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Abstract To explore structural differences and similarities
in multivariate multiblock data (e.g., a number of variables
have been measured for different groups of subjects, where
the data for each group constitute a different data block),
researchers have a variety of multiblock component
analysis and factor analysis strategies at their disposal. In
this article, we focus on three types of multiblock
component methods—namely, principal component analy-
sis on each data block separately, simultaneous component
analysis, and the recently proposed clusterwise simulta-
neous component analysis, which is a generic and flexible
approach that has no counterpart in the factor analysis
tradition. We describe the steps to take when applying those
methods in practice. Whereas plenty of software is
available for fitting factor analysis solutions, up to now
no easy-to-use software has existed for fitting these multi-
block component analysis methods. Therefore, this article
presents the MultiBlock Component Analysis program,
which also includes procedures for missing data imputation
and model selection.
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Introduction

In the behavioral sciences, researchers often gather multi-
variate multiblock data—that is, multiple data blocks, each
of which contains the scores of a different set of
observations on the same set of variables. For an example,
one can think of multivariate data from different groups of
subjects (e.g., inhabitants from different countries). In that
case, the groups (e.g., countries) constitute the separate data
blocks. Another example is data from multiple subjects that
have scored the same variables on multiple measurement
occasions (also called multioccasion—multisubject data; see
Kroonenberg, 2008). In such data, the data blocks corre-
spond to the different subjects.

Both the observations in the data blocks and the data
blocks themselves can be either fixed or random. For
instance, in the case of multioccasion—multisubject data, the
data blocks are considered fixed when the researcher is
interested in the specific subjects in the study and random
when one aims at generalizing the conclusions to a larger
population of subjects. In the latter case, a representative
sample of subjects is needed to justify the generalization.
When the observations are random and the data blocks
fixed, multiblock data are referred to as multigroup data
(Joreskog, 1971) in the literature. When both observations
and data blocks are random, the data are called multilevel
(e.g., Maas & Hox, 2005; Muthén, 1994; Snijders &
Bosker, 1999).

Researchers are often interested in the underlying
structure of such multiblock data. For instance, given
multioccasion—multisubject scores on a number of emo-
tions, one can wonder whether certain emotions covary
across the measurement occasions of separate subjects or
fluctuate independently of one another, and whether and
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how this structure is similar across subjects (i.e., across the
data blocks). For capturing the structure in multiblock data,
a number of component analysis, as well as factor analysis,
methods are available. Component analysis and factor
analysis differ strongly with respect to their theoretical
underpinnings, but both of them model the variation on the
variables by a smaller number of constructed variables—
called components and factors, respectively—which are
based on the covariance structure of the observed variables.
Which component or factor analysis method is the most
appropriate depends on the research question at hand. For
well-defined, confirmatory questions, factor analysis is
usually most appropriate. For exploratory analysis of data
that may have an intricate structure, as is often the case for
multiblock data, component analysis is generally most
appropriate.

To test specific hypotheses about the underlying
structure, structural equation modeling (SEM; Haavelmo,
1943; Kline, 2004) is commonly used. SEM is applied, for
example, to test whether the items of a questionnaire
measure the theoretical constructs under study (Floyd &
Widaman, 1995; Keller et al., 1998; Novy et al., 1994).
Moreover, multigroup SEM (Joreskog, 1971; Kline, 2004;
Sérbom, 1974) allows testing different levels of factorial
invariance among the data blocks (e.g., Lee & Lam,
1988), going from weak invariance (i.e., same factor
loadings for all data blocks) to strict invariance (i.e.,
intercepts, factor loadings, and unique variances equal
across data blocks).

When there are no a priori hypotheses about the underlying
structure, one may resort to component analysis or explorato-
ry factor analysis (EFA). We will first discuss a family of
component methods that explicitly focus on capturing
structural differences between the data blocks and then,
briefly, the family of factor analysis methods. Note that many
other multiblock component methods exist that focus, for
example, on redundancy (Escofier & Pagés, 1998) or on
modeling block structured covariance matrices (Flury &
Neuenschwander, 1995; Klingenberg, Neuenschwander, &
Flury, 1996).

If one expects the structure of each of the data blocks to
be different, standard principal component analysis (PCA;
Jolliffe, 2002; Pearson, 1901) can be performed on each
data block. In case one thinks that the structure will not
differ across the data blocks, simultaneous component
analysis (SCA; Kiers, 1990; Kiers & ten Berge, 1994b;
Timmerman & Kiers, 2003; Van Deun, Smilde, van der
Werf, Kiers, & Van Mechelen, 2009) can be applied, which
reduces the data for all the blocks at once to find one
common component structure for all the blocks. Finally, if
one presumes that subgroups of the data blocks exist that
share the same structure, one may conduct clusterwise
simultaneous component analysis (clusterwise SCA-ECP,
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where ECP stands for equal cross-product constraints on
the component scores of the data blocks; De Roover,
Ceulemans, Timmerman, Vansteelandt, et al., in press;
Timmerman & Kiers, 2003). This method simultaneously
searches for the best clustering of the data blocks and for
the best fitting SCA-ECP model within each cluster. This
flexible and generic approach encompasses separate PCA
and SCA-ECP as special cases.

For the separate PCA and SCA-ECP approaches, similar
factor-analytic approaches exist, which are specific instances
of exploratory structural equation modeling (Asparouhov &
Muthén, 2009; Dolan, Oort, Stoel, & Wicherts, 2009;
Lawley & Maxwell, 1962). While component and factor
analyses differ strongly with respect to their theoretical
backgrounds, they often give comparable solutions in
practice (Velicer & Jackson, 1990a, b). However, no factor-
analytic counterpart exists for the clusterwise SCA-ECP
method.

While plenty of software is available for the factor-
analytic approaches (e.g., LISREL, Dolan, Bechger, &
Molenaar, 1999; Joreskog & Sorbom, 1999; Mplus,
Muthén, & Muthén, 2007; and Mx, Neale, Boker, Xie, &
Maes, 2003), no easy-to-use software program exists for
applying the multiblock component analysis methods
described above. Thus, although the component methods
are potentially very useful for substantive researchers
(e.g., De Leersnyder & Mesquita, 2010; McCrae & Costa,
1997; Pastorelli, Barbaranelli, Cermak, Rozsa, & Caprara,
1997), it might be difficult for researchers to apply them.
In this article, we describe software for fitting separate PCAs,
SCA-ECP, and clusterwise SCA-ECP models. This Multi-
Block Component Analysis (MBCA) software (Fig. 1) can be
downloaded from http://ppw.kuleuven.be/okp/software/
MBCA/. The program is based on MATLAB code, but it
can also be used by researchers who do not have MATLAB
at their disposal. Specifically, two versions of the software
can be downloaded: one for use within the MATLAB
environment and a stand-alone application that can be run
on any Windows computer. The program includes a model
selection procedure and can handle missing data.

The remainder of the article is organized in three
sections. In Section Multiblock component analysis, we
first discuss multiblock data, how to preprocess them and
how to deal with missing data. Subsequently, we discuss
clusterwise SCA-ECP as a generic modeling approach that
comprises separate PCAs and SCA-ECP as special cases.
Finally, we describe the different data analysis steps:
checking data requirements, running the analysis, and
model selection. The clusterwise SCA-ECP approach
is illustrated by means of an empirical example.
Section Multiblock component analysis program describes
the handling of the MBCA software. Section Conclusion
adds a general conclusion to the article.


http://ppw.kuleuven.be/okp/software/MBCA/
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Multiblock component analysis
Data structure, preprocessing, and missing values

In this section, we first describe the data structure that is
required by the multiblock component methods under
study. Second, the preprocessing of the data is discussed.
Third, the problem of missing values is reviewed shortly,
since an important feature of the MBCA software is that it
can handle missing data.

