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Abstract The issue of the sample size necessary to ensure
adequate statistical power has been the focus of consid-
erableattention in scientific research. Conventional presen-
tations of sample size determination do not consider
budgetary and participant allocation scheme constraints,
although there is some discussion in the literature. The
introduction of additional allocation and cost concerns com-
plicates study design, although the resulting procedure permits
a practical treatment of sample size planning. This article
presents exact techniques for optimizing sample size determi-
nations in the context of Welch (Biometrika, 29, 350-362,
1938) test of the difference between two means under various
design and cost considerations. The allocation schemes
include cases in which (1) the ratio of group sizes is given
and (2) one sample size is specified. The cost implications
suggest optimally assigning subjects (1) to attain maximum
power performance for a fixed cost and (2) to meet
adesignated power level for the least cost. The proposed
methods provide useful alternatives to the conventional
procedures and can be readily implemented with the
developed R and SAS programs that are available as
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The a priori determination of a proper sample size
necessary to achieve some specified power is an important
problem frequently encountered in practical studies. To
make inferences about differences between two normal
population means, the hypothesis-testing procedure and
corresponding sample size formula are well known and
easy to apply. For important guidance, see the comprehen-
sive treatments in Cohen (1988) and Murphy and Myors
(2004). In the statistical literature, comparison of the means
of two normal populations with unknown and possibly
unequal variances has been the subject of much discussion
and is well recognized as the Behrens—Fisher problem (Kim
& Cohen, 1998). The existence and importance of violation
of the assumption of homogeneity of variance in clinical
research settings are also addressed in Grissom (2000). The
practical importance and methodological complexity of the
problem have occasioned numerous attempts to develop
various procedures and algorithms for resolving the issue.
Notably, several studies have shown that Welch’s (1938)
approximate degrees of freedom approach offers a reason-
ably accurate solution to the Behrens—Fisher problem.
Therefore, Welch’s procedure is routinely introduced in
elementary statistics courses and textbooks. Moreover,
some popular statistical computer packages, such as SAS
and SPSS, have implemented the method for quite some
time. In practice, power analyses and sample size calcu-
lations are often critical for investigators to credibly address
specific research hypotheses and confirm differences. Thus,
the planning of sample size should be included as an
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integral part in the study design. Accordingly, it is of
practical interest and fundamentalimportance to be able to
perform these tasks in the context of the Behrens—Fisher
problem. The essential question is how to determine sample
sizes optimally under different allocation and cost consid-
erations that call for independent random samples from two
normal populations with possibly unequal variances.

Conventional studies of power and sample size have not
addressedmatters of allocationrestriction and cost efficiency,
although researchers have been exploring design strategies
that take into account the impact of different constraints of the
sample scheme and project funding while maintaining
adequate power. Specifically, the allocation ratio of group
sizes was fixed in the calculation of sample size for comparing
independent proportions in Fleiss, Tytun, and Ury (1980),
while Heilbrun and McGee (1985) considered sample size
determination for the comparison of normal means with a
known ratio of variances and one sample size being specified
in advance.In an actual experiment, however, the available
resources are generally limited, and it may require different
amounts of effort and costs to recruit subjects for the treatment
and the control groups. Assuming homogeneous variances,
Nam (1973) presented optimal sample sizes to maximize
power for the comparison of the treatment and control under
budget constraints. Conversely, Allison, Allison, Faith,
Paultre, and Sunyer (1997) advocated designing statistically
powerful studies while minimizing costs. Interested readers
are referred to recent articles by Bacchetti, McCulloch, and
Segal (2008) and Bacchetti (2010) for alternative viewpoints
and related discussions.

Within the framework of the Behrens—Fisher problem,
assuming a desired sample size ratio, Schouten (1999)
derived an approximate formula for computing sufficient
sample size for a selected power. In addition, in Schouten
(1999), a simplified sample size formula was proposed to
minimize the total cost when the cost of treating a subject
varies with experimental groups. Also, Lee (1992) deter-
mined the optimal sample sizes for a designated power so
that the total sample size is minimized. It is important to
note that the setting in Lee can be viewed as a special case
of Schouten. However, unlike the exact approach of Lee,
the presentation of Schouten involved several approxima-
tions, including the use of a normal distribution, which does
not conform to the notion of a ¢ distribution with
approximate degrees of freedom proposed in Welch
(1938). Alternatively, Singer (2001) modified the simple
formula of Schouten by replacing the percentiles of the
standard normal distribution with those of a ¢ distribution
with approximate degrees of freedom. Unfortunately, the
resulting formulation is questionable on account of its
absence of theoretical justification. Detailed analytical and
empirical examinations are presented later to demonstrate
the underlying drawbacks associated with the approximate

