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Abstract In experimental research, it is not uncommon to
assign clusters to conditions. When analysing the data of such
cluster-randomized trials, a multilevel analysis should be
applied in order to take into account the dependency of first-
level units (i.e., subjects) within a second-level unit (i.e., a
cluster). Moreover, the multilevel analysis can handle cova-
riates on both levels. If a first-level covariate is involved,
usually the within-cluster effect of this covariate will be
estimated, implicitly assuming the contextual effect to be
equal. However, this assumption may be violated. The focus
of the present simulation study is the effects of ignoring the
inequality of the within-cluster and contextual covariate
effects on parameter and standard error estimates of the
treatment effect, which is the parameter of main interest in
experimental research. We found that ignoring the inequality
of the within-cluster and contextual effects does not affect the
estimation of the treatment effect or its standard errors.
However, estimates of the variance components, as well as
standard errors of the constant, were found to be biased.

Keywords Group-randomized design .Multilevel
analysis .Within-cluster regression . Between-cluster
regression . Hierarchical linear model . Random coefficient
model

In experimental research, it is not uncommon to assign clusters
rather than individuals to conditions. For example, in educa-
tional research, schools or classes may be assigned to either the
treatment or control condition; in organisational psychology, it

may be companies that are assigned to conditions; in medical
research, it may be hospitals or general practices; and in health
psychology, it may be therapy groups. Experimental designs
such as these are referred to as cluster-randomized trials (see,
e.g., Murray, 1998). In cluster-randomized trials, the assump-
tion of independent observations is violated. Due to shared
features, shared leadership, and mutual influences, subjects
within the same cluster are likely to respond more alike.
When analysing the data of cluster-randomized trials, the
dependency of the subjects within the same cluster is taken
into account by applying a multilevel analysis. Moreover,
multilevel analysis makes it possible to include covariates on
the individual level as well as on the cluster level. When
cluster-level covariates—that is, contextual variables—are
taken into account in an ordinary regression or ANOVA
model, this covariate has to be disaggregated. The conse-
quence of disaggregation is that an artificial homogeneity is
introduced, so that standard errors are biased downwards,
with the consequence of an inflated Type I error. On the other
hand, in contextual analyses, individual-level covariates have
to be aggregated, often resulting in a loss of information and,
hence, of power (see, e.g., Greenland, 2002). That aggrega-
tion may not always result in a loss of power is shown by, for
instance, Hedges (2007). He presented an adjusted t test that
accounted for clustering and obtained “reasonably accurate
significance levels.” However, he recommended that this test
and other tests on cluster means (i.e., Barcikowski’s test)
should only be used when raw data are not available and
argued that, in other cases, multilevel statistical methods are
more appropriate. With multilevel analysis, the covariates are
analysed without aggregation or disaggregation (e.g., Snijders
& Bosker, 1999).

It is well known that by taking into account influential
covariates, power can be increased (see, e.g., Moerbeek,
2006). In cluster-randomized trials, covariates on various
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levels may need to be included in the study. In the present
study, we focused on including a covariate on the lowest
level. Since in most cluster-randomized trials the lowest-
level units concern individual subjects, from here on we will
refer to this level as the subject level.

When including a subject-level covariate, it seems
obvious that one wants to assess the influence of this
covariate at the level on which it is measured—that is, the
subject level. For example, when taking into account
pupils’ IQs on math performance, the researcher expects
the math performance to be influenced by the subject’s IQ
score and, hence, in the multilevel model will treat IQ score
as a subject-level covariate. The effect of a subject-level
covariate at the subject level is referred to as the within-
cluster effect. However, in addition to the within-cluster
effect, it is not uncommon that a subject-level covariate has
an effect at the cluster level as well. For example, in
addition to the effect of the pupil’s individual IQ score on
math performance, the mean IQ score in a class may also
influence the individual math performance. The effect of a
subject-level covariate at the cluster level is in the literature
referred to as a between-cluster or contextual effect.
Although in the remainder of this article we will make a
distinction between these phrases, throughout this introduc-
tion we will simply use the phrase contextual effect.

