
A simple framework (ASF) for behavioral
and neuroimaging experiments based on the psychophysics
toolbox for MATLAB

Jens Schwarzbach

Published online: 26 May 2011
Psychonomic Society, Inc. 2011

Abstract The cognitive neurosciences combine behavioral
experiments with acquiring physiological data from differ-
ent modalities, such as electroencephalography, magneto-
encephalography, transcranial magnetic stimulation, and
functional magnetic resonance imaging, all of which
require excellent timing. A simple framework is proposed
in which uni- and multimodal experiments can be con-
ducted with minimal adjustments when one switches
between modalities. The framework allows the beginner
to quickly become productive and the expert to be flexible
and not constrained by the tool by building on existing
software such as MATLAB and the Psychophysics Tool-
box, which already are serving a large community. The
framework allows running standard experiments but also
supports and facilitates exciting new possibilities for real-
time neuroimaging and state-dependent stimulation.

Keywords Behavioral experiments . MEG/EEG . TMS .

Functional MRI .MATLAB . Psychophysics toolbox .

Slideshow . Online rendering . State-dependent stimulation .

Real-time fMRI

Introduction

A common problem in experimental psychology and
cognitive neuroscience is that experimenters either program

experiments from scratch by using programming languages
such as C++ or MATLAB, which often leads to highly
specific code with limited reusability, or alternatively, use
software packages that, after some time, reveal their limits
in adaptability to the specific problems the experimenters
need to address. These problems get aggravated when the
experimenters work at a center that uses different modal-
ities, such as electroencephalography (EEG), magnetoence-
phalography (MEG), transcranial magnetic stimulation
(TMS), and functional magnetic resonance imaging (fMRI)
to study the human mind and brain. Different labs develop
different tools and different paradigmatic views on how to
conceptualize an experiment. To give an example, in TMS,
the experiment drives the machine, while in fMRI, the timing
of the machine basically drives the timing of an experiment,
and multimodal experiments require both. This can easily
lead to fractionation or inefficient reprogramming of the
same experiment, depending on which modality one wants
to use.

The goal of the project described here is to provide a
framework for programming experiments that guarantees
near real-time or submillisecond precision and that gives
the freedom to implement all sorts of conceivable designs
and to embed interfaces with complex hardware while
encouraging programming reusable and clear code. At the
same time the framework is usable for teaching and
provides beginners with fast success with little effort—
hence, the name A Simple Framework (ASF).

ASF is built around the Psychophysics Toolbox Version
3 (Brainard, 1997; Kleiner, Pelli, & Brainard, 2007;
Pelli, 1997), which is a free set of MATLAB and GNU/
Octave functions for vision research that runs on multiple
platforms (Windows, Mac OSX, Linux) and that makes it
easy to synthesize and show accurately controlled visual,
auditory,and tactile stimuli. ASF is freely available at

Electronic supplementary material The online version of this article
(doi:10.3758/s13428-011-0106-8) contains supplementary material,
which is available to authorized users.

J. Schwarzbach (*)
Department of Cognitive Science and Education,
Center for Mind/Brain Sciences, Trento University,
Trento, Italy
e-mail: jens.schwarzbach@unitn.it

Behav Res (2011) 43:1194–1201
DOI 10.3758/s13428-011-0106-8

http://dx.doi.org/10.3758/s13428-011-0106-8

http://code.google.com/p/asf/, with a discussion forum
hosted at http://groups.google.com/group/asf-forum. ASF
provides a certain view on how to structure an experiment,
without limiting the user to that view, and it provides
interfaces with the different hardware components of
different experimental modalities, such that the experiment-
er can concentrate on the core paradigm. ASF requires the
installation of MATLAB and the Psychophysics Toolbox.
ASF emphasizes accurate timing, easy interfacing with
different hardware, and clearly documented interfacesfor
input (stimulus and design) and resulting data (responses,
timestamps, hard- and software settings).

General structure of ASF

A typical experiment can be conceived of as involving
randomization, calculation of timing, stimulus rendering,
stimulus presentation, response collection, and data analysis.