procedures of Schouten and Singer. Moreover, Luh and
Guo (2007), Guo and Luh (2009), and Luh and Guo (2010)
extended the approximations of Schouten and Singer to the
two-sample trimmed mean test with unequal variances
under allocation and cost considerations. Basically, when
the trimming proportion is 0, the procedures of Guo and
Luhare applicable for the Behrens—Fisher problem. How-
ever, their procedures are still approximate in nature and
possess the same disadvantages of Schouten’s and Singer’s.
More important, the algorithms employed by Guo and
Luhfail to take into account the underlying metric of integer
sample sizes and often lead to suboptimal results. From a
methodological standpoint, the results in Schouten, Singer,
Luh and Guo (2007), Guo and Luh, and Luh and Guo
(2010) should be reexamined with technical clarifications
and exact computations. Nonetheless, our calculations not
only show that the prescribed approximate methods do not
guarantee giving correct optimal sample sizes, but also
reveal that some of the optimal sample sizes reported in the
empirical illustrations of Lee are actually suboptimal. Due
to the discrete character of sample size, it requires a detailed
inspection of sample size combinations to find the optimal
allocation that attains the desired power while giving the
least total sample size. This extra step and resulting merit in
sample size determination is not considered by Lee. The
theoretical and numericalexaminations conducted here
provide a comprehensive comparison of the various
procedures available to date.In short, the accuracy of the
existing sample size procedures for the Behrens—Fisher
problem can be further improved by adapting an exact and
refined approach.

As was described above, there are important and useful
considerations or strategies for study design other than the
minimization of total sample size or total cost. Since
Welch’s (1938) approach to the Behrens—Fisher problem
is so entrenched, it is prudent to present a comprehensive
exposition of design configurations in terms of diverse
allocation schemes and budget constraints. Here, exact
methods are presented to give proper sample sizes either
when the ratio of group sizes is fixed in advance or when
one sample size is fixed. In addition, detailed procedures
are provided to determine the optimal sample sizes that
maximize the power for a given total cost and that
minimize the cost for a specified power. More important,
the corresponding computer algorithms are developed to
facilitate computation of the exact necessary sample sizes in
actual applications.

Due to the prospective nature of advance research
planning, it is difficult to assess the adequacy of selected
configurations for model parameters in sample size calcu-
lations. The general guideline suggests that typical sources
such as previously published research and successful pilot
studies can offer plausible and reasonable planning values
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for the vital model characteristics (Thabane et al., 2010).
However, the potential deficiency of using a pilot sample
variance to compute the sample size needed to achieve the
planned power for one- and two-sample #-tests has been
examined by, among others, Browne (1995) and Kieser and
Wassmer (1996). They showed that the sample sizes
provided by the traditional formulas are too small, since
they neglect the imprecise nature of a variance estimate.
Note that all standard sample size procedures share the
same fundamental weakness when sample variance esti-
mates are used for the underlying population parameters.
However, the issue is more involved, and a detailed
discussion of this topic is beyond the scope of the present
study. The interested reader is referred to Browne, Kieser,
and Wassmer, and the references therein for further details.

The Welch test

As part of a continuing effort to improve the quality of
research findings, this research contributes to the derivation
and evaluation for sample size methodology of Welch’s
(1938) approximate ¢ test for the Behrens—Fisher problem.
Consider independent random samples from two normal
populations with the following formulations:

Xy~ N(u;,07),

where (11, o, 0'%, and 0'% are unknown parameters, j =1, .. .,
N;, and i = 1 and 2. For detecting the group effect in terms of
the hypothesis Hy: pt; = p1p versus Hy: p#u,, the well-known
Welch’s ¢ statistic has the form

X —X,

V= 12
(S/N1 + S3/N,)

_ Ny o N, Ny —
where X =Y Xj;/Ni, Xs =Y Xo;/No, ST = 3 (X3, — X1)7/
j=1 j=1 j=1

N .
(N; —1),and S3 = Y- (X —Xz)z/(Nz —1). Under the
null hypothesis HO:j:ﬁl = 1, Welch (1938) proposed the
approximate distribution for V:

Vea(v), (1)
where #(V) is the ¢ distribution with degrees of freedom v and
V= V(N] ,NQ,S%,S%), with

e ! { 3 /Ny }2
Ny =1 \S}/N; + 83 /N,
L] { S2/N, }2
Ny =1 \SF/Ni +83/Ny S

Hence, Hy is rejected at the significance level « if

V>t e where ¢~ i is the upper 100(c/2)th percentile
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of the ¢ distribution #(v). The same notion was indepen-
dently suggested by Smith (1936) and Satterthwaite (1946),
and the test is sometimes referred to as the Smith—Welch—
Satterthwaite test.