The within-cluster effect and the contextual effect of a
subject-level covariate may differ, and they may even have
different signs (see, e.g., Kreft & de Leeuw, 1988; Snijders
& Bosker, 1999). This phenomenon is also discussed by
Begg and Parides (2003), Greenland (2002), Neuhaus and
Kalbfleisch (1998), and Palta and Seplaki (2002). These
authors have emphasized that when a multilevel analysis is
applied, the researcher should check whether the within-
cluster and contextual effects differ, and if they do, both
effects should be modelled explicitly. If the separate effects
are not explicitly modelled, the within-cluster and contex-
tual effects are implicitly assumed to be equal.

However, most substantive researchers seem unaware
of the possibly different within-cluster and contextual
effects of a first-level covariate and do not explicitly
model both effects, implicitly assuming them to be equal.
That the assumption of equal within-cluster and contex-
tual effects may be violated has been shown by, for
instance, Mann, De Stravol, and Leon (2004) and Dwyer
and Blizzard (2005).

The studies cited above have shown not only that the
within-cluster effect may differ from the contextual effect
of a subject-level covariate, but also that different analysis
models—that is, assuming equal effects or modelling both
effects explicitly in different ways—can affect the estima-
tion of the parameters of the covariate itself. In an extended
study, Shen, Shao, Park, and Palta (2008) discussed the
effect of misspecifying an inequality of the covariate

effects, illustrating the effect on real data. However, they
used data from observational studies and did not discuss the
main parameter in cluster-randomized trials—that is, the
treatment effect and its standard error. The present study
fills this gap, by focusing on the robustness of the treatment
parameter and its standard error against ignoring inequality
of the within-cluster and contextual effects of the covariate
within the framework of a cluster-randomized trial.

In the present study, we apply two different models to
simulated data—one of them explicitly modelling within-
cluster and contextual effects of the subject-level covariate,
and the other implicitly assuming equal effects. Note that
the latter model also can be seen as omitting a second-level
covariate, the contextual effect. In a randomized design, it
is assumed that all covariates—the observed as well as the
omitted ones—are balanced over the conditions, and hence
that the expected correlation between the omitted covariate
and the treatment effect is zero. However, when the
covariate is not balanced, the variability may actually
increase, which will be visible in larger standard error
estimates.

Simulation has the advantage of known true parameter
values, as well as presenting the possibility of manipulating
the total effect of the covariate and the magnitude of the
difference between the within-cluster and contextual
effects. Though the main interest of this study is the
robustness of the estimated treatment effect and its standard
errors, for completeness we will also present the other fixed
parameters (i.e., the within-cluster effect, the contextual
effect—if estimated—and the constant), the estimated
variance components, and their standard errors.

In the next section, two models are described. The first
takes into account the different within-cluster and contex-
tual effects. From here on, we will refer to this model as the
covariate different-effects multilevel model. This model,
though not the label, is proposed by, for instance, Neuhaus
and Kalbfleisch (1998) and Snijders and Bosker (1999).
The second model ignores the different within-cluster and
contextual effects of the covariate, hence implicitly assum-
ing equal effects. Since the latter model is the one usually
used for nested data, from here on we will refer to it as the
ordinary multilevel model. In the third section, the
simulation and an analysis of the parameter estimates are
described. The results are given in the fourth section, and
the article ends with a summary and discussion.

The models

The covariate different-effects multilevel model

Assume that we have data from a cluster-randomized trial
with a continuous outcome, one variable at the cluster level—
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that is, the treatment indicator—and one continuous subject-
level covariate. As stated in the introduction, in data from a
cluster-randomized trial and in other hierarchical data, a first-
level covariate may have different within-cluster and contex-
tual effects. This is taken into account by explicitly modelling
two parameters associated with the subject-level covariate:

Yij ¼ gconst þ gtreatTj þ gW Xij þ gBX j þ uj þ eij: ð1Þ

In this equation, Yij is a continuous outcome for subject i
in cluster j, and γconst is a constant reflecting the mean
outcome when Tj and Xij both equal zero. Tj is the treatment
indicator, coded 1 for the treatment condition and 0 for the
control condition. Coded as such, γtreat represents the
treatment effect, which is assumed to be the same for all
clusters in the treatment condition. The subject-level
covariate X is separated into a within-cluster part and a
contextual part. The within-cluster part is given by Xij,
which is the score on covariate Xij for subject i in cluster j,
and by the regression of Yij on Xij (i.e., the within-cluster
effect, given by γW). The contextual part is given by the
cluster mean X j and the regression of Yij on X j (i.e., the
contextual effect γB). Finally, uj is the cluster-level residual,
and eij is the subject-level residual. These residuals are
independently distributed with zero mean and the variances
s2
u, for the cluster-level residuals, and s2

e , for the subject-
level residuals. Since these variances are independent, the
total residual variance is s2 ¼ s2

u þ s2
e .

It should be noted that the separation of the within-
cluster and contextual effects of a first-level covariate can
also be accomplished by using Xij � X j instead of Xij, so
that Eq. 1 changes into

Yij ¼ egconst þ eg treatTj þ egWðXij � XjÞ þ egBX j þ uj þ eij: ð2Þ

In Eq. 2, the symbol eg is used to distinguish these
parameters from the corresponding parameters in Eq. 1. In
Eq. 2, egW is the regression of Yij on (Xij � Xj)—that is, the
within-cluster effect. This parameter is equal to the
corresponding parameter in Model (1): egW ¼ gW. However,
the contextual effect egB in Model (2) is the regression of Y j

on X j and, hence, reflects the actual contextual effect. For
clarity, from here on, we will refer to egB as the contextual effect
and γB [i.e., the parameter used in Model (1)] as the between-
cluster effect. The relation between egB and γB is given by
egB ¼ gW þ gB (see, e.g., Snijders & Bosker, 1999). From
this, it becomes obvious that when the between-cluster effect
γB = 0, the contextual effect egB is equal to the within-cluster
effect γW. Though Models (1) and (2) are equivalent, we
choose to use Model (1) in the present study, because in this
model both parameters—that is, the between-cluster parameter
γB and the within-cluster parameter γW—reflect the regression
of Yij.

The true total effect of the subject-level covariate is a
weighted sum of the within-cluster and contextual effects
(see, e.g., Snijders & Bosker, 1999, p. 30):

gtotal ¼ h2 »
egB þ 1� h2

� �

»
egW ð3Þ

In this equation, η2 is the correlation ratio, which is
defined by the intracluster coefficient and the reliability of
the cluster mean X j. It should be noted that the reliability of
the cluster mean depends on both the magnitude of the
intracluster correlation coefficient (ICC) and the group size
(e.g., Bliese, 2000). That is, the larger the ICC, the more
likely is a single score to be a reliable estimate of the cluster
mean. And by means of the law of large numbers, it is
obvious that the larger the cluster size, the more likely it is
that the cluster mean is a reliable estimate for the
population cluster mean. Expressed in terms of Model (1),
Eq. 3 changes into

gtotal ¼ h2 » gB þ gWð Þ þ 1� h2
� �

» gW: ð4Þ

The ordinary multilevel model

In the ordinary multilevel model, the possibility of different
within-cluster and contextual effects of the covariate is
ignored. In other words, it is assumed that the within-cluster
and contextual effects are equal, or in terms of Model (1),
that the between-cluster effect is zero. If this assumption
holds, it is sufficient to estimate a single parameter for the
covariate X:

Yij ¼ g
0
const þ g

0
treatTj þ g

0
WXij þ uj þ eij: ð5Þ

In this equation, the symbol γ' is used, to distinguish the
parameters from the corresponding parameters used in
Eqs. 1 and 2. Let Yij be a continuous outcome for subject
i in cluster j and g

0
const be a constant, reflecting the mean

outcome when Tj and Xij both equal zero. Tj is the treatment
indicator for cluster j (coded 0 for the control condition and
1 for the experimental condition), and g

0
treat is the treatment

effect. g
0
W is the within-cluster effect of the first-level

covariate X. It should be noted that this parameter usually is
not subscripted W, since it is the only estimated parameter
for the subject-level covariate. However, in the context of
the present study, the subscript is used to emphasize that
this parameter is estimated under the assumption that g

0
B is

zero. As stated in the introduction section, in the ordinary
multilevel model this parameter can also be viewed as an
omitted covariate.