Data structure

Clusterwise SCA-ECP, as well as SCA-ECP and separate
PCAs, is applicable to all kinds of multivariate multiblock
data—that is, data that consist of 7 data blocks X; (N; x J)
that contain scores of N; observations on J variables, where
the number of observations N; (i = 1, . . ., I) may differ
between data blocks. These / data blocks can be concate-
nated into an N (observations) x J (variables) data matrix X,
where N = >_ N;. More specific requirements (e.g., mini-
mal number of observations in each data block) will be
discussed in the Checking data requirements section.

As an example, consider the following empirical data set
from emotion research, which will be used throughout the
article. Emotional granularity refers to the degree to which
a subject differentiates between negative and positive
emotions (Barrett, 1998); that is, subjects who score high
on emotional granularity describe their emotions in a more
fine-grained way than subjects scoring low. To study
emotional granularity, 42 subjects were asked to rate on a
7-point scale the extent to which 22 target persons (e.g.,
mother, father, partner, . . . ) elicited 16 negative emotions,
where the selected target persons obviously differ across
subjects. Thus, one may conceive these data as consisting
of 42 data blocks X;, 1 for each subject, where each data
block holds the ratings of the 16 negative emotions for the
22 target persons selected by subject i. Note that, in this
case, the number of observations N, is the same for all data
blocks, but this is not necessary for the application of any
of the three component methods considered. The data
blocks X, . . ., X4, can be concatenated below each other,
resulting in a 924 x 16 data matrix X.

Preprocessing

Before applying any of the multiblock component methods,
one may consider whether or not the data should be
preprocessed. Since we focus on differences and similarities
in within-block correlational structures, we disregard
between-block differences in variable means and in
variances. Note that variants of the PCA and SCA methods
exist in which the differences in means (Timmerman, 2006)

and variances (De Roover, Ceulemans, Timmerman, &
Onghena, 2011; Timmerman & Kiers, 2003) are explicitly
modeled. To eliminate the differences in variable means and
variances, the data are centered and standardized per data
block. This type of preprocessing, which is implemented in
the MBCA software, is commonly denoted as aufoscaling
(Bro & Smilde, 2003). The standardization also results in a
removal of arbitrary differences between the variables in
measurement scale.

Missing values

In practice, data points may be missing. For instance, in our
emotion data, 4% of the data points are missing, because some
subjects neglected to rate certain emotions for some of their
target persons. To judge the generalizability of the results
obtained, one has to consider the method for dealing with the
missing data in the analysis and the mechanism(s) that
plausibly caused the missing data. To start with the latter,
Rubin distinguished between “missing completely at random,”
(MCAR) “missing at random,” (MAR) and “not missing at
random” (NMAR) (Little & Rubin, 2002; Rubin, 1976).
MCAR means that the missing data are related neither to
observed nor to unobserved data. When data are MAR, the
missing data are dependent on variables in the data set but are
unrelated to unobserved variables. NMAR refers to missing
data that depend on the values of unobserved variables.

To deal with missing data in the analysis, we advocate
the use of imputation. Imputation is much more favorable
than the simplest alternative—namely, to discard all
observations that have at least one missing value. The
latter may result in large losses of information (Kim &
Curry, 1977; Stumpf, 1978) and requires the missing data to
be MCAR. In contrast, imputation requires the missing data
to be MAR, implying that it is more widely applicable. The
procedure to perform missing data imputation in multiblock
component analysis is described in the Missing Data
Imputation section. and is included in the MBCA software.

The clusterwise SCA-ECP model

A clusterwise SCA-ECP model for a multiblock data matrix
X consists of three ingredients: a / x K binary partition
matrix P, which represents how the / data blocks are
grouped into K mutually exclusive clusters; K J x Q cluster
loading matrices B¥, which indicate how the ./ variables are
reduced to O components for all the data blocks that belong
to cluster k; and a N; x O component score matrix F; for
each data block. Figures 1 and 2 presents the partition
matrix P and the cluster loading matrices B, and Table 1
presents the component score matrix F, (of subject 2) of a
clusterwise SCA-ECP model with three clusters and two
components for our emotion data. The partition matrix P
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— Data description and data files

Data file:

C:\WUsers\Pubkc\Documents\Emotion data\emotion data (negative emotion

File that contains the number of rows per data block:
C:\WUsers\Pubic\Documents\Emotion data\nr rows emotion data 42 blocks

putati @

) No missing data

__ Missing data i

@ Missing data, indicated by... m

Labels for the columns and rows of the data blocks

() No (no labeis)
@ Yes (specify label fie) Browse

C:\Wsers\Public\Documents\Emotion datallabels emotion data (

— Analysis options

Directory in which the output files wil be stored:
C:\Users\Public\Documents\Emotion data

Label of the output files:

— Complexity of the clustering — Type of analysis
Number of clusters: 6 [V] Clusterwise SCA-ECP [¥] Separate PCA per data block
. . [v] sca-Ecp
) Analysis with the specified number of clusters only
@ Analyses with 1 up to the specified number of clusters
S Complexity of the P t structure — Analysis settings E]
Number of components: 6
sk e Number of random starts: 25
_) Analysis with the specified number of components only
© Analyses with 1 up to the specified number of components
— Output files and options
e pti — Required output.

[7] unrotated loadings

[¥] Orthogonally rotated loadi

[¥] Obliquely rotated loadings

emotion_data [T} component scores
Run analysis
|Fitting Clusterwise SCA-ECP: number of clusters=2, number of components=3, imputation start=2, Reration=15, random start=14 A
vl

Fig. 1 Interface of the MultiBlock component analysis software

shows that 15 subjects are assigned to the first cluster (i.e.,
15 subjects have a one in the first column and a zero in the
other columns), while the second and third cluster contain
14 and 13 subjects, respectively.