It is important to emphasize that the degrees of freedom
v is bounded by the smaller of N;—1 and N,—1 at one end
and by Ny + N, —2 at the other—that is, Min(N;—
I,N; — 1) <V < Ny + N, — 2. Because the critical value
tar o2 decreases as df increases, the approximate critical
value 5 P is slightly larger than that of the two-sample ¢
test fy,4n,—2,4/2 under homogeneity of variance assump-
tions. Although the differences between the two critical
value saresmall with moderate to large sample sizes, they
reflect the conceptual distinction between the
corresponding Welch’s ¢ test and the regular two-sample ¢
test. Note that a standard normal distribution can be viewed
as a ¢ distribution with an infinite number of degrees of
freedom. However, the close resemblance between a
standard normal distribution and a ¢ distribution never
causesthe introductory courses or textbooks to omit the
coverage of Student’s ¢ distribution. Therefore, the theoret-
ical distinction and implication between the critical value
IN,+N,—2,a/2 and a standard normal critical value z,, is
highlyanalogous to that between 150 and Iy, 4 n,—2,a/2-
Ultimately, the ¢ approximation with the approximate
degrees of freedom given in Eq. 1 serves as the prime
solution to the Behrens—Fisher problem.

Although the underlying normality assumption in the
above-mentioned two-sample location problem provides
a convenient and useful setup, the exact distribution of
Welch’s test statistic V'is comparatively complicated and
may be expressed in different forms (see Wang, 1971,
Lee & Gurland, 1975, and Nel, van der Merwe, &
Moser, 1990, for technical derivation and related details).
For ease of presentation, we need to develop some
notation. It follows from the fundamental assumption that
Z= X\ —X2)/o ~N(8,1), 6= py/0, pg= (1 — ),
0> = 0}/Ni +03/No, W = (Ni = 1)St /a7 + (N, — 1)S5/
o3 ~*(Ny+N, —2) and B={(N,—1)S}/c?}/W ~
Beta{(N; — 1)/2,(N, — 1)/2}. Thus, we consider the
following alternative expression of V for its ease of
numerical investigation:

T

VZW? (7-)

where T = Z/{W/(Ny + Ny — 2)}'/* ~ t(Ny + N> — 2,6),
t(N1 + N, — 2,8) is the noncentral ¢ distribution with
degrees of freedom N; + N, — 2, and noncentrality parame-
ter 6, and H = [(03/N\){B/p} + (03/N2){ (1 — B)/(1 —
p)}/o? with p = (N; — 1)/(N; + N, — 2). Note that the
random variables Z, W, and B are mutually independent.
Hence, T and B are independent. Also, it is important to
note that 1/v=B?/(N; — 1) + B3/(N, — 1) where B, =
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1 =By and By =[(o1/N1){B/p}]/[(07/N1){B/p} + (03/
N){(1 —B)/(1 — p)}]. Hence, both H and are functions of
the random variable B.

With the prescribed distributional properties in Eq. 2, the
associated power function of 7 is denoted by

ﬂ(yd,a%,aﬁ,Nl,Nz) :P{|V| > t/\1\7a/2}

3)

The numerical computation of exact power requires the
evaluation of the cumulative distribution function of a
noncentral ¢ variable and the one-dimensional integration
with respect to a beta probability distribution function.
Since all related functions are readily embedded in major
statistical packages, the exact computations can be con-
ducted with current computing capabilities. To determine
sample size, the power function can be employed to
calculate the sample sizes (N;, N,) needed to attain the
specified power 1-43 for the chosen significance level o and
parameter values (i, i, 07,03). Clearly, the power func-
tion is rather complex, and it usually involves an iterative
process to find the solution, because both random variables
V and £ p8r€ functions of the sample sizes (N, N,). In
order to enhance the applicability of sample size method-
ology and the fundamental usefulness of Welch’s (1938)
procedure, in subsequent sections this study considers
design configurations allowing for different allocation
constraints and cost considerations. The R(R Development
Core Team, 2010) and SAS/IML (SAS Institute, 2008a)
programs employed to perform the corresponding sample
size calculations are available in the supplementary files.