ASF separates these parts in a way that users can set up a
range of different experiments, without programming at all.
ASF takes care of those tasks that are inherent in every
computer-controlled experiment: stimulus presentation and
response collection. The basic version of ASF is concep-
tualized as a slideshow with maximally achievable temporal
accuracy. It has three modules that cover the tasks of an
experiment: Design, Runtime, and Analysis (see Fig. 1).

1. Design (randomization, calculation of timing, stimulus
rendering)

a) The user provides a stimulus definition file (.STD)
that contains a list of filenames that point to the
stimulus material (picture or sound files) (see
example.std in the Supplementary Material section).

b) The user provides a trial definition file (.TRD) that
contains a sorted list of trial definitions. Each line in

this text file defines a trial by providing information
about what condition a trial belongs to, plus informa-
tion about which stimulus material shall be shown
when and how to handle responses (see Fig. 4 and
example.trd in the Supplementary Material section).

c) The user provides configuration settings (Cfg) for
hard- and software (e.g., refresh rate, type of
response device, synchronization to MR scanner,
EEG/MEG triggers, interfacing with an eyetracker,
screen background color)

2. Runtime (stimulus presentation, response collection)
The experiment is conducted by the runtime engine,

which the beginner can treat as a black box that
presents pictures and sounds as determined by the
information contained in the stimulus definitions, trial
definitions, and configuration settings. The advanced
user may want to create so called plugins that extend
stimulus presentation from showing prefabricated slides
to complex online-generated multisensory stimulation.
Further explanations on how to create plugins can be
found in the Supplementary Material section.

3. Analysis
ASF creates an output file that contains a structur-

evariable that contains information about the environ-
ment in which the experiment was run (hardware,
operating system, default and user-specified settings)
and trial-by-trial information about what was shown
when and what the participant responded and when.
Timestamps are provided with microsecond resolution.
This allows checking for accuracy of the implemented
experiment. Basic functionality for data export and
analysis is provided.

Thus, design aspects, such as ordering of trialsand
aspects of balancing and timing, are addressed outside the

Fig. 1 Partitioning of
empirical experiments into
modules within ASF

Behav Res (2011) 43:1194–1201 1195

http://code.google.com/p/asf/
http://groups.google.com/group/asf-forum

runtime module. This allows beginners to use a text editor
to set up the design, while the advanced user with
programming experience may decide to write a procedure
that automatically creates the text files that determine the
design (see the Supplementary Material section). Keeping
design and runtime modules separate leads to higher
flexibility in adapting designs to a researcher’s needs.

Example

To demonstrate the basic functionality of ASF, the
following section describes how to implement a masked
priming experiment similar to one in a previously published
study using metacontrast masking (see Fig. 2; Vorberg,
Mattler, Heinecke, Schmidt, & Schwarzbach, 2003). This
experiment requires high accuracy in timing and lends itself
to testing in other modalities, such as MEG/EEG, TMS, and
fMRI (see below).

In masked priming, one is interested in whether visibility
of a prime stimulus affects its ability to prime motor
responses to a target stimulus. To this end, Vorberg et al.
(2003) presented small arrows that pointed to the left or to the
right (primes) and that were masked by a larger leftward- or
rightward-pointing arrow (mask). Stimulus onset asynchrony
(SOA) between prime and mask was varied from 0 to 100 ms.
For the sake of simplicity, we will reduce the experiment to a
2 × 2 design here, with congruenceprime–mask (congruent,
incongruent) and SOAprime–mask (50, 100 ms) as experimental
factors.

Assume that stimuli are presented on a 60-Hz display.
This means that the duration of any presented stimulus is
quantized in steps of 1-frame duration (1/60th of a
second, or 16.67 ms). Each trial begins with a fixation
cross being shown at the center of the screen for 30
frames (500 ms). Primes are shown above fixation for 1
frame. Primes point either to the left or to the right.

SOAprime–mask is either 3 or 6 frames (50 or 100 ms). The
mask is shown for 6 frames (100 ms). Masks appear
centered around the same location as the prime, and they
point either to the left or to the right. After extinguishing
the mask, there is a response period of 90 frames
(1,500 ms), during which a fixation cross is shown and
during which participants can respond to the orientation of
the mask by pressing the left or the right mousebutton.
Between trials, there is a fixed intertrial interval of 30
frames (500 ms). Reaction time measurement starts with
presentation of the mask.