The cluster loading matrices B* in Fig. 2 display the
component structure for each of the subject clusters.
Because we analyzed autoscaled data and have orthogonal
components, the loadings can be interpreted as correlations
between the variables and components. Each component of
a cluster loading matrix can be interpreted by considering
the common content of the variables that load highly
positive or negative on that component (e.g., loadings with
an absolute value greater than .50). Specifically, for cluster
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1, the first component can be labeled negative affect, since
virtually all negative emotions have a high positive loading
on this component. The second component of this cluster is
named jealousy due to the high loading of jealous. For
cluster 2, the first component is termed cold dislike, since it
consists of the negative emotions that are experienced when
feeling a dislike for someone, without feeling sad about
this. The second component is made up out of negative
feelings that arise when feeling sad; therefore, it is named
sadness. The first component of cluster 3 has some
similarities to the first component of cluster 2, but with
the important difference that additional emotions load high
on this component—that is, uneasy, miserable, and sad.
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Fig. 2 Output file for the clus J emotion_data_Clusterwise_SCA-ECP_orthogonal.txt - Notepad nE X
terwise SCA-ECP anal}fsm of e B Fea TR
the qnotlon d.ata, showing the Analysis with 3 clusters and 2 components 4
partition matrix and the orthog- ~ |====- === -
onally rotated cluster loading Partition matrix
matrices for the model with two subject 1 1 0 0
clusters and two components. Subject ¢ 3 3 g
i subject 4 0 0 1
The components in cluster 1 can Supect £ ° Y 3
be labeled “negative affect” and subject 6 1 0 0
. S subject 7 0 1 0
‘jealousy,” while the compo- subject 8 1 0 0
. . subject 9 0 0 1
nents in cluster 2 can be inter- subject 10 0 1 o
preted as “cold dislike” and :32 eer U g g é
“sadn > and the ones in clus- subject 13 0 0 1
sad ess‘,‘ a d. e (3, es “c us subject 12 3 o 2
ter 2 as “hot dislike” and “low subject 15 0 1 0
5 : subject 16 1 0 0
self-esteem,” respectively subject 17 0 0 1
subject 18 1 0 0
subject 19 0 1 0
subject 20 1 0 0
subject 21 0 1 0
subject 22 0 1 [1]
subject 23 0 1 0
subject 24 0 1 0
subject 25 0 0 1
subject 26 0 0 1
subject 27 0 1 0
subject 28 0 1 0
subject 29 ] 1 0
subject 30 0 0 1
subject 31 1 0 0
subject 32 0 0 1
subject 33 0 1 0
subject 34 1 0 0
subject 35 1 0 4]
subject 36 0 0 1
subject 37 1 0 0
subject 38 1 0 0
subject 39 1 ] 0
subject 40 0 1 0
subject 41 ] 0 1
subject 42 0 0 1
component loadings
Cluster 1 Cluster 2 Cluster 3
bored 0.7788 -0.1270 0.7505 -0.1092 0. 6886 -0.1069
uneasy 0.8334 0.0025 0.4987 0.1921 0. 5970 0.2025
miserable 0.6354 0.2841 0.1566 0.6217 0.5765 0.3130
angry 0.7772 0.3170 0.7745 0.2073 0.7516 0.0919
confused 0.5441 0.3317 0.1633 0.7520 0.5493 0.2728
dislike 0.7802 0.0851 0.8821 -0.0137 0.7640 0.2231
inferior 0.3299 0. 5100 -0.0755 0.6153 0.1898 0. 6614
sad 0.6330 0.4938 0.0963 0.7910 0.6679 0.4885
frustrated 0.7360 0.3959 0.7551 0.2354 0.7211 0.3973
jealous -0.2317 0.7566 -0.2447 0.4180 -0.0077 0.6131
earful 0. 6051 0.2813 0.2189 0. 6445 0.1879 0.6178
nervous 0.7553 0.1418 0.1702 0.6703 0.1678 0.7657
uncomfortable 0.8559 0.0422 0.6321 0.2958 0. 3836 0.6038
disgust 0.8369 0.0928 0. 9001 -0.0819 0.7513 0.2555
upset 0.8570 0.2163 0. 5506 0. 3861 0.6541 0.3124
hatred 0.8182 0.2093 0.8988 -0.0508 0.7942 0.0863

Thus, it seems that for this cluster, dislike is more
emotionally charged; thus, it is labeled hot dislike. The
second component of cluster 3 can be interpreted as a low
self-esteem component, because it consists of negative
emotions that stem from having a low feeling of self-
worth. We can conclude that the clusters differ strongly
from one another in the nature of the dimensions that
underlie the negative emotions. On the basis of these
results, we can hypothesize that the subjects in cluster 1 are
the ones with the least granular emotional experience
against the target persons, since most negative emotions
strongly co-occur for these subjects. The subjects in clusters
2 and 3 seem to display a higher granularity in their
emotional ratings, since they differentiate between feelings
of dislike and feelings of sadness (cluster 2) or low self-
esteem (cluster 3) toward the target persons. To evaluate
whether the structural differences between the three subject
clusters may, indeed, be interpreted as differences in

emotional granularity, we related the cluster membership to
the average intraclass correlation coefficients (ICCs; Shrout &
Fleiss, 1979; Tugade, Fredrickson, & Barrett, 2004) measur-
ing absolute agreement, which were calculated across the
negative emotions for each subject. The three clusters differ
significantly, F(2) = 5.12, p = .01, with mean ICCs of .91
(SD =.07), .82 (SD = .10), and .88 (SD = .05) for clusters 1—
3, respectively. Since higher ICC values indicate a lower
granularity, cluster 1 contains the least granular subjects,
while cluster 2 contains the most granular subjects.

In Table 1, the component score matrix for subject 2 is
presented. Since subject 2 belongs to cluster 1 (see the
partition matrix in Fig. 2), we can derive how this subject
feels about each of the 22 target persons in terms of
negative affect and jealousy. For instance, it can be read that
target person 15 (disliked person 3) elicits the most
negative affect in subject 2 (i.e., a score of 1.93 on the
first component) and that this subject has the strongest
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Table 1 Component scores for subject 2 out of the emotion data,
given a clusterwise SCA-ECP model with two clusters and two
components. Note that subject 2 is assigned to the first cluster

Target Person Negative Affect Jealousy
1. Mother -0.28 0.24
2. Father -0.57 0.11
3. Partner -0.47 2.15
4. Liked relative 1 -0.72 0.72
5. Liked relative 2 -0.61 -1.42
6. Disliked relative 1 0.06 -1.02
7. Disliked relative 2 1.86 -0.06
8. Disliked relative 3 1.79 -0.66
9. Disliked relative 4 1.03 -0.88
10. Best friend 1 -0.72 -0.02
11. Best friend 2 -0.75 -0.92
12. Best friend 3 -0.37 0.23
13. Disliked person 1 1.40 -0.31
14. Disliked person 2 1.43 2.73
15. Disliked person 3 1.93 -0.81
16. Acquaintance 1 -0.95 -0.75
17. Acquaintance 2 -0.62 0.62
18. Acquaintance 3 -0.47 0.33
19. Mentor 1 -1.05 0.48
20. Mentor 2 -0.48 -0.17
21. Mentor 3 -0.81 -1.33
22. Myself -0.54 0.59

feelings of jealousy (i.e., a score of 2.73 on the second
component) toward target person 14 (disliked person 2).

To reconstruct the observed scores in each data block X;,
the information in the three types of matrices is combined
as follows:

K !
X; =Y puFB" +E;, (1)
k=1

where p;; denotes the entries of the partition matrix P, Ff‘ is
the component score matrix for data block i when assigned
to cluster &, and E; (V; x J) denotes the matrix of residuals.
Since data block i is assigned to one cluster only, the index
kin Ff is mostly omitted in the remainder of this article, for
reasons of parsimony. For example, to reconstruct the data
block for subject 2, we read in the partition matrix (Fig. 2)
that this subject is assigned to the first cluster and,
subsequently, multiply the component scores in Table 1
with the component loadings of cluster 1 in Fig. 2. It can be
concluded that the separate PCA and SCA-ECP strategies
for multiblock data are indeed special cases of the
clusterwise SCA-ECP model. On the one hand, when K,
the number of clusterwise SCA-ECP clusters, is equal to 7,
the number of data blocks, the model boils down to
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separate PCAs with an equal number of components for
each data block. On the other hand, when K equals one, all
data blocks belong to the same cluster, and the clusterwise
SCA-ECP model reduces to a regular SCA-ECP model.