In Model (5), as in Model (1), the residual at the
cluster level is captured by the term uj, while the residual
at the subject level is captured by eij. The residuals are
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assumed to be independent of each other and normally
distributed, with zero mean and variances s2

u and s2
e ,

respectively. The total variance of the model is given by
s2 ¼ su

2 þ se
2.

Simulation and evaluation of the estimated parameters

Simulation

Data were generated and analysed with the MLwiN
software, version 2.0 (Rasbash, Steele, Browne, & Prosser,
2004). The data were generated according to Model (1)—
that is, the covariate different-effects multilevel model
(CDEMM). Data were then analysed with the covariate
different-effects multilevel model (Eq. 1) and with the
ordinary multilevel model (OMM; Eq. 5). Restricted
maximum likelihood estimation (REML) was used, as is
advised for small sample sizes at the cluster level in most
literature, in order to get good estimates for the subject-
level variance s2

e (see, e.g., Hox, 2010; Raudenbush, Bryk,
Cheong, Congdon, & Du Toit 2004; Snijders & Bosker,
1999).

In all conditions, the cluster size m was fixed at five.
This is not an unusual number in, for example, group
therapy. Furthermore, when all other requirements are met,
a small sample size at the first level hardly affects the
estimation of the parameters and standard errors. In order to
get unbiased parameter estimates, the second-level sample
size is of main importance (Maas & Hox, 2005). In the
present study, we chose to have a relatively small second-
level sample size of 20 clusters per condition. Such small
numbers of clusters are quite common in practice, due to
limited financial resources and other practical limitations.
Furthermore, it was expected that a large number of clusters
would not result in a more accurate estimation of the
treatment effect, if it is affected by ignoring the nonequiv-
alence of the within-cluster and contextual effects.

The intercept was fixed at 1, and the treatment effect was
fixed at 0.3, which is a medium-sized effect (Cohen, 1988).
The subject-level residual variance s2

e was fixed at 1. The
value of the cluster-level variance s2

u follows from the ICC
and the subject-level variance s2

e . Although the ICC affects
the sampling variance, it does not affect the estimation of
fixed effects. Multilevel software incorporates this effect of
the ICC, so the magnitude of the ICC does not affect the
bias of estimators. In earlier simulation studies (e.g.,
Korendijk, Maas, Moerbeek, & Van der Heijden, 2008;
Maas & Hox, 2005), the ICC indeed was an insignificant
predictor of the biases of estimated parameters and their
standard errors. For these reasons, in the present study the
ICC was not manipulated but fixed at .10, which is a value
that is often encountered in practice.

It was expected that the more the contextual effect
differed from the within-cluster effect, the more biased the
parameter estimate would be. Since substantive researchers
rarely use the CDEMM, little information is available on
empirical values for the magnitude of the difference
between the within-cluster and contextual effects. Based
on the studies by Mann, De Stravol, and Leon (2004),
Neuhaus and Kalbfleisch (1998), and Palta and Seplaki
(2002), we chose the within-cluster effect to be ten times as
small, three times as small, three times as large, and ten
times as large as the contextual effect. These different
conditions in the tables are labelled in terms of the
magnitude of the within-cluster effect as compared to the
contextual effect; for instance, 0.1 refers to the condition in
which the within-cluster effect is ten times as small as the
contextual effect, and 10 refers to the condition in which
the within-cluster effect is ten times as large as the
contextual effect. From here on we will refer to this
variable as the inequality of covariate effects, with the
values 0.1, 0.333, 3, and 10. Finally, in order to compare
the performance of the CDEMM and the OMM when the
within-cluster effect is equal to the contextual effect, data
with equal effects were generated, thus adding a condition
labelled “1” to the inequality-of-covariate-effects variable.
In this case, it was expected that both models would
perform equally well, since both models fit the data when
the covariate effect is the same at both levels.