The entire experiment (see the Supplementary Material
section for full listings) can be realized by presenting six
different pictures or slides. By means of a texteditor or a
custom-written routine, the user needs to create a textfile
(stimulus definition file with the ending std; see example.
std in the Supplementary Material section) that contains the
filenames of all images that make up an experiment(e.g.,
S01_empty.bmp, S02_fix.bmp, S03_prime_left.bmp,
S04_prime_right.bmp, S05_mask_left.bmp, S06_mask_
right.bmp).

In a second step, the user needs to create trial
descriptions. For example, a congruent trial in which a
prime and a target both point to the left with an SOA of
50 ms can be described as a sequence of five pairs of
numbers, with the first number referring to the slide to be
shown and the second number referring to the slide’s
respective duration in units of vertical screen refresh
(frame; see Fig. 3). Thus, such a trial can be represented
by [2, 30], [3, 1], [2, 2], [5, 6], [1, 90].

Such descriptions need to be written into a trial
definition (.trd) file (see Fig. 4), which consists of two
sections. The first line contains the factorial information for
your experiment. If you want to code your experiment—for
example, as a 2 × 2 design—this line would read ‘2 2’. The
remainder of the file contains one entry per trial. It starts

Fig. 2 A masked priming ex-
periment in which primes and
masks are presented at different
SOAs and response congruen-
cies. Researchers investigate
whether presenting a masked
stimulus can influence reaction
times to a target stimulus, which
is, in this case, the mask
itself (see, e.g., Vorberg,
Mattler, Heinecke, Schmidt, &
Schwarzbach, 2003)

1196 Behav Res (2011) 43:1194–1201

A) S01_empty.bmp B) S02_fix.bmp

C) S03_prime_left.bmp D) S05_mask_left.bmp

E) Congruent-left trial with SOA of 50ms

Empty (slide 1;
90f or 1500ms)

Prime (slide 3;
1f,or 17ms)

Mask (slide 5;
6f or 100ms)

Fixation (slide 2;
30f or, 500ms)

Fixation (slide 2;
2f or 33ms)

SO
A

=
50

m
sTi
m

e

Fig. 3 a–d Sample bitmaps needed on a congruent trial in which both
the prime and mask are pointing to the left. e Sequence of events
(pages) on a trial on which the prime and target point to the left and
are presented with an SOA of 50 ms: fixation cross for 500 ms (slide 2

for 30 frames), prime (small arrow left, slide 3 for 1 frame), fixation
(slide 2 for 2 frames), mask (large arrow left, slide 5 for 6 frames),
empty screen (slide 1 for 90 frames). Reaction time measurement
starts with the onset of the mask

2 2 SOA congruence SOA3 SOA6 congruent incongruent

1 0 2 30 3 1 2 2 5 6 1 90 4 5 1

2 0 2 30 4 1 2 2 5 6 1 90 4 5 1

1 0 2 30 4 1 2 2 6 6 1 90 4 5 3

2 0 2 30 3 1 2 2 6 6 1 90 4 5 3

3 0 2 30 3 1 2 5 5 6 1 90 4 5 1

4 0 2 30 4 1 2 5 5 6 1 90 4 5 1

3 0 2 30 4 1 2 5 6 6 1 90 4 5 3

4 0 2 30 3 1 2 5 6 6 1 90 4 5 3

Factorial
information

Code tOnset
Page1

picture numbers and durations

Page5…
Response

page
start/end

Correct
response

TrialDef 1

TrialDefn

.

.

.

Fig. 4 Annotated trial definition file for a masked priming experiment
with congruence (two levels) and SOA (two levels) as factors
indicated in the first line, followed by the factor names and the names
of each factorial level. The remainder of the file contains one line per
trial. The first (black) column provides a code for data analysis
condition (code 1: congruent, SOA 50 ms; code 2: incongruent, SOA
50 ms; code 3: congruent, SOA 100 ms; code 4: incongruent, SOA
100 ms). The second column (gray) contains each trial’s onset time with
respect to the start of the experiment (used in fMRI experiments; here,
the value 0 means that there are no waiting periods and that trials are
played backtoback). What follows (framed in red) is a series of pairs of
columns, with two columns for each picture-event or page—namely,
slide number and slideduration. In this sample experiment, each trial
consists of five pages, with page 1 being the prestimulus period of 30
frames, page 2 being the prime of one frame, page 3 being the
interstimulus interval, page 4 being the mask of 6 frames, and page 5