In clusterwise SCA-ECP, the columns of each component
score matrix F; are restricted to have a variance of one, and
the correlations between the columns of F; (i.e., between the
cluster-specific components) must be equal for all data
blocks that are assigned to the same cluster. With respect to
the latter restriction, note that the parameter estimates of an
SCA-ECP solution have rotational freedom. Thus, to obtain
components that are easier to interpret, the components of a
clusterwise SCA-ECP solution can be freely rotated within
each cluster without altering the fit of the solution, provided
that the corresponding component scores are counterrotated.
For instance, the cluster loading matrices in Fig. 2 were
obtained by means of an orthogonal normalized varimax
rotation (Kaiser, 1958). When an oblique rotation is applied,
the cluster-specific components become correlated to some
extent. In that case, the loadings should not be read as
correlations, but they can be interpreted similarly as weights
that indicate the extent to which each variable is influenced
by the respective components.

Steps to take when performing multiblock component
analysis

When applying one of the multiblock component methods
in practice, three steps have to be taken: checking the data
requirements, running the analysis, and selecting the model.
In the following subsections, each of these steps will be
discussed in more detail.

Checking data requirements

As a first step, one needs to check whether the different
data blocks contain a sufficient number of observations,
whether the data have been preprocessed adequately, and
whether and which data are missing. For the different
component models to be identified, the number of
observations N; in the data blocks should always be
larger than the number of components O to be fitted.
Moreover, when the observations in the data blocks and/
or the data blocks themselves are a random sample, this
sample needs to be sufficiently large and representative;
otherwise, the generalizability of the obtained results is
questionable.

With respect to preprocessing, as discussed in the
Preprocessing section, it is often advisable to autoscale all
data blocks, which is done automatically by the MBCA
program. However, autoscaling is not possible when a
variable displays no variance within one or more data
blocks, which may occur in empirical data. For instance, for
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our emotion example, it is conceivable that some subjects
rate a certain negative emotion to be absent for all target
persons. In such cases, one of the following options can be
considered. First, one may remove the variables that are
invariant for one or more data blocks. Second, one may
discard the data blocks for which one or more variables are
invariant. When many variables or data blocks are omitted,
this leads to a great loss of data, however. Therefore, a third
option, which is also provided in the MBCA software, is to
replace the invariant scores by zeros, implying that the
variables in question have a mean of zero but also a
variance of zero in some of the data blocks. This strategy
has the disadvantage that the interpretation of the compo-
nent loadings becomes less straightforward. Specifically,
even the loadings on orthogonal components can no longer
be interpreted as correlations between the variables and the
respective components.

With respect to missing data, when the multiblock
data contain missing values, it seems straightforward to
autoscale each variable with respect to the nonmissing
data entries only. This way the nonmissing values for
each variable will have a mean of zero and a variance of
one per data block, regardless of any assumed or
imputed values for the missing data. It may also be wise
to remove variables that are missing completely within
certain data blocks (i.e., an entire column of a data block
is missing), since such missingness patterns are rather
likely to be NMAR and, hence, yield biased analysis
results.

Running the analysis

The second step consists of performing the multiblock
component analysis, with the appropriate number of compo-
nents Q and number of clusters K in case of clusterwise
SCA-ECP. Given (K and) O, the aim of the analysis is to find
a solution that minimizes the following loss function:

I
<12
L= lIX =X, (2)
i=1

K ,

where X; equals > pyFBF, F,B;, and F;B' for clusterwise
SCA-ECP, separate PCAs, and SCA-ECP, respectively. In
case the data contain missing values, N; X J binary weight
matrices Wi» containing zeros if the corresponding data
entries are missing and ones if not, are included in the loss
function:

!

L= |I(X = X,)*WiI" (3)

i=1

Note that * denotes the Hadamard (i.e., elementwise)
product. On the basis of the loss function value L, the

percentage of variance accounted for (VAF) can be
computed as follows:

X||P-L
VAF(%) :”HT x 100. (4)

The algorithms for estimating the multiblock component
models and for missing data imputation are described in the
following subsections.

Algorithms In this section, we discuss the algorithms for
performing separate PCAs, SCA-ECPs, and clusterwise
SCA-ECPs. Each of these algorithms is based on a singular
value decomposition. However, unlike the separate PCA
algorithm, which boils down to the computation of a closed
form solution, the SCA-ECP and clusterwise SCA-ECP
algorithms are iterative procedures.

Separate PCAs for each of the data blocks are obtained
on the basis of the singular value decomposition of data
block X; into U, S;, and V,, with X; = U,—S,—V,—I (Jolliffe,
2002). Least squares estimators of F; and B; are F; =
VN:Uj) and B; = \/LN—jVi(Q)S[(Q), respectively, where U;(p)

and V;(p) are the first O columns of U, and V; respectively,
and S; o) consists of the first O rows and columns of S;.

To estimate the SCA-ECP solution, an alternating least
squares (ALS) procedure is used (see Timmerman & Kiers,
2003, for more details) that consists of four steps:

1. Rationally initialize loading matrix B: Initialize B by
performing a singular value decomposition of the total
data matrix X into U, S, and V, with X =U S V". A
rational start of B is then given by B = V), where Vg,
contains the first Q columns of V.

2. (Re)estimate the component score matrices F;: For each
data block, decompose X; B into U,, S;, and V,, with
X, B =1U; S; V/. A least squares estimate of the
component scores F; for the ith data block is then given
by F; = v/N;U;V; (ten Berge, 1993).

3. Reestimate the loading matrix B: B = ((F F)™'F X)I,
where F is the vertical concatenation of the component
scores of all data blocks.

4. Repeat steps 2 and 3 until the decrease of the loss
function value L for the current iteration is smaller than
the convergence criterion, which is 1e-6 by default.

Clusterwise SCA-ECP solutions are also estimated by
means of an ALS procedure (see De Roover, Ceulemans,
Timmerman, Vansteelandt, et al., in press, for more details):

1. Randomly initialize partition matrix P: Randomly
assign the 7 data blocks to one of the K clusters, where
each cluster has an equal probability of being assigned
to. If one of the clusters is empty, repeat this procedure
until all clusters contain at least one element.
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2. Estimate the SCA-ECP model for each cluster: Esti-
mate the F; and B* matrices for each cluster & by
performing a rationally started SCA-ECP analysis, as
described above, on the X, data blocks assigned to the
kth cluster.

3. Reestimate the partition matrix P: Each data block X is
tentatively assigned to each of the K clusters. On the
basis of the loading matrix BX of the cluster & and the
data block X, a component score matrix for block 7 in
cluster k£ is computed, and the fit of data block i in
cluster k£ is evaluated. Eventually, the data block is
assigned to the cluster for which the fit is maximal.
When one of the K clusters is empty after this
procedure, the data block with the worst fit in its
current cluster is moved to the empty cluster.

4. Steps 2 and 3 are repeated until the decrease of the loss
function value L for the current iteration is smaller than
the convergence criterion, which is le-6 by default.

Note that the clusterwise SCA-ECP algorithm may end in a
local minimum. Therefore, it is advised to use a multistart
procedure (e.g., 25 starts; see De Roover, Ceulemans,
Timmerman, Vansteelandt, et al., in press) with different
random initializations of the partition matrix P.