:P{|T| > %/Z.HW}

Allocation constraints

Since there may be several possible choices of sample sizes NV,
and N, that satisfy the chosen power level in the process of
sample size calculations, it is prudent to consider an
appropriate design that permits unique and optimal result.
The following two allocation constraints are considered
because of their potential usefulness. First, the ratio » = N,/

N; between the two group sizes may be fixed in advance, so
the task is to decidetheminimum sample size Ni(N, = rN;)
required to achieve the specified power level. Second, one of
the two sample sizes—say, N,—may be pre-assigned, and so
the smallest size N; required to satisfy the designated power
should be found.

Sample size ratio is fixed

Assume that the sample size ratio » = N,/N; is fixed in
advance. To facilitate computation, without loss of general-
ity, the ratio can be taken as » > 1. Then the power function
7y, 03,03, N1, Ny) of V becomes a strictly monotone
function of N; when all other factors are treated as constants.
A simple incremental search can be conducted to find the
minimum sample size N, needed to attain the specified power
1-3 for the chosen significance level v and parameter values
(41, 11,0%,05). To simplify the computation, the large-
sample normal approximation V<N (8,1) can be used to
provide initial values to start the iteration. Specifically, the
starting sample size N;, computed by the normal approxima-
tion would be the smallest integer that satisfies the inequality
Niz = (0 +03/r)(2apa +25)" /1

(4)

where z,, and zg are the upper 100(ov/2)th and 100-Gth
percentiles of the standard normal distribution, respectively.

For illustration, when p; = 1, & = .05 and 1 —3 = .90, the
sample sizes N, and N, = r-N; are presented in Table 1 for
selected values of r=1, 2, and 3, oy = 1/3, 1/2, 1, 2, and 3, and
0, = 1. The actual power is also listed, and the values are
marginally larger than the nominal level .90. Note that SAS
procedure PROC POWER (SAS Institute, 2008b) provides the
same feature to find the optimal sample sizes N; and N, with a
given sample size ratio. However, it does not accommodate the
extended settings in which one of the sample sizes is fixed and
the more involved cost concernsthat we consider next.

One sample size is fixed

For ease of exposition, the sample sizeN, of the second
group is held constant. Just as in the previous case, the

Table 1 Computed sample sizes (N;, N,) and actual power when sample size ratio » = N,/N; is fixed with p; =1, « = .05 and 1 —3= .90

J1.07

1/3:1 1/2:1 1:1 2:1 3:1
r Ny N, Power Ny N> Power Ny N> Power Ny N, Power Ny N> Power
1 14 14 9137 15 15 9088 23 23 9121 54 54 .9007 107 107 .9009
2 16 9300 9 18 9131 17 34 9033 49 98 .9009 102 204 9012
3 18 9379 7 21 9075 16 48 9143 48 144 9048 100 300 9004
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minimum sample size N; needed to ensure the specified
power 1—/3 can be found by a simple iterative search for the
chosen significance level a and parameter values
(11, 11,02,03). In this case, the starting sample size N,
based on the normal approximation, is the smallest integer
that satisfies the inequality

Niz > 01 /{t/(zap + 25)" — 03/ N2} (5)

However, it should be noted that this may be problematic
when a small value of N, is chosen. If N, < o3/
{13/ (zayr + z5)*}, then the initial value Ny, is negative,
which is obviously unrealistic. Moreover, for Nziag /

13/ (22 +z,3)2}, the resulting N,; and Njvalues are
unbounded, and the results do not have practical value.
Accordingly, Table 2 presents the computed sample size N;
and the actual power levels with the chosen valueN, for the
same settings with py; = 1, o = .05, 1-3 = .90, and the
variance combinations in Table 1.

Cost considerations

With limited research funding, it is desirable to consider the
cost and effectiveness issues during the planning stage. In
addition, the costs of obtaining subjects of treatment and
control groups are not necessarily the same. Suppose that ¢,
and ¢, are the costs per subject in the first and second
groups, respectively; then, the total cost of the experiment
is C = ¢;N; + ¢, N,. The following two questions arise with
considerable frequency in sample size determinations. First,

1/2

C(oic 1/2
( 12 ) 2 anszz:

C
Niz = (026,

given a fixed amount of money, what is the maximum
power that the design can achieve? Second, assuming a
preferred degree of power, what is the design that costs the
least? In both cases, equal sample sizes for the two groups
do not necessarily yield the optimal solution (Allison et al.,
1997). Consequently, optimally unbalanced designs are
more efficient, and a detailed and systematic approach to
sample size allocation is required.