being an additional responsewindowof 90 frames. Different experiments
may differ in the number of pages they require. ASF can also handle
experiments in which different trials consist of a different number of
pages. The last three columnsdescribe response parameters: the number
of the page at which response collection is supposed to start (in the
sample experiment, this is page 4, when the mask is presented), the page
number when response collection shall end. The last column contains
the keycode for a correct response, which can be used for feedback or
data analysis. In this example, a correct response is determined by the
direction of the mask. Trials on which the mask points to the left require
pressing the left mouse button (code 1), while trials on which the mask
points to the right require pressing the right mouse button (code 3). The
first trial definition refers to the trial described in Fig. 3 (congruent, left,
SOA = 50 ms). The last trial definition describes an incongruent trial in
which the prime points to the left and the mask points to the right, with
an SOA of 100 ms

Behav Res (2011) 43:1194–1201 1197

with a trialcode anda trial onset time (in seconds) with
respect to experimentstart (by default not used), followed
by pairs of entries that describe a picture-event or page
(slide number, slide duration in frames). The second-to-last
entry contains the page-number at which reaction time
measurement on a given trial should start. The last entry
contains a number for the correct response.

While creating trialdescriptions for experiments by using
a texteditor or a spreadsheet program is conceivable, one
may, in the long run, wish to create such files with a
customized program that allows randomizing trials or
flexibly changing design aspects, such as stimulus durations
or experimental factors. Readers can find such a program in
the Supplementary Material section.

Within MATLAB, the experiment is run by invoking
ASF with the following command:

ExpInfo ¼ ASFð0example:std0; 0 example:trd0; 0 example0; ½�Þ:
The user will see an opening screen with information on
screen resolution and refreshrate. The experiment starts
with default settings after a mousebutton has been pressed
and returns a structurevariable ExpInfo, which contains
information about the environment in which the experiment
was run (hardware, operating system, default and user-
specified settings) and trial-by-trial information about what
was shown when and what the participant responded and
when. For each event, timestamps are provided with
microsecond resolution and an accuracy that is, in general,
better than 1 ms (see Fig. 5).

After the experiment has been run, its timing accuracy
can be assessed by calling

ASF timingDiagnosis ExpInfoð Þ;
which creates a graph (Fig. 5) depicting the differences
between expected time of events and their respective time-
stamps when run on a particular computer. This allows
checking for framedrops, which would indicate either that the
hardware is insufficient (see the Supplementary Material
section on recommended hard- and software) or that the code
(especially of plugins) has some parts that require too much
computation time. The experimenter can thus try to change
the code or can try out different hardware. If this is not an
option anymore, because the experiment has already been
conducted, this timingcheck can help the experimenter to
discard certain trials at the time of analysis. Subframe
variability up to a few milliseconds informs the experimenter
about the eventual variability of received or emitted triggers,
which, for example, can be taken into account in trigger-
based averaging of signals in EEG/MEG or neurophysiology.

Data necessary for analyzing reaction times and error
rates can be extracted from ExpInfo by invoking

dat ¼ ASF readExpInfo ExpInfoð Þ;
which returns a matrix dat that contains as many rows as trials
and four columns (trialcode, reaction time, correctresponse as
determined by the experimenter, actual response of the
participant). Such data can then be further analyzed in
MATLAB or exported for analysis in other software packages.

A Experiment without framedrops B Experiment with one framedrop

Fig. 5 Output of ASF_timingDiagnosis, depicting accuracy of timing
for two replications of the example experiment consisting of eight
trials. a A session without framedrops. b A session with one
framedrop on page 4 of trial 1 (note the different scales for the z-
axis). Each trial (y-axis) consisted of a subsequent presentation of four
pages (x-axis). The dependent measure (z-axis) shows the deviation in
milliseconds of the timestamp for each page on a given trial from the
expected timestamp derived from the trialdefinitions. Negative values

indicate that the event occurred too early, and positive numbers
indicate that the event occurred too late, with respect to the expected
occurrence of a stimulus. This graph demonstrates the high accuracy
of timing that can be achieved with the psychophysics toolbox. The
maximum deviation was smaller than one tenth of a millisecond. The
example experiment was run under Windows 7 on a DELL
PRECISION M6400 laptop equipped with a NVIDIA Quadro FX
3700 graphics card operating with a refresh rate of 60 Hz