Missing data imputation To perform missing data imputa-
tion while fitting multiblock component models, weighted
least squares fitting (Kiers, 1997) is used to minimize the
weighted loss function (Eq. 3). This iterative procedure,
which assumes the missing values to be missing at random
(MAR), consists of the following steps:

1. Set ¢, the iteration number, to one. Initialize the N x J
missing values matrix M’ by sampling its values from a
standard normal distribution (random start) or by
setting all entries to zero (zero start).

2. Compute the imputed data matrix X' = W * X + W¢ *
M’, where W€ is the binary complement of W (i.e., with
ones for the missing values and zeros for the nonmissing values).

3. Perform a multiblock component analysis on X" (see
the Algorithms section).

4. Set t = ¢t + 1 and M’ = X', where X' holds the
reconstructed scores from step 3.

5. Steps 24 are repeated until the decrease of the loss
function value L for the current iteration is smaller than
the convergence criterion, which is set to 1e-6 times 10%
of the data size N X J.; the latter product is added to keep
the computation time for larger data sets under control.

In the MBCA program, the described procedure is
performed with five different starts (i.e., one zero start and
four random starts) for the missing values matrix M, and
the best solution is retained. Note that the computation time
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will be considerably longer when missing data imputation
is performed.

A simulation study was performed to investigate how the
clusterwise SCA-ECP algorithm with missing data imputation
performs in terms of goodness of recovery. A detailed
description of the simulation study is provided in Appendix 1.
From the study, which included missing data generated
under different mechanisms, it can be concluded that the
clustering of the data blocks, as well as each of the cluster
loading matrices, is recovered very well in all simulated
conditions. The overall mean computation time in the
simulation study amounts to 22 min and 25 s, which is
about 260 times longer than the computation time of
clusterwise SCA-ECP on the complete data sets.

Model selection

In the previous step, the number of components Q and
number of clusters K were assumed to be known. This is
often not the case, however. In component analysis, the
resulting model selection problem is often solved by fitting
component models with different numbers of components
and then selecting the model with the best balance between
complexity and fit. To this end, a generalization of the well-
known scree test (Cattell, 1966) can be used, based on a plot
of the VAF (Eq. 4) against the number of components. Using
this plot, the “best” number of components is determined by
searching for the number of components after which the
increase in fit with additional components levels off. The
decision may be based on a visual inspection of the scree
plot, but a number of automated scree test procedures have
been proposed as well (e.g., DIFFIT, Timmerman & Kiers,
2000; CHULL, Ceulemans & Kiers, 2006).

Building on the CHULL procedure, we propose to select
the component solution for which the scree ratio

o = 01 5
0+1 0
is maximal, where VAF, is the VAF of a solution with Q
components. Note that the lowest and highest number of
components considered will never be selected, since, for
them, the scree ratio (Eq. 5) cannot be calculated. For
selecting among separate PCA solutions or SCA-ECP
solutions, this scree criterion can readily be applied. For
clusterwise SCA-ECP, model selection is more intricate,
however, because the number of clusters also needs to be
determined (which is analogous to the problem of deter-
mining the number of mixture components in mixture
models; e.g., McLachlan & Peel, 2000). As a way out, one
may use a two-step procedure in which, first, the best
number of clusters is determined and, second, the best



Behav Res (2012) 44:41-56

49

number of components. More specifically, the first step of
this procedure starts by calculating the scree ratio sr (ko) for
each value of K, given different values of Q:

VAFg — VAFg_4

e 6
VAF., — VAFk (6)

ST(k1Q) =

Subsequently, for each number of components Q, the
best number of clusters K is the number of clusters for
which the scree ratio is maximal. The overall best number
of clusters K***' is determined as the K-value that has the
highest average scree ratio across the different Q-values.
The second step aims at selecting the best number of
components. To this end, given K°, the scree ratios are
calculated for each number of components Q:

VAFy — VAF

: 7
VAFy,, — VAFy @

S}"(Qlem) =

The best number of components O°*' is the number of
components Q for which the scree ratio is maximal.

We applied this procedure for selecting an adequate
clusterwise SCA-ECP solution for the emotion data out of
solutions with one to six clusters and one to six
components. Table 2 contains the scree ratios for determin-
ing the number of clusters and the number of components.
Upon inspection of the s7(xp) ratios in Table 2 (above), we
conclude that the best number of clusters differs over the
solutions with one to six components. Therefore, we
computed the average scree ratios across the different
numbers of components, which equaled 1.88, 2.01, 1.08,
and 1.32 for two to five clusters, respectively, and decided
that we should retain three clusters. The s7(ggser) values in
Table 2 (below) suggest that the best number of components
O0°*' is two. Hence, we selected the model with three
clusters and two components, which was discussed in the
Data structure, preprocessing, and missing values section.

To evaluate the model selection procedure, we performed
a simulation study, of which details can be found in
Appendix 2. The simulation study revealed that the model
selection procedure works rather well, with a correctly

selected clusterwise SCA-ECP model in 91% of the
simulated cases.

Multiblock component analysis program

The most up-to-date versions of the MBCA software can be
downloaded from http://ppw.kuleuven.be/okp/software/
MBCA/. When clicking on the .exe file (for the stand-
alone version) or typing “MultiBlock Component Analy-
sis” in the MATLAB command window (for the MATLAB
version), the interface of the software program (see Fig. 1)
opens, consisting of three panels: “data description and data
files,” “analysis options,” and “output files and options.” In
this section, first, the functions of each panel of the
software interface are clarified. Next, performing the
analysis and error handling are described. Finally, the
format and content of the output files is discussed.

Data description and data files

In the “data description and data files” panel, the user first
loads the data by clicking the appropriate “browse” button
and selecting the data file. This file should be an ASCII
(.txt) file, in which the data blocks are placed below each other,
with the rows representing the observations and the columns
representing the variables. The columns may be separated by a
semicolon, one or more spaces, or horizontal tabs (see Fig. 3).
Missing values should be indicated in the data file by “.,” */,”
“*” or the letter “m” (e.g., in Fig. 3, the missing data values
are indicated by “m”). If some data are missing, the user
should select the option “missing data, indicated by . . .” in
the “missing data imputation” section of the panel and
specify the symbol by which the missing values are indicated.

Next, the user selects a “number of rows” file (also an
ASCII file) by using the corresponding “browse” button.
The selected file should contain one column of integers,
indicating how many observations the consecutive data
blocks contain, where the order of the numbers corresponds
to the order of the data blocks in the data file (see Fig. 3).