With the simplified asymptotic approximation of
Welch’s test V<N (8, 1), the optimal allocation isobtained-
for the prescribed two scenarios when the ratio of the
sample sizes assumes the equality

Ny

Voo (©)

where 6 = O'zci/ 2 / (alc;/ 2). However, the exact distribution
of I/ given in Eq. 2 involves a beta mixture of noncentral ¢
distributions. Thus, the associated properties can be notably
different from a normal distribution for finite sample sizes. It
is understandable that the particular identity of Eq. 6 will
give a suboptimal result when the sample sizes are small. Such
a phenomenon is demonstrated in the following illustration.

Total cost is fixed and actual power needs to be maximized

To develop a systematic search for the optimal solution, the
aforementioned normal approximation is utilized as the
benchmark in the exploration. It can be shown,under a
fixed value of total cost C, that the maximum power is
obtained with the sample size combination

cl (alc;/z) + cz(azci/ )

c (0105/2) + cz(azc}/z).

It is easy to see that ¢;Niz + Nz = C and Nyz/
Nz = 6, as in Eq. 6. But in practice, the sample sizes need
to be integer values, so the use of discrete numbers
introduces some in exactness into the cost analysis. To find

the proper result, a detailed power calculation and compar-
ison are performed for the sample size combinations with
Nifrom Nipin 10 Nimax and N, = Floor[(C — ¢1Ny)/ca]
where Nimin = Floor(Niz) — 1, Nimax = Floor[{C — ¢,

Table 2 Computed sample sizes (N}, N,) and actual power when sample size N, is fixed with p; =1, o = .05 and 1 -3 = .90

J1.07

1/3:1 1/2:1 1:1 2:1 3:1

Ny N> Power Ny N, Power Ny N> Power Ny N, Power Ny N> Power
15 9086 11 16 9057 18 30 9032 55 50 9005 108 100 9014

5 18 9228 9 18 9131 16 40 9027 49 100 9015 102 200 .9009
21 9157 8 20 9185 15 50 9011 48 150 9056 100 300 9004
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(Floor(Nyz) — 1)} /c1], and the function Floor(a) returns
the largest integer that is less than or equal to a. Thus
theoptimal sample size allocation is the one giving the
largest power. Numerical results are given in Table 3 for
(c1, o) =(1, 1), (1, 2), and (1, 3) and fixed total cost C =
25, 30, 50, 100, and 180 in accordance with the five
standard deviation settings of o, and o, reported in the
previous two tables. Examination of the results in Table 3
reveals that the actual power for a given total cost deceases
drasticallyas the unit cost ¢, increases from 1 to 3.
Regarding the optimal allocation, the general formula for
the sample size ratio presented in Eq. 6 does not hold in
several cases. For example, the ratio N,/N; =11/17 =
0.6471 for (o1, 03) = (1, 1) and (¢y, ¢3) = (1, 3) is slightly
greater than the ratiocomputed with Eq. 6: 8 = (1 1Y 2) /
(1 : 31/2) = 0.5774. It should be noted that Guo and Luh
(2009, Eq. 20) give the same approximate sample size
formulas as in Eq. 7. However, they did not discuss how to
utilize the particular result to find the ideal sample sizes for
a fixed cost. Also, the numerical demonstration of Guo and
Luh (p. 291) did not provide a systematic search for the
optimal solution, and the sample sizes reported in their
exposition are not integers. Ultimately, the inexactness
issue incurred by integer sample sizes in cost analysis is not
addressed by Guo and Luh.

Target power is fixed and total cost needs to be minimized

In contrast to the previous situation where costs were fixed,
the strategy to accommodate both power performance and
cost appraisal can be conducted by finding the optimal
allocation for minimizing cost when the target power is pre-
chosen. In this case, the large-sample theory shows that in
order to ensure the nominal power while minimizing total cost
C = ¢ N1z + c2Nyz, the best sample size combination is

- 0o% + 03
- 2
elu(zi/ (Za/z + Zﬂ)

2 4 52
_ Oo1 + 03

and Nz = —————=2—,
13/ (Zap2 + Zp)