Furthermore, it was expected that the stronger the total
effect of the first-level covariate, the more the treatment
effect and variance estimates would be affected. The total
effect of the first-level covariate—that is, the weighted sum
of the within-cluster and contextual effects (Eq. 3)—was
chosen to be small (.1), medium (.3) and large (.5) (Cohen,
1988). From here on, we will use the term total covariate
effect when referring to the total effect of the first-level
covariate.

The above-described design consists of (5 × 3 =) 15
conditions, and in each condition 3,000 data sets were
generated. The large number of replications was chosen to
increase the precision of the estimates (Skrondal, 2000).

Evaluation of the parameter and standard error estimates

Estimated parameters were evaluated by means of the
relative bias—that is, the estimated parameter divided by
the true parameter value: RB ¼ q̂

q. When estimated without
bias, the parameter estimate equals the true parameter, and
hence the RB will be 1. When the parameter is over-
estimated, the RB will be larger than 1, and underestimation
will result in an RB smaller than 1. However, when the
within-cluster and the contextual effects are equal, the true
between-cluster effect is zero: γB = 0. In this situation, the
bias of the estimated between-cluster effect is determined
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by the deviation of the true value, which is the estimate
itself bgB � gB ¼ bgB � 0 ¼ bgBð Þ. As Skrondal (2000) rec-
ommends, estimated parameters will be tested. The param-
eter of main interest for a researcher conducting a trial is the
treatment effect. Hence, the focus of this study is on the
estimated treatment effect and its standard error. Investiga-
tion of estimated covariate effects is more appropriately
done by means of an observational study. For this reason,
the results with respect to the estimated within- and
between-cluster effects will not be elaborated on, although
for completeness they will be presented in the tables, giving
an overview of the simulation results in terms of relative
bias. In these tables, biased parameters are indicated;
however, the estimated covariate effects will not be
discussed or further tested. For a discussion of the effects
of misspecification on the estimated within-cluster and
contextual effects, we refer the reader to the study of Shen,
Shao, Park, and Palta (2008).

A number of t tests were performed to test whether the
relative bias equalled one. When two or more parameter
estimates within a variable (i.e., the ratio or the covariate
effect) were biased, two-sample t tests or ANOVAs were
performed to test whether the biases differed between
conditions. Significant ANOVA results were evaluated by
post hoc t tests.

Since unbalance of an omitted covariate, which in the
present study is the between-cluster effect of the covariate
γB in the ordinary multilevel model, can result in increased
standard errors of the treatment effect, the distributions of
the estimated standard errors of this parameter were
inspected. The standard errors are expected to increase
when the OMM is applied. The distribution of the estimated
standard errors of the CDEMM (i.e., the appropriate model
when within-cluster and contextual effects differ) was used
to determine a cutoff point. This cutoff was the estimated
value at the 97.5th percentile of the distribution. The
estimated standard errors of the OMM exceeding this cutoff
point were considered to be inflated, and percentages of
inflated standard errors were determined per condition. The
estimated standard errors of all parameters were evaluated
by means of the coverage. The 95% confidence intervals
around the estimated parameters were established, and it
was determined whether or not the true parameter was in
this interval, and the estimated parameter was coded 1 or 0,
respectively. The mean of this parameter is the coverage,
and ideally this proportion should equal .95 (1 – α).
Underestimation of the standard errors is reflected by
coverages below .95, and overestimation by coverages over
.95. Coverages were evaluated by establishing a 99.99%
(α = .001) confidence interval around .95 (see, e.g.,
Newcombe, 1998), corrected for the number of parameters
tested simultaneously, and determining whether the cover-
age was within or outside this interval. The small α was

chosen because of the huge number of simulated data sets.
When two or more coverages of a parameter were
significant within inequality of covariate effects or the total
covariate effect, χ2 tests were performed to test whether the
coverages differed between the conditions. Post hoc Fisher
exact tests were performed when a χ2 test turned out to be
significant. In accordance with the treatment of the
parameter estimates, no tests were conducted on biased
standard error estimates associated with the covariate
parameters.