Table 2 Scree ratios for the

numbers of clusters K given the 1 Comp 2 Comp 3 Comp 4 Comp 5 Comp 6 Comp Average
numbers of components Q and
averaged over the numbers of 2 clusters 1.97 2.54 1.85 1.52 1.53 1.85 1.88
components (above), and fOY. the 3 clusters 1.64 1.11 3.03 2.82 2.04 1.42 2.01
numbers of components Q given 4 ¢y gers 1.38 0.93 0.71 0.98 1.02 1.48 1.08
three clusters (below), for the
emotion data. The maximal 5 clusters 0.90 2.09 0.83 0.88 241 0.82 1.32
scree ratio in each column is 3 Clusters
highlighted in boldface 2 components 1.80

3 components 1.30

4 components 1.43

5 components 1.21
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& emotion data (negative emotions). txt - Notepad Q@ﬁ] Cy L
File Edt Format View Help
6. 0000 5.0000 5.0000 6.0000 & | subject 22 ~
6. 0000 5.0000 5.0000 6.0000 | 55 subject 23
6. 0000 6. 0000 1.0000 5.0000 1122 subject 24
5.0000 5.0000 1.0000 6.0000 |55 subject 25
1.0000 1.0000 1.0000 1.0000 |55 subject 26
1.0000 5.0000 1.0000 1.0000 |55 subject 27
2.0000 2.0000 2.0000 2.0000 |55 subject 28
5.0000 5.0000 4.0000 5.0000 22 subject 29
6.0000 6. 0000 5.0000 2.0000 |55 subject 30
m m m m 1123 subject 31
2.0000 2.0000 2.0000 2.0000 |55 subject 32
1.0000 1.0000 1.0000 2.0000 |55 subject 33
1.0000 1.0000 1.0000 1.0000 |55 subject 34
1.0000 1.0000 m 4.0000 | 55 subject 35
m m m m |32 subject 36
m m m m 122 subject 37
1.0000 1.0000 1.0000 1.0000 | 55 subject 38
6. 0000 4.,0000 3.0000 3.0000 22 subject 39
5.0000 5.0000 4.0000 5.0000 |55 subject 40
2.0000 2.0000 3.0000 3.0000 22 subject 41
4.0000 4.,0000 3.0000 3.0000 22 subject 42
5.0000 5.0000 4.0000 4.0000 |55
3.0000 5.0000 5.0000 4.0000 32
4.0000 5.0000 4.0000 3.0000 |55 11
6. 0000 6. 0000 3.0000 6.0000 |55 2.1
5.0000 5.0000 2.0000 3.0000 22 31
2.0000 2.0000 4.0000 4.0000 22 4_1
2.0000 2.0000 3.0000 2.0000 32 51
2.0000 1.0000 2.0000 5.0000 32 6.1
7.0000 7.0000 2.0000 7.0000 32 7
7.0000 7.0000 2.0000 7.0000 22 8.1
7.0000 7.0000 2.0000 7.0000 22 o1
3.0000 2.0000 2.0000 4.0000 22 101
4.0000 4.0000 2.0000 3.0000 22 1.1
2.0000 5.0000 2.0000 5.0000 22 121
6.0000 6. 0000 2.0000 2.0000 22 131
3.0000 2.0000 2.0000 2.0000 22 141
3.0000 5.0000 2.0000 2.0000 33 15_1
6.0000 3.0000 3.0000 5.0000 22 16_1
1.0000 1.0000 6. 0000 1.0000 22 171
2.0000 2.0000 2.0000 4.0000 32 18_1
1.0000 1.0000 1.0000 2.0000 22 191
1.0000 1.0000 1.0000 1.0000 22 201
1.0000 5.0000 3.0000 3.0000 211
4.0000 3.0000 1.0000 1.0000 221
6. 0000 4.0000 1.0000 1.0000 1.2
7.0000 5.0000 1.0000 1.0000 2.2
2.0000 2.0000 5.0000 7.0000 3.2
2.0000 3.0000 1.0000 3.0000 4_2
1.0000 1.0000 1.0000 1.0000 5.2
1.0000 1.0000 m 1.0000 6_2
m m m m 72
m m m m 8_2
m m m m 9_2
5.0000 5.0000 5.0000 5.0000 ., 102 =
<

Fig. 3 Screenshot of (from left to right) a data file, a number of rows file, and a labels file. An ”m” in the data file indicates a missing value

Finally, the user may choose to upload a file with
meaningful labels for the data blocks, the observations within
the data blocks, and the variables. The labels file should be an
ASCII file containing three groups of labels, in the form of
strings that are separated by empty lines, in the following
order: block labels, object labels, and variable labels. Note
that tabs are not allowed in the label strings. If the user does
not load a labels file, the option “no (no labels)” in the right-
hand part of the panel is selected. In that case, the program
will use default labels in the output (e.g., “block1” for the first
data block, “block1, obs1” for the first object of the first data
block, and “columnl1” for the first variable).

Analysis options
In the “type of analysis” section of the “analysis options”
panel, the user can choose which types of multiblock

component analysis need to be performed, on the basis of
the expected differences and/or similarities between the
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underlying structure of the different data blocks (as was
explained in the Introduction). The user selects at least one
of the methods: clusterwise SCA-ECP, separate PCA per
data block, and SCA-ECP.

In the case of clusterwise SCA-ECP analysis, the user
specifies the number of clusters in the “complexity of the
clustering” section. The maximum number of clusters is 10,
unless the data contain fewer than 10 data blocks (in that case,
the maximum number of clusters is the number of data
blocks). In addition to that, the user chooses one of the
following two options: “analysis with the specified number of
clusters only” or “analyses with 1 up to the specified number
of clusters.” In the latter case, the software generates solutions
with one up to the specified number of clusters and specifies
which number of clusters should be retained according to the
model selection procedure (see the Model Selection section).

In the “complexity of the component structure” section,
the user specifies a number of components between 1 and
10. Just as in specifying the number of clusters (for
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clusterwise SCA-ECP), the user can choose to perform the
selected analyses with one up to the specified number of
components or with the specified number of components
only. In the former case, the model selection procedure
(described in the Model selection section) will be applied to
suggest what the best number of components is.

Finally, in the “analysis settings” section, the user can
indicate how many random starts will be used, with a
maximum of 1,000. The default setting is 25 random starts,
on the basis of a simulation study by De Roover et al.
(in press).

Output files and options

In the panel “output files and options,” the user indicates,
by clicking the appropriate “browse” button, the directory
in which the output files are to be stored. The user may also
specify a meaningful label for the output files, to be able to
differentiate among different sets of output files (for
instance, for different data sets) and to avoid the output
files to be overwritten next time the software program is
used. The specified label is used as the first part of the
name of each output file, while the last part of the file
names refers to the content of the file and is added by the
program. It is important to note that the label for the output
files should not contain empty spaces.

In the “required output” section, the parameters to be
printed in the output files can be selected. More specifically,
the user indicates whether output files with unrotated,
orthogonally rotated, and/or obliquely rotated loadings are
needed and whether the component scores—counterrotated
accordingly—are to be printed in those output files as well.
Note that the output files often become very large when
component scores are printed. For orthogonal rotation of
the component matrices, the normalized varimax rotation
(Kaiser, 1958) is used, while oblique rotation is performed
according to the HKIC criterion (Harris & Kaiser, 1964;
Kiers & ten Berge, 1994a).

Analysis
Performing the analyses

After specifying the necessary files and settings, as described
in the previous sections, the user clicks the “run analysis”
button to start the analysis. The program will start by reading
and preprocessing the data; then the requested analyses are
performed. During the analysis, the status of the analyses is
displayed in the box at the bottom of the software interface,
such that the user can monitor the progress. The status
information consists of the type of analysis being performed
at that time and the number of (clusters and) components
being used (see Fig. 1). For clusterwise SCA-ECP analysis,

the random start number is included in the status. When
analyses with missing data imputation are performed, the
start number and iteration number of the imputation process
are added to the status as well. When the analysis is done, a
screen pops up to notify the user. After clicking the “OK”
button, the user can consult the results in the output files
stored in the selected output directory.