27

Niz

(3)

where 6 is the optimal ratio in Eq. 6. It can be
readily seen that Noz/Niz =0 and o7/Niz + 03/ Noz =
13/ (Zopp + Zﬁ)z. Due to the discrete character of
sample size, the optimal allocation is found through a
screening of sample size combinations that attain the
desired power while giving the least cost. The exact
power computation and cost evaluation are conducted
for sample size combinations with N; from N,
t0 Nimax and a proper value of N > Floor[o3/{13/
(Za)2 +25)° — 02 /Ny}] satisfying the required power,
where  Nipin = Floor(Nyz), Nimax = Ceil[o7 /{13 /(2o 2+
25)* — 63/ (Floor(Nyz) — 1)}], and the function Ceil(a)
returns the smallest integer that is greater than or equal
to a. Thus, the optimal sample size allocation is the one
giving the smallest cost while maintaining the specified
power level. In cases where there is more than one
combination yielding the same magnitude of least cost,
the one producing the larger power is reported. Table 4
provides the corresponding optimal sample size alloca-
tion, cost, and actual power for the configurations of (¢,
c) = (1, 1), (1, 2), and (1, 3) and the five standard
deviation settings of o, and o, in the preceding tables. It
is clear that the total cost for a required power and fixed
standard deviations increases substantially as the unit cost
¢, changes from 1 to 3. Again, the sample size ratios are
close to, but different from, the approximate ratio 6. The
largest discrepancy occurs with the case N,/N; = 16/
6 =2.6667 for (o, 03) = (1/3, 1) and (cy, ¢3) = (1, 1),
where as the counterpart ratio 6 = (1-1"2)/(1/3-
1'2) = 3.

To demonstrate the advantage and importance of the exact
technique, we alsoexamine the theoretical and empirical
properties of the approximate methods of Schouten (1999)
and Singer (2001). Accordingly, Schouten’s (p. 90) formulas
are based on the normal approximation and give the identical
approximate estimates N, and N, as defined in Eq. 8. In
view of the approximate ¢ distribution of the Welch’s test
statistic V' defined in Eq. 1, Singer (Eq. 2) suggested a
modification of Eq. 4 by replacing the percentiles of standard
normal distribution with those of a ¢ distribution with degrees

Table 3 Computed sample sizes (V;, N,) and actual power when the total cost is fixed with i, = 1 anda = .05

J1:07

1/3:1 1/2:1 1:1 2:1 3:1
ciic; Cost Ny N, Power Cost Ny N, Power Cost Ny N, Power Cost N; N, Power Cost N, N, Power
1:1 25 19 9467 30 10 20 .9403 50 25 25 9334 100 67 33 9099 180 135 45 9156
1:2 25 10 .7432 30 11 .7608 50 20 15 .8076 100 58 21 .8229 180 122 29 .8548
1:3 25 4 7 5570 30 6 8 5984 50 17 11 .6917 100 52 16 .7473 180 114 22 8016
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Table 4 Computed sample sizes (N, N,), cost, and actual power when the total cost needs to be minimized with target power 1 —3= .90, pu,=1,

and a = .05
g1.02

1/3:1 1/2:1 1:1 2:1 3:1
ci:c; Cost Ny N, Power Cost Ny N, Power Cost Ny N, Power Cost N; N, Power Cost N, N, Power
1:1 22 6 16 9144 26 9 17 9017 45 23 22 9057 97 65 32 9013 171 128 43 9015
1:2 37 15 9086 43 11 16 .9057 65 27 19 9020 126 74 26 9015 208 140 34 .9009
1:3 51 9 14 9014 58 13 15 9012 84 30 18 9032 151 79 24 9015 239 149 30 .9003

of freedom V. Specifically, it requires an iterative process to
find the smallest integer that satisfies the inequality
Nis > (O'% +G§/rs)(t/v\,a/2 +t/v\7ﬂ)2//1§7 (9)
where rg = N,¢/N;s. However, Singer did not provide any
analytical justification for this alternative expression. Essen-
tially, the naive formulation of Eq. 9 is questionable for lack
of theoretical explanation. It is well known that if Z ~ N(0, 1),
then X = (Z+ u) ~ N(u, 1), where p is a constant. This
particular result and related properties yield the approximate
formulas in Eq. 8. On the other hand, the linear transforma-
tion of the normal distribution does not generalize to the case
of the ¢ distribution; that is, if t~ #(df), then ¥ = (¢ + u) does
not follow a noncentralt distribution #df, ) with a non-
centrality parameter 1 and degrees of freedom df. Actually, a
random variable Y is said to have a noncentral ¢ distribution #
(df; p) if and only if Y = (Z + ) /(W /df)"?, where Z ~ N
(0, 1), W ~x?(df), and Z and W are independent (Rencher,
2000, pp. 102—103). This may explain the fact that direct
substitution of standard normal percentiles with those of ¢
distribution was rarely described in the literature of sample
size methodology. Instead, an iterative search is required to
resolve the issue for statistical reasoning and exactness.
Nevertheless, Guo and Luh (2009) applied Eq. 9 with rg= 0
to determine optimal sample sizes when target power is fixed
and total cost needs to be minimized.