When the influence of the magnitude of the covariate
effect was evaluated, this was done separately for data in
which the within-cluster and contextual effects were
different and data in which these effects were equal. It is
obvious that in the first situation the CDEMM is the
appropriate model and, hence, was expected to outperform
the OMM, while in the latter situation both models were
expected to perform equally well.

Results

This section is divided into three subsections. In the first
subsection, issues concerning convergence and inadmissi-
ble solutions of the estimation process are described. In the
second subsection, the results with respect to the parameter
estimates are given. As stated before, our main interest is
the estimate of the treatment effect. However, we present
and discuss the estimates of the constant and variance
components as well. In the third subsection, the standard
error estimates are presented. With respect to the presenta-

Table 1 Percentages of negative variance and standard deviations per
model, by inequality of the covariate effects and by total covariate
effect

CDEMM OMM

% SD % SD

ICE

0.1 4.756 0.213 1.789 0.133

0.333 4.689 0.211 2.811 0.165

1 5.178 0.222 4.489 0.207

3 5.256 0.223 3.178 0.175

10 4.744 0.213 2.811 0.165

TCE

.1 4.889 0.216 4.400 0.205

.3 4.993 0.218 2.993 0.170

.5 4.893 0.216 1.653 0.128

CDEMM, covariate different-effects model; OMM, ordinary multi-
level model; ICE, inequality of covariate effects; TCE, total covariate
effect
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tion and discussion of the standard errors, we will follow
the same line as with respect to the estimated parameters.

Convergence and inadmissible solutions

Convergence was reached in all conditions. In MLwiN
(Rasbash et al., 2004), it is possible that the estimation
procedure will result in negative variance estimates,
especially when the true value is close to zero, as is the
case in the present study. In practice, such negative variance
estimates are usually set to zero. However, by doing so in a

simulation study, bias would be introduced. Therefore, the
negative values for the second-level variance were retained.
Table 1 shows the percentages of negative second-level
variance estimates found per model by condition. When the
data are analysed with the covariate different-effects
multilevel model, the percentage of negative second-level
variance estimates is approximately 5% in all conditions
[F(4, 44995) = 1.395, p = .233, for inequality of the
covariate effects and F(2, 44997) = 0.114, p = .892, for the
total covariate effect]. A smaller percentage is found when
the data are analysed with the ordinary multilevel model,
and it varies by condition [F(4, 44995) = 29.294, p < .001,
for inequality of the covariate effects, and F(2, 44997) =
27.193, p < .001, for the total covariate effect; for
pairwise comparisons, see Table 2]. The percentage of
negative variance is largest when the within-cluster and
contextual effects are equal, and it decreases when the
inequality becomes more extreme. When the total effect of
the covariate increases, the percentage of negative second-
level variance estimates decreases (Table 2).

Parameter estimates

Tables 3 and 4 show all estimated parameters for various
magnitudes of the disparity between the covariate effects
and of the total covariate effect, respectively. All fixed
parameters appear to be estimated without bias when the
CDEMM is applied, irrespective of the magnitudes of the
inequality and the total covariate effect. When the OMM is
applied, the treatment effect g