Error handling

If the files or options are not correctly specified, one or
more error screens will appear, with indications of the
errors. After clicking “OK,” the analysis stops, and the
content of the error messages is displayed in the box at the
bottom of the interface. The user can then correct the files
or settings and click “run analysis” again.

In some cases, a warning screen may appear. Specifical-
ly, a warning is given when missing data imputation is
requested but no missing values are found, when missing
data imputation is requested and the analyses are expected
to take a very long time (i.e., when more than 10% of the
data are missing and/or when more than 20 different
analyses are requested, where each analysis refers to a
particular K and QO value), or when some variables have a
variance of zero for one or more data blocks (see the
Checking data requirements section). In the latter case, a
warning screen appears with the three options for dealing
with invariant variables (as described in the Checking data
requirements section). For the first two options, the number
of data blocks or variables that would have to be removed
for the data set at hand is stated between brackets. In
addition to these three options, a fourth option is given that
is a reference to a future upgrade of the software program
containing a different variant of clusterwise SCA (i.e.,
clusterwise SCA-P; De Roover, Ceulemans, Timmerman, &
Onghena, 2011). Also, a text file with information on which
variables are invariant within which data blocks is created
in the output directory and opened together with the
warning screen. When the user chooses to continue the
analysis, the third solution for invariant variables (i.e.,
replacing the invariant scores by zeros) is applied automat-
ically by the software program. Otherwise, the user can
click “no” to stop the analysis and remove data blocks and/
or variables to solve the problem.

Output files

The MBCA program creates separate ASCII (.txt) output
files for each combination of multiblock component
method (separate PCAs, SCA-ECP, and/or clusterwise
SCA-ECP) and rotation method (unrotated, orthogonal,
and/or oblique; see Fig. 2 for an example). For each used
number of (clusters and) components, these output files
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Fig. 4 Percentage of explained

Scree plot

variance for separate PCA, T T
SCA-ECP and clusterwise SCA-

ECP solutions, with the number a0
of components varying from one
to six and the number of clusters 85 -
for clusterwise SCA-ECP vary-
ing from one to six for the 80 |

emotion data
75 |-

70 -

Perc. expl. variance

1 1

separate PCAs
SCA-ECP 1
—+— Clusterwise SCA-ECP, K=1

—+— Clusterwise SCA-ECP, K=2
—&— Clusterwise SCA-ECP, K=3 H
—+— Clusterwise SCA-ECP, K=4
—&— Clusterwise SCA-ECP, K=5

| ] —<— Clusterwise SCA-ECP, K=6
I I

contain all obtained component loadings and, if requested, the
component scores. For separate PCAs, the output is organized
per data block. When the solutions are obliquely rotated, the
component correlations are added to the output file in
question. For separate PCAs, SCA-ECP, and clusterwise
SCA-ECP, these correlations are respectively computed for
each data block, across all data blocks and across all data
blocks within a cluster. In the clusterwise SCA-ECP output
files (e.g., Fig. 2), the partition matrices are printed as well.

In addition to the ASCII output files, the software
program creates an output overview (.mht) file. For data
with missing values, this file contains the percentage of
missing values per data block and the total percentage of
missing data. The file also displays the overall fit values for
each of the performed analyses. When analyses are
performed for at least four different numbers of clusters
and/or components, the overview file shows the results of
the model selection procedures for each component method.
Specifically, the overview file suggests how many compo-
nents and, if applicable, how many clusters should be
retained. Sometimes, for clusterwise SCA-ECP, no suggestion
can be made with respect to the number of clusters that should
be used—rfor instance, because only two or three numbers of
clusters are used. In that case, the best number of components
is indicated for each number of clusters separately.

To further facilitate model selection, the output overview
provides a scree plot (e.g., Fig. 4) in which the percentage of
explained variance is shown as a function of the number of
components for each number of clusters separately. When
separate PCAs or SCA-ECP analyses are performed, an
additional scree line is added to the scree plot. Moreover, all
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the computed scree ratios are printed. Note that for clusterwise
SCA-ECP analyses, a table of scree ratios is provided for each
number of clusters, given the different numbers of compo-
nents and averaged over the numbers of components (e.g.,
Table 2), as well as a similar table for the numbers of
components given the different numbers of clusters. On the
basis of these tables, the user can select additional solutions
for further consideration. Of course, the interpretability of
the different solutions should also be taken into account.
Finally, the output overview provides information on the
fit of the different data blocks within all obtained solutions.
This information can be consulted to detect data blocks that
are aberrant (i.e., fitting poorly) within a certain model.

Conclusion

Behavioral research questions may concern the correlation-
al structure of multivariate multiblock data. To explore this
structure, a regular PCA or EFA is inappropriate, because
this would mix up the between-block differences in means
and in correlational structures. In this article, we gave an
overview of more sophisticated factor analysis and compo-
nent analysis techniques that have been proposed for
investigating structural differences and similarities between
blocks of data. We focused on multiblock component
analysis, because this is a flexible approach that proved its
usefulness in empirical practice. Moreover, for clusterwise
SCA-ECP, which is the most general multiblock component
model, no counterpart exists in factor analysis. An example
from emotion research illustrated the value of this approach.
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To facilitate the use of multiblock component analysis, we
introduced the MBCA program and provided guidelines on
how to perform a multiblock component analysis in practice.
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Appendix 1 Simulation study to evaluate
the performance of the missing data
imputation procedure

To evaluate the missing data imputation procedure in terms
of goodness of recovery, a simulation study was performed
using the clusterwise SCA-ECP algorithm. The number of
observations N; within the data blocks was sampled
uniformly between 80 and 120. Keeping the number of
variables J fixed at 12 and the number of data blocks / at
40, six factors were manipulated and completely crossed:

1. the missingness mechanism at three levels: MCAR,
MAR, NMAR (see the Missing values section);

6. the error level e, which is the expected proportion of error
variance in the data blocks X;, at two levels: .20, .40.

For each cell of the design, five data matrices X were
generated, consisting of 7 X; data blocks. These data blocks
were constructed as follows:

X,=F.B* +E, (8)

where the entries of the component score matrices F; were
randomly sampled from a multivariate normal distribution,
of which the mean vector consists of zeros and of which the
variance—covariance matrix was the identity matrix, and
where the entries of the error matrices E; were randomly
sampled from a standard normal distribution. To construct
the partition matrix P, the data blocks were randomly
assigned to the clusters, subject to the restriction imposed
by factor 5. The cluster loading matrices BX were obtained
by sampling the loadings uniformly between -1 and 1 (see
De Roover, Ceulemans, Timmerman, Vansteelandt, et al.,
in press). The congruence between the cluster loading
matrices was relatively low, as indicated by Tucker
congruence coefficients (Tucker, 1951): The congruence
coefficients between the corresponding components of the