For the purpose of comparison, we performed an extensive
numerical examination of sample size calculations for the
model settings in Table 4 of Guo and Luh (2009). To our
knowledge, no research to date has compared the perfor-
mance of the available approximate procedures with the exact
method. All the sample sizes, cost, and corresponding actual
power of the two approximate methods of Schouten (1999)
and Singer (2001) and the exact approach are presented in
Table 5. For target power 1 -G = .80, uy =1, and o = .05, a
total of 24 model settings are examined according to the
combined configurations of standard deviation ratio (o;:0, =
1: 1 and 1: 2) and unit cost ratio (cj:c, = 1: 2, 1: 1, and 2: 3)
for 62 =1.00, 2.15, 146, and 4.18. The sample sizes
computed by Schouten’s method are denoted by N;; and
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N,z whereas the sample sizes N5 and N,g listed in Table 5
for the procedure of Singer are exact replicates of those
presented for the untrimmed case in Table 4 of Guo and Luh.
The corresponding exact sample sizes computed with the
suggested approach are expressed as N,z and N,p.

It can be readily seen from Table 5 that there are
discrepancies between the approximate and exact proce-
dures. First, the normal approximation or Schouten’s (1999)
method is misleading because only 4 out of 24 cases have
attained the target power level of .80 (cases 4, 6, 12, and
24). Thus, the sample sizes Ny, and N, are generally
inadequate. For the four occasions that meet the minimum
power requirement, the resulting costs of cases 6, 12, and
24 are larger than those of the exact approach. Again, the
reported sample sizes N;; and N,; are not optimal.
Accordingly, case 4 is the single instance that agrees with
the exact result. On the other hand, all the sample sizes Ng
and N,g associated with Singer’s (2001) method satisfy the
necessary minimum power .80. While there are seven
occurrences (cases 2, 4, 8, 14, 15, 19, and 20) that match
the exact results, the other 17 sample size N;g and Ny
combinations suffer the disadvantage of incurring higher
cost than the optimal selections Nz and N,g. In view of these
empirical evidences, it is clear that the existing approximate
procedures of Schouten and Singer are not accurate enough to
guarantee optimal sample sizes and, therefore, the procedures
presented in Egs. 8 and 9 are not recommended.

Furthermore, Lee (1992) examined the same problem-
without considering the differential unit cost per subject in
the two groups, and this can be viewed as a special case of
the presentation here with ¢; = ¢, = 1. Accordingly, his
algorithm for determining the optimal sample sizes is
questionable. For example, when o; = 0, = 1, the reported
sample sizes are N1 = N, = 23 with total cost = total sample
size = 46, and actual power is .9121. In contrast, our
computation gives Ny = 23 and N, = 22, with total cost =
total sample size 45, and attained power is. 9057.
Therefore, to maintain the least target power level of .90, it
requires only a total of 45 sample sizes, rather than the sizes of
46 as reported by Lee. Consequently, it is worthwhile
conducting the suggested exact sample size computations.
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Table 5 Computed sample sizes (Ny, N,), cost, and actual power for different procedures when the total cost needs to be minimized with target

power 1 —(3 = .80, uy =1, and o = .05

Schouten Singer Exact Method

Case 01:0, clic 0 Nz Nyz Cost Power Nig Nys Cost Power Nig Nog Cost Power
Jf =1
1 1:1 1:2 0.71 19 14 47 7811 21 15 51 .8156 20 15 50 .8076
2 1:1 1:1 1.00 16 16 32 7798 17 17 34 .8058 17 17 34 .8058
3 1:1 2:3 0.82 18 15 81 7889 19 16 86 .8141 18 16 84 .8040
4 1:2 1:2 1.41 31 44 119 8017 31 44 119 .8017 31 44 119 .8017
5 1:2 1:1 2.00 24 48 72 7963 25 49 74 .8073 24 49 73 .8018
6 1:2 2:3 1.63 28 46 194 .8037 28 46 194 .8037 29 45 193 .8013
o =2.15
7 1:1 1:2 0.71 41 29 99 7895 43 30 103 .8056 42 30 102 .8018