0
treat and the constant g

0
const are

estimated without bias in all conditions as well.
The random parameters in the CDEMM—that is, the

residual cluster-level variance s2
u and the residual subject-

level variance s2
e—are estimated without bias. The random

effects in the OMM, s
0 2
u and s

0 2
e , are estimated without bias

Table 2 Pairwise comparisons of percentages of negative second-
level variance for the ordinary multilevel model, by inequality of the
covariate effects (top panel) and total covariate effect (bottom panel)

t Value df p Value

ICE

1 vs. 0.333 6.007* 17,155.773 .0000

1 vs. 3 4.583* 17,524.423 .0000

1 vs. 0.1 10.418* 15,313.840 .0000

1 vs. 10 6.007* 17,155.773 .0000

0.1 vs. 0.333 – 4.577* 17,186.871 .0000

3 vs. 10 1.443 17,934.844 .149

0.1 vs. 3 – 5.993* 16,749.115 .0000

0.333 vs. 3 – 1.443 17,934.844 .149

0.1 vs. 10 – 4.577* 17,186.871 .0000

0.333 vs. 10 Not tested, since equal percentages

TCE

.1 vs. .3 6.461** 29,023.762 .0000

.3 vs. .5 7.711** 27,787.050 .0000

.1 vs. .5 13.929** 25,087.387 .0000

ICE, inequality of covariate effects; TCE, total covariate effect.
* Significant at the .0001 level. ** Significant at the .00033 level

Table 3 Relative biases (and standard deviations) of the estimated parameters per model, by inequality of the covariate effects

0.1 0.333 1 3 10

RB SD RB SD RB SD RB SD RB SD

CDEMM γconst 0.9992 0.091 1.0001 0.091 0.9999 0.090 0.9997 0.092 1.0000 0.091

γtreat 1.0046 0.599 0.9980 0.599 1.0026 0.591 1.0020 0.604 0.9997 0.600

γW 0.9781 1.943 0.9925 0.812 0.9842 0.498 0.9912 0.386 0.9999 0.347

γB 1.0016 0.608 1.0049 1.159 0.0054A 0.224 0.9837 1.580 1.0039 1.061

s2
u 0.9962 0.641 1.0022 0.643 1.0002 0.647 0.9929 0.643 0.9922 0.640

s2
e 1.0000 0.050 0.9995 0.057 1.0000 0.050 0.9999 0.050 1.0004 0.050

OMM g
0
const 0.9989 0.113 1.0020 0.095 1.0003 0.089 0.9987 0.092 1.0013 0.096

g
0
treat 1.0037 0.675 0.9877 0.611 0.9986 0.592 1.0091 0.599 0.9916 0.611

g
0
W 2.0148* 1.894 1.2440* 0.771 0.9969 0.468 0.9104* 0.358 0.8910* 0.326

s
0 2
u 1.8673* 1.131 1.2271* 0.728 0.9996 0.624 1.1220* 0.671 1.2632* 0.743

s
0 2
e 1.0045* 0.051 1.0031* 0.051 0.9999 0.050 1.0012 0.050 1.0028* 0.050

CDEMM, covariate different-effects model; OMM, ordinary multilevel model. A Bias is deviation from zero. * Significant at the p < .001 level
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when the within-cluster effect equals the contextual effect.
This is as expected, since in this condition the OMM is not
a misspecification of the data. However, when the within-
cluster and contextual effects differ, the OMM misspecifies
the data, and in this situation both variances are biased. The
second-level variance s

0 2
u is overestimated in all conditions,

and this overestimation is affected by the magnitudes of the
inequality of the covariate effect and the total covariate effect
[F(3, 35996) = 1,419.396, p < .0001, and F(2, 35997) =
2,628.895, p < .0001]. Table 5 shows that the overestimation
is more severe when the magnitude of the inequality
increases [t(15123.858) = 44.321, p < .00017, when the
within-cluster is smaller than the contextual effect, and
t(11901.675) = −13.382, p < .00017, when the within-cluster
is larger than the contextual effect]. Comparisons between
the conditions with, on the one hand, a small within-cluster
effect to a larger contextual effect and, on the other, the

reverse situation are all significant, as well (see Table 5).
Comparisons between the biases for the different conditions
of the total covariate effect reveal that the overestimation of
the second-level residual variance s

0 2
u increases when the

covariate effect increases; that is, the overestimation is
smallest when the covariance effect is small, and it is largest
when the covariate effect is large [t(29562.393) = −23.338,
p < .00033, and t(26691.307) = −40.695, p < .00033,
respectively; see Table 5].