1198 Behav Res (2011) 43:1194–1201

Function list

The following functions (MATLAB m-files) are part of
the ASF distribution (Table 1). In order to remain
compatible with future updates, it is recommended not to
edit ASF.m. However, its core function for stimulus
delivery, ASF_showTrialSample.m, can be used as a tem-
plate for user-defined stimulus delivery using MATLAB,
PsychToolbox, and the ASFfunctions described below.

Tutorials

The ASF distribution contains four PowerPoint presenta-
tions to introduce basic concepts, dataanalysis and
export, and pluginwriting. A “HowTo” section covers
timing of visual stimuli, timing of auditory stimuli, using
different methods (wavplay, audioplayer, PTB-snd, and
PsychPortAudio), and audiovisual synchronization. Fur-
thermore, it contains a “Tutorial Projects” section with a

Table 1 Description of functions implemented in ASF

For running experiments

ASF The core programfor running an experiment (reads stimulus and trial definition; manages playback
and logging; communicates with devices)

For creating trd-files

ASF_encode Encode factorial information to single number code

For plugins

ASF_showTrialSample Copy and make your own experiment with online rendering, adaptive testing, etc.

ASF_xFlip Flip display synchronized with vertical retrace (and much more). One of the most important functions
of ASF

ASF_playSound Wrapper function for different methods to play sound

ASF_sendMessageToEyelink For logging stimulus or other events in the stream of eye-tracking data

ASF_checkforuserabort Checks whether somebody has pressed the q key to quit program

ASF_sendMessageToEyelink For logging stimulus or other events in the stream of eye-tracking data

ASF_checkforuserabort Checks whether somebody has pressed the q key to quit program

ASF_decode Decoding codes to factorial information

ASF_setTrigger Send signals to parallel port or an Arduino board (useful for TMS, EEG, MEG)

ASF_waitForMousePressBenign Just waits for a mouse press

ASF_waitForResponse Waits for a response. Can handle many different response devices (mouse, lumina parallel,
lumina serial, voicekey, keyboard)

ASF_waitForScannerSynch Pauses until an MRscanner trigger arrives

For data analysis

ASF_timingDiagnosis To check whether everything happened when it was supposed to

ASF_readExpInfo Reads logfiles created by an ASF experiment

ASF_getTrialOnsetTimes Returns a vector for trial onset times

Internal helper functions

ASF_initEyelinkConnection Establishes initialization of an EyeLink eyetracker

ASF_shutdownEyelink Closes connection with EyeLinkeyetracker

ASF_initParallelPortInput Initializes the parallel port using the data acquisition toolbox

ASF_initResponseDevice Initializes response device (mouse, voicekey, Lumina-parallel, Lumina-serial, keyboard)

ASF_arduinoTrigger.m Function for triggering using an Arduino board

ASF_readTrialDefs Reads trdfiles into a structure

ASF_readStimulus Reads bitmaps and avi files

ASF_makeTexture Internal function for mapping bitmaps onto textures

ASF_PTBExit Generates a graceful exit (save logs, shut down hardware, remove objects from memory)

Experimental

ASF_checkTrials MATLAB visualization of trialscheme

ASF_onlineFeedback On dual screen setups, this shows the current cumulative info on errors and reaction time (even
for factorial experiments)

ASF_pulseTrainNI Can create pulse trains on a national instruments card for rTMS

Behav Res (2011) 43:1194–1201 1199

growing number of projects, which currently comprises
the masking project covered in this article, a working
memory experiment that introduces plugins, and an
fMRI-ready experiment for mapping out the motion
complex MT/MST, using random-dot kinematograms.

