature may prove
particularly valuable for the assessment of IT in young
children, since both the directions and the complexity of the
stimuli can be easily modified.

An additional unique feature of the program is the ability
to easily modify the stimuli mask to minimize the influence
of aforementioned movement cues. For example, in one
condition, subjects could be exposed to the standard pi-
shaped geometric figures that are, in turn, followed by the
larger mask patterns. In an alternate condition, subjects
would then be exposed to two different stimuli—that is, an
uppercase letter 4, and a lowercase letter a. The position of
these letters would be randomized so that the uppercase
letter appears equally often on the right or left side of the
screen. A pair of uppercase S letters could represent the
subsequent mask. The letters 4 and S could be specifically
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chosen so that one letter was composed mainly of straight
lines while the other letter consisted of curves, thereby
producing enough variability that the initial letters would
not be stored in iconic memory, yet would minimize
movement strategies. The ability to manipulate the stimulus
mask (see Fig. 2) will greatly assist researchers attempting
to eliminate the movement cues often associated with
earlier IT research.

After the researcher has identified and loaded the two
stimuli slides, he or she then specifies the number of trials. The
program records both IT and movement time for each
presented stimuli, as well as identifying the stimulus presented
and the answer provided. The program incorporates an
adaptive staircase procedure such that the researcher can easily
modify the number of iterations in which stimuli are presented,
as well as the percentage of correct responses representing a
successful set of responses. After displaying the stimuli for a
fixed period of time, the system waits for the subject to indicate
the correct answer before presenting the next stimulus. The
timed format allows the researcher to define the experiment
with multiple exposure times. For example, the researcher
could define the number of stimuli to be presented in each
cycle—for example, 10. Second, an initial exposure time
is set—for example, 500 ms. Next, the exposure time
decrement is set—for example, e.g. 100 ms—and the number
of iteration sets at that decrement amount. Finally, a second
decrement time can be set—for example, decrement by 25 ms
rather than 100 ms—along with the number of iteration sets at
that decrement amount. It is also possible to set an experiment
termination if the success rate falls below a researcher-defined
minimum. The program automatically provides integrated
record keeping and summarization reports.

An advantage of computer-based measures of cognitive
processing, such as the current IT program, is that the
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delivery format matches recent increases in technological
usage by the general population. Specifically, there is
growing evidence that increased usage of computer
applications (including computer games) is associated with
higher levels of visual and spatial tasks (Greenfield, 1998).
Most computer applications include content that transfers
the typical mode of information processing from verbal to
visual (Subrahmanyam, Greenfield, Kraut, & Gross, 2001).
The increase of nonverbal intelligence that has been
demonstrated in recent years (Flynn, 1999) may ultimately
prove to be related to increased usage of computer
technologies during the same time.

The ease with which the program can be modified addresses
many of the desiderata for a standardized measure of IT
outlined by Jensen (2006). The standardization of IT apparatus
and testing procedures is essential in eliminating method
variance and allows for more accurate comparisons of results
gathered across different settings. With regard to procedures,
as indicated previously, the current program allows for the
creation of explicit, uniform instructions and a set number of
practice trials. Because the program is platform independent,
it will allow researchers to easily compare results across a
variety of display screens and response consoles (computer
keyboards). In the standardization of the IT apparatus, screen
size, background color, luminosity, and refresh rate are all
critical factors in increasing the assessment of true task
accuracy (Jensen, 2006). The current program also eliminates
clerical errors, requires very little storage capacity, and allows
for comparisons across several chronometric paradigms, all
features Jensen (2006) has highlighted as characteristics
necessary for the advancement of the paradigm.