As we have said, the subject-level residual variance s
0 2
e is

also biased in conditions with unequal covariate effects. It is
overestimated when the within-cluster effect is smaller than
the contextual effect and when the within-cluster effect is ten
times as large (Table 3). The severity of the overestimation is
the same in those three conditions [F(2, 26997) = 3.021,
p = .049]. Furthermore, the subject-level variance s

0 2
e is

overestimated when the total effect of the subject-level

Table 4 Relative biases of the estimated parameters (and standard deviations) per model, by total covariate effect

Equal Covariate Effects Excluded Equal covariate effects only

.1 .3 .5 .1 .3 .5

RB SD RB SD RB SD RB SD RB SD RB SD

CDEMM γconst 0.9998 0.092 0.9989 0.091 1.0005 0.092 0.9972 0.090 1.0015 0.090 1.0010 0.091

γtreat 1.0002 0.602 1.0077 0.597 0.9954 0.603 1.0192 0.587 0.9935 0.590 0.9950 0.596

γW 0.9773 1.750 0.9958 0.581 0.9982 0.358 0.9532 0.805 0.9998 0.265 1.0000 0.162

γB 0.9933 1.861 0.9997 0.629 1.0027 0.377 0.0074A 0.223 0.0033A 0.222 0.0055A 0.226

s2
u 0.9976 0.645 0.9979 0.640 0.9921 0.640 0.9792 0.637 1.0105 0.659 1.0108 0.645

s2
e 1.0004 0.050 0.9997 0.052 0.9998 0.057 1.0015 0.050 0.9992 0.051 0.9992 0.050

OMM g
0
const 1.0004 0.089 0.9997 0.097 1.0006 0.110 0.9991 0.090 0.9995 0.089 1.0021 0.088

g
0
treat 0.9979 0.590 1.0005 0.618 0.9958 0.664 1.0059 0.600 1.0034 0.592 0.9863 0.585

g
0
W 1.3292 0.018 1.2363 0.728 1.2025 0.506 0.9957 0.758 0.9947 0.244 1.0003 0.150

s
0 2
u 1.0371* 0.646 1.2702* 0.739 1.8024* 1.070 1.0096 0.626 1.0001 0.626 0.9890 0.621

s
0 2
e 1.0004 0.050 1.0028* 0.050 1.0055* 0.052 0.9993 0.050 0.9996 0.050 1.0009 0.050

CDEMM, covariate different-effects model; OMM, ordinary multilevel model. A Bias is deviation from zero. * Significant at the p < .001 level

Parameter Comparison Peculiarity t Value df p Value

ICE

s
0 2
u 0.1 vs. 0.333 Post hoc 44.321** 15,123.858 .00000

0.1 vs. 3 Post hoc 52.731** 14,401.113 .00000

0.1 vs. 10 Post hoc 41.571** 15,312.580 .00000

0.333 vs. 3 Post hoc 10.074** 17,878.929 .00000

0.333 vs. 10 Post hoc –3.293 17,998 .00093

3 vs. 10 Post hoc –13.382** 11,901.675 .00000

TCE

s
0 2
u .1 vs. .3 Post hoc –23.338*** 29,562.292 .00000

.3 vs. .5 Post hoc –40.695*** 26,691.307 .00000

.1 vs. .5 Post hoc –60.600*** 24,871.962 .00000

s
0 2
e .3 vs. .5 Primary test –4.054**** 29,998 .00005

Table 5 Primary and post hoc t
tests on the biased parameter
estimates, by inequality of the
covariate effects (top panel) and
by total covariate effect (bottom
panel)

ICE, inequality of covariate
effects; TCE, total covariate ef-
fect. * Significant at the p < .0005
level. ** Significant at the p <
.00017 level. *** Significant at the
p < .00033 level. **** Significant
at the p < .001 level
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covariate is medium or large (Table 4), and the overestimation
is more severe when the total effect is large [t(11998) =
−3.326, p < .0001; Table 5].

To sum up, using the CDEMM results in an unbiasedly
estimated constant and treatment effect as well