Extensions

Additional built-in features

ASF allows users to change many parameters for the
display (e.g., screen resolution, refresh rate), for stimulation
(e.g., Quaerosys piezo stimulator for tactile stimulation,
http://www.quaerosys.com/), for response devices (mouse,
keyboard, voicekey, eyetracker), and for triggering (input
and output). Here, only triggering will be discussed, since it
shows the multimodal capabilities of ASF. For a full
documentation of configuration settings, consult ASF’s
documentation or type “help ASF” on MATLAB’s com-
mand line.

Eye-tracking It is often desirable to measure the position of
gaze during an experiment, either to ensure that participants
keep their eyes fixated at a certain location or in order to
have participants respond with eyemovements instead of or
in addition to manual responses. ASF fully supports the
EyeLink toolbox (Cornelissen, Peters, & Palmer, 2002). By
adding one configuration setting with which ASF is called,
the experiment will start with a calibration procedure and
will record eyemovement data, provided the experimental
system is connected to an eyetracker supported by the
EyeLink toolbox:

Cfg:Eyetracking:useEyelink ¼ 1;
ExpInfo ¼ ASF 0example:std0; 0 example:trd0; 0 example0; Cfgð Þ

This configures ASF to put time-stamped markers into
the eye-tracking data whenever a trial starts (‘TRIAL-
START’), and whenever a new page is presented (‘PAGE
xyz’, where xyz stands for the page number as defined in
the .std file). This allows offline analyses of eye-tracking
data (e.g., saccadic reaction times) with respect to the
timing of events in the experiment. ASF contains a
documented tutorial in which the above described example
experiment is turned into an eye-tracking experiment with
saccadic responses. The tutorial also provides a docu-
mented function for the analysis of the eye-tracking data.

EEG/MEG For the analysis of evoked potentials in EEG or
evoked magnetic fields in MEG, one usually puts an
eventtrigger in the data stream of the data acquisition

device. This can be achieved by setting a configuration flag
at startup of an experiment:

Cfg :issueTriggers ¼ 1; ExpInfo

¼ ASF 0example:std0; 0 example:trd0; 0 example0; Cfgð Þ:
This will, for each page time-locked to its presentation,

send a trigger code (i.e., the picture number) to the parallel
port, which can be connected to the dataacquisition device.

fMRI For running an fMRI experiment, two built-in
features are provided. First, the onset of the experiment can
be synchronized to the onset of the MR data acquisition by
waiting for a trigger sent by the MR scanner via a parallel or
serial port or a TTL signal to a digital input device (e.g., by
National Instruments). Furthermore, the user can provide
trial onset times in the trd-file with respect to the first synch-
pulse from the scanner. This feature is extremely important
for creating event-related designs with jitter or nulltrials
(Friston, Zarahn, Josephs, Henson, & Dale, 1999).The script
makeExampleTrd.m in the Supplementary Material section
implements some simple trialjitter. The respective call for
running the fMRI version of the example experiment would
be

Cfg:useTrialOnsetTimes ¼ 1;
Cfg:synchToScanner ¼ 1;

ExpInfo = ASF(‘example.std’, ‘exampleScripted.trd’, ‘ex-
ample’, Cfg).

User-definable extensions via plugins: TMS, online
rendering, real-time fMRI

ASF uses the function ASF_ShowTrial() (defined in
ASF_ShowTrial.m) to present stimuli. In order to enhance
the functionality of stimulus presentation, the user can
create a plugin. A plugin is a MATLAB m-file the user
writes—for example, using ASF_ShowTrial.m as a tem-
plate and saving it under a different name, such as
myShowTrialPlugin.m.

For example, a TMS-researcher may wish to investigate
the effect of a TMS pulse time-locked to the prime in order
to see whether TMS of a certain area alters the effect of
priming (see, e.g., Sack, van der Mark, Schuhmann,
Schwarzbach, & Goebel, 2009). This can be achieved by
extending the trialdefinition file with information about
when, in a given trial, a TMS pulse should be issued. The
plugin myShowTrialPlugin.m would have to interpret the
additional information from the trial definition file and
contain a piece of code for issuing the TMS pulse. When

1200 Behav Res (2011) 43:1194–1201

http://www.quaerosys.com/

starting the experiment, one can tell ASF to exchange its
built-in ASF_ShowTrial() function with the plugincode. An
example of such a plugin is contained in the tutorial that
comes with ASF.