Final thoughts

Unlike previous IT applications, the present IT program
may offer users the ability to assess a facet of cognitive
skills across a common dimension. At a theoretical level, it
remains unclear whether IT is a stable construct across the
lifespan or whether the construct parallels the gradual
decline in mental performance that results with increasing
age (Der & Deary, 2000). Unlike traditional tests of
cognitive ability, measures of IT have been shown to be
stable among children, and the correlation between IT and
intelligence appears to be higher among children who
demonstrate sustained attention during the IT task (Nettelbeck
& Young, 1989, 1990). However, it is unclear whether
process- or task-specific, age-related differences exist in very
young children, since the development of many cognitive
processes in young children is not linear (e.g., Huttenlocher,
Haight, & Bryk, 1991). There is research suggesting that
age-associated improvements in IT are mediated by
developmental improvements in the ability to engage in

sustained attention (Hutton, Wilding, & Hudson, 1997), and
as a result, poorer IT performance in children may reflect not
only the obvious influence of distractibility, but also the
more subtle aspects of controlling attention, all of which
influence cognitive performance in general.

Relatedly, the presence of possible gender differences is
equally uncertain (Burns & Nettelbeck, 2005; Gregory,
Nettelbeck, Burns, Danthiir, Wilson and Wittert 2010). It
also remains possible that IT deficits may be associated with
particular developmental impairments, such as learning
disabilities (Deary, 2000; Nettelbeck, 2001). A tool that can
be used on a standard personal computer and that can be
easily modifiable represents an important advancement over
previous methods that have required a specialized apparatus,
not easily available or affordable to most researchers. Finally,
if IT proves to be modifiable over time, psychologists and
educators may be able to respond to Brody’s (2001) notion
that a method for experimental interventions designed to
increase intelligence can be designed. This finding would
truly be revolutionary.

However, advances in IT research also produce a catch-
22 for psychologists. When used as predictors of school
success or academic achievement, current commercial 1Q
tests represent the industry standard (Freberg, Vandiver,
Watkins, & Canivez, 2008; Parker & Benedict, 2002;
Sattler, 2001), and the practice of comparing IQ and
achievement scores represents one of the most common
methods for diagnosing learning disabilities (Yen, Konold,
& McDermott, 2004). Critics of commercially available 1Q
tests (Gould, 1996; Murdoch, 2007) have argued that they
include content that is influenced by nonintellectual factors,
including but not limited to reading ability, socioeconomic
status, test-taking strategies, and cultural familiarity. The
inclusion of these components improves the predictive
power of the instruments because intelligence and other
factors are being assessed (Watkins et al., 2007). Clearly the
knowledge of an individual’s cognitive ability, as well as
other factors related to academic achievement, offers an
advantage over the sole knowledge of intellectual skills.
However, as Jensen (1979) pointed out over 30 years ago,
intelligence must be distinguished from learning, memory,
and achievement. An IQ test that boasts of assessing
multiple types of intelligence or IQ factors will also have
more “cash validity” than an instrument that measures only
a single factor, and most commercial IQ tests are increasingly
designed to measure the multiple latent traits of factor
analysis. Theories of multiple intelligences have evolved or,
perhaps, deevolved to the point where everything (e.g.,
memory, vocabulary, knowledge of social etiquette, reading
ability) is considered by some to reflect a type of intelligence.
For example, approximately two thirds of the information
contained on the Stanford-Binet (5th edition) and tests of
academic achievement reflects shared variance or overlapping
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content, a figure that is too high for instruments thought to be
measuring related yet discrete constructs (Kush, 2005).
Intelligence is related to, but not the same as, academic
achievement, and as Naglieri has cogently pointed out
(Naglieri & Das, 1997; Naglieri & Rojahn, 2004), most
current IQ tests are contaminated with achievement content
that confounds their interpretability.

IT measures offer an interesting alternative. The elemental
nature of IT (e.g., only one very simple task is included) is an
appealing metric for intelligence. However, because cognitive
measures that focus solely on how quickly an individual can
mentally solve a very simple problem are much more
narrowly focused then commercial IQ tests that include tasks
of memory and learned knowledge and information, their
predictive power is also greatly reduced, since only one task is
being assessed. The final resolution may not be an either/or
solution but, rather, a combination of the two. The utilization
of commercial IQ tests can and should be continued because
they assess so many diverse factors. The supplemental
inclusion of an IT measure, which may more accurately
reflect a specific cognitive ability, could then offer the best of
both worlds.
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