1:1 1:1 1.00 34 34 68 7910 35 35 70 .8028 35 35 70 .8028

1:1 2:3 0.82 38 32 172 7995 39 32 174 .8042 40 31 173 .8014
10 1:2 1:2 1.41 65 92 249 7972 66 93 252 .8020 65 93 251 .8004
11 1:2 1:1 2.00 51 102 153 7978 52 103 155 .8030 51 103 154 .8004
12 1:2 2:3 1.63 59 97 409 .8020 60 97 411 .8040 58 97 407 .8001
0’% = 1.46
13 1:1 1:2 0.71 28 20 68 7875 30 21 72 8110 29 21 71 .8055
14 1:1 1:1 1.00 23 23 46 7830 24 24 48 .8008 24 24 48 .8008
15 1:1 2:3 0.82 26 22 118 1975 27 22 120 .8044 27 22 120 .8044
16 1:2 1:2 1.41 44 63 170 7968 45 64 173 .8038 44 64 172 .8014
17 1:2 1:1 2.00 35 70 105 7995 36 71 107 .8070 35 71 106 .8033
18 1:2 2:3 1.63 40 66 278 7999 41 66 280 .8027 39 67 279 .8012
ol =4.18
19 1:1 1:2 0.71 80 57 194 7993 81 57 195 .8013 81 57 195 .8013
20 1:1 1:1 1.00 66 66 132 7964 67 67 134 .8024 67 67 134 .8024
21 1:1 2:3 0.82 73 60 326 7954 75 61 333 .8038 75 60 330 .8002
22 1:2 1:2 1.41 126 179 484 7998 127 180 487 .8022 127 179 485 .8006
23 1:2 1:1 2.00 99 198 297 7997 100 199 299 .8024 99 199 298 .8010
24 1:2 2:3 1.63 114 187 789 8015 115 187 791 .8025 113 187 787 .8005

Numerical example

To demonstrate the features crossing different allocation
constraints and cost considerations in sample size planning,
the comparison of ability tests administered online and in
the laboratory of Thme et al. (2009) is used as an example.
The test scores collected online and offline are assumed to
have normal distributions with different variances, because
the demographical structure of online samples can differ
from that of offline samples acquired in conventional
laboratory settings. To illustrate sample size determination
for design planning, the results of Thme et al. are modified
to have the underlying population parameter values of iy o, =
11, ttontine = 10, ora, = 2.3, and oopiine = 2.7. It is clear that
online testing has the advantages of ease of obtaining a large
sample and low cost. Thus, it may be desirable to set the
sample ratio as Nogjine/NLap = 4/1, which would imply that

the sample sizes required to attain power .90 at the
significance level .05 are Np,, = 76 and Nogjine = 304. In
case in which the sample size Nopjine 1S selected as 400, the
offline group needs sample size Np o, = 71 to meet the same
power and significance requirements. However, it is impor-
tant to take budget issues into account. Assume that the
available total cost is set as C = 100 and the respective unit
costs per subject are ¢, = 1 and copjine = 0.2. The optimal
sample size solutionis N, = 65 and Noyjine = 175, which
has an actual power of .8079. On the other hand, to attain the
pre-assigned power of .90, the design must have the sample
size allocation as Np,, = 86 and Nogjine = 224, which
amounts to the budget of C =130.8. Such information may be
useful for investigators to justify the design strategy and
financial support. Although they did not address the sample
size calculation, the reader is referred to Ihme et al. for
further details about online achievement tests.
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Conclusion

The problem of testing the equality of the means from two
independent and normally distributed populations with
unknown and unequal variances has beenwidely considered
in the literature. The distinctive usefulness of Welch’s
(1938) test in applications further occasions methodological
and practical concerns about the corresponding procedures
for sample size determination. Computationally, the use of
computers and the general availability of statistical software
permit inherent requirements for exact analysis. In view of
the importance of sample size calculations in actual practice
and the limited features of available computer packages, the
corresponding programs are developed to facilitate the
usage of the suggested approaches. Intensive numerical
integration and incremental search are incorporated in the
presented computer algorithms for finding the optimal
solutions for different design requirements. Furthermore,
various sample size tables are provided to help researchers
have a better understanding of the inherent relationship that
exists between the planned sample sizes conditional on the
model configurations. The proposed sample size procedures
enhance and expand the current methods and should be
useful for planning of research in two-group situations
where variances and costs per subject both differ across
groups.
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