2. the percentage of missing values at two levels: 10%, 25%; cluster loading matrices amounted to .41 on average, when
3. the number of clusters K at two levels: 2, 4; these matrices were orthogonally procrustes rotated to each
4. the number of components Q at two levels: 2, 4; other. Subsequently, the error matrices E; and the cluster
5. the cluster size, at three levels (see Milligan, Soon, &  loading matrices B* were rescaled—by multiplying these
Sokol, 1983): equal (equal number of data blocks in  matrices with \/e and /(1 — e) respectively—to obtain data
each cluster), unequal with minority (10% of the data  that contained the desired expected proportion e of error
blocks in one cluster and the remaining data blocks  variance (factor 6). Next, the resulting X; matrices were
distributed equally over the other clusters), unequal  standardized columnwise and were vertically concatenated
with majority (60% of the data blocks in one cluster  into the matrix X.
and the remaining data blocks distributed equally over Subsequently, within each cluster, a subset of the data
the other clusters); entries (factor 2) was selected to be set missing. The
Fig. 5 Mean GOCL and asso- 1 . . 1
ciated 95% confidence intervals
as a function of the number of 0999l 1 0090l |
components and the amount of
error variance (e x 100%) for
10% missing values (left panel) 0.998¢ 1 0998 1
and for 25% missing values
(right panel) 0.997¢ 1 0.997f 1
—
8 0.996} 1 099t 1
]
0.995¢ 1 0995} 1
0.994t 10994} 1
0.993F | —&—20% error 1 0993 | —B—20% error 1
—9—40% error —O—40% error
0.992 : : 0.992 :
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procedures to simulate MCAR, MAR, and NMAR (factor 1)
were taken from Van Ginkel, Kroonenberg, and Kiers (2010).
In order to obtain missing values that were MCAR, this
subset was selected completely at random. To simulate
missingness at random (MAR), we first determined within
each cluster which variable had the highest average
correlation with the rest of the variables (in what follows,
we will refer to this variable as the MAR variable). Next, we
set a subset of the values on the remaining variables as
missing, where the probability that entry x,,; was set missing
was based on a logistic transformation of the value of the
same object n; on the MAR variable. To obtain NMAR
missingness, the probability that x,; was set missing
depended on a logistic transformation of x,,; itself.

In total, 3 (missingness mechanism) x 2 (percentage of
missing values) x 2 (number of clusters) x 2 (number of
components) x 3 (cluster size) x 2 (error level) x 5
(replicates) = 720 simulated data matrices were generated.
Each data matrix was analyzed with the missing data
imputation algorithm for clusterwise SCA-ECP analysis,
using the correct values for the number of clusters K and
components Q and 25 random starts.

To examine the goodness of recovery of the clustering of
the data blocks, the Adjusted Rand Index (ARI; Hubert &
Arabie, 1985) was computed between the true partition of
the data blocks and the estimated partition. The ARI equaled
1 if the two partitions were identical and equaled 0 when the
overlap between the two partitions was at chance level. With
an overall mean ARI of 1.00 (SD = .00) the clusterwise
SCA-ECP algorithm appeared to recover the clustering of
the data blocks perfectly in all simulated conditions.

To evaluate the recovery of the cluster loading matrices,
we obtained a goodness-of-cluster-loading-recovery statis-
tic (GOCL) by computing congruence coefficients ¢
(Tucker, 1951) between the components of the true and
estimated loading matrices and averaging across compo-
nents and clusters (for more details, see De Roover,
Ceulemans, Timmerman, Vansteelandt, et al., in press).
The GOCL statistic takes values between 0 (no recovery at
all) and 1 (perfect recovery). In the simulation study, the
overall mean GOCL amounted to .9979 (SD = .003),
implying an excellent recovery of the cluster loading
matrices. An analysis of variance was performed with
GOCL as the dependent variable and the six factors as
independent variables. Only discussing effects that
accounted for more than 5% of the variance in GOCL, the
analysis revealed main effects of the number of components
(intraclass correlation p, = .27) and the amount of error
variance (p; = .09): The GOCL was lower for a higher
number of components when more error variance was
present in the data (Fig. 5). Also, interactions of the number
of components with the amount of error variance (p; = .23),
the percentage of missing values (p; =.08), and the
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different combinations of percentage of missing values
and amount of error variance (p;, = .07), were found. These
interactions imply that the effect of the number of components
on GOCL is more outspoken when the data contain more
error and/or when more data are missing (Fig. 5).

Appendix 2 Simulation study to evaluate
the performance of the model selection procedure

To evaluate whether the proposed model selection proce-
dure succeeds in selecting among clusterwise SCA-ECP
solutions, the following seven factors were systematically
varied in a complete factorial design, while keeping the
number of variables J fixed at 12:

1. the number of data blocks I at two levels: 20, 40;

2. the number of observations per data block N; at two
levels: N; sampled uniformly between 30 and 70, N;
sampled uniformly between 80 and 120;

3. the number of clusters K at two levels: 2, 4;

4. the number of components Q at two levels: 2, 4;

5. the cluster size, at three levels: see factor 5 in
Appendix 1;

6. theerror level e, which is the expected proportion of error
variance in the data blocks X, at two levels: .20, .40.

7. the congruence of the cluster loading matrices B’ at
three levels: low congruence, medium congruence, and
high congruence, where low, medium, and high imply
that the Tucker congruence coefficients (Tucker, 1951)
between the corresponding components of the cluster
loading matrices amount to .41, .72, and .93, on
average, when these matrices are orthogonally procrus-
tes rotated to each other.

For each cell of the design, five data matrices X were
generated, using the data construction procedure described in
Appendix 1. The cluster loading matrices B were generated
according to the procedure described by De Roover et al.
(in press), where the low and high congruence are simulated
using randomly sampled loadings and the medium congru-
ence by using simple structure loadings. The resulting 2
(number of data blocks) X 2 (number of observations per
data block) x 2 (number of clusters) x 2 (number of
components) X 3 (cluster size) X 2 (error level) x 3
(congruence of cluster loading matrices) x 5 (replicates) =
1,440 simulated data matrices were analyzed with the
clusterwise SCA-ECP algorithm, with the number of
clusters K and components Q varying from one to six and
using 25 random starts per analysis. Subsequently, the
model selection procedure described in the Model selection
section was applied on the obtained clusterwise SCA-ECP
solutions.
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The results of this simulation study indicate that the
model selection procedure selected the correct clusterwise
SCA-ECP model (i.e., correct K and Q) for 1,310 out of the
1,440 data sets (91%). With respect to the remaining data
sets, in 6.6%, 2.2%, and 0.2% of the cases, only K, only O,
and both K and Q, respectively, were selected incorrectly.
An analysis of variance was performed with the relative
frequency of correct model selection within the cells of the
design as the dependent variable and the seven factors as
independent variables. The largest intraclass correlation was
found for the main effect of the congruence of the cluster
loading matrices (p;, = .08): Specifically, the relative
frequencies of correct model selection were .97, 1.00, and
.76 for the low, medium, and high congruence of the cluster
loading matrices (Fig. 6). The latter may seem to be
counterintuitive in that it implies that the frequency of
correct model selection does not decrease with an increas-
ing congruence of the cluster loading matrices. However,
this result can be explained by the data construction
procedure, where the low and high congruence level
loading matrices consisted of random numbers, while for
the medium congruence level, the loadings had simple
structure (for more details, see De Roover, Ceulemans,
Timmerman, Vansteelandt, et al., in press). In the simple
structure case, each component accounts for about the
same proportion of variance, while in the random loadings
case, the proportion of explained variance may differ
strongly across the components. Consequently, in the latter
case, it will be more difficult to distinguish components that
are explaining less variance, from the error. In addition to
that, most incorrect selections of the number of clusters
occur in the conditions with highly congruent cluster
loading matrices.
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Fig. 6 Mean relative frequencies of correct model selection and
associated 95% confidence intervals as a function of the congruence
of the cluster loading matrices
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