Using plugins allows implementing experiments in
which the approach of presenting prefabricated images is
not practical anymore or a predetermined trialstructure
cannot be used, such as in adaptive procedures. Here, the
ShowTrial function should be altered to perform online
rendering of the stimulus controlled by information provid-
ed by the trdfile. Such an approach has been used to
investigate attention to motion in random-dot kinemato-
grams (Furlan & Schwarzbach, 2011).

Plugins allow for a highly interesting new approach to
experimenting in the cognitive neurosciences—that is,
state-dependent stimulation. ASF contains an example
plugin that processes real-timefMRI information from an
ongoing MR scan that can be used to decide what stimulus
the participant will see at a given time. ASF provides a host
of functions and interfaces that help in creating such
plugins (see the Supplementary Material and Table 1).

Conclusions

Here, a framework has been presented that different groups
from the cognitive neurosciences can use to run experiments
that employ one or several methods, even simultaneously. The
framework builds upon MATLAB and the Psychophysics
Toolbox, which run on different operating systems (Windows,
MacOSX, Linux). The standard use of ASF does not require
any programming. It just requires putting together text, image,
and soundfiles that are transformed by ASF to a (near) real-
time multimedia slideshow that allows collecting responses.
Programming can be used to automatically generate such text
files—for example, for randomization procedures and bal-
ancing (see the Supplementary Material section). Finally,
MATLAB- or C/C++ programming can be used to create
more complex stimulation procedures that require onliner-
endering. The framework allows running standard experi-

ments but also facilitates exciting new research paradigms,
such as real-time neuroimaging and state-dependent
stimulation.

If you want to acknowledge the use of ASF when you
publish your research, please cite not only this article, but
also those describing the underlying technologies, such as
the Psychophysics Toolbox (Brainard, 1997; Pelli, 1997)
and Eyelink Toolbox extensions (Cornelissen et al., 2002).

Acknowledgements The author wishes to thank Angelika Lingnau
for interfacing ASF with the EyeLink Toolbox (Cornelissen et al.,
2002) and for continuous feedback during the development of ASF
and on earlier versions of the manuscript; Gianpaolo Demarchi for
interfacing ASF with the parallel port and the Quaerosys tactile
stimulator; and the two anonymous expert reviewers of this article.
This work has been supported by the Provincia autonoma di Trento
and the Fondazione Cassa di Risparmio di Trento e Rovereto.

References

Brainard, D. H. (1997). The psychophysics toolbox. Spaialt Vision,
10, 433–436.

Cornelissen, F. W., Peters, E. M., & Palmer, J. (2002). The eyelink
toolbox: Eye tracking with MATLAB and the psychophysics
toolbox. Behavioral Research Methods, Instruments, & Com-
puerst, 34, 613–617.

Friston, K. J., Zarahn, E., Josephs, O., Henson, R. N., & Dale, A. M.
(1999). Stochastic designs in event-related fMRI. Neuroimage,
10, 607–619.

Furlan, M., & Schwarzbach, J. (2011). Spatial attention does not lead
to input- or response gain in processing motion coherence.
Manuscript in preparation.

Kleiner, M., Pelli, D. G., & Brainard, D. H. (2007). What’s new in
Psychtoolbox-3? Perception, 36(Abstract Suppl.).

Pelli, D. G. (1997). The VideoToolbox software for visual psycho-
physics: Transforming numbers into movies. Spatial Vision, 10,
437–442.

Sack, A. T., van der Mark, S., Schuhmann, T., Schwarzbach, J., &
Goebel, R. (2009). Symbolic action priming relies on intact
neural transmission along the retino-geniculo-striate pathway.
Neuroimage, 44, 284–293.

Vorberg, D., Mattler, U., Heinecke, A., Schmidt, T., & Schwarzbach,
J. (2003). Different time courses for visual perception and action
priming. Proceedings of the National Academy of Sciences, 100,
6275–6280.

Behav Res (2011) 43:1194–1201 1201

	A simple framework (ASF) for behavioral and neuroimaging experiments based on the psychophysics toolbox for MATLAB
	Abstract
	Introduction
	General structure of ASF
	Example
	Function list
	Tutorials
	Extensions
	Additional built-in features
	User-definable extensions via plugins: TMS, online rendering, real-time fMRI

	Conclusions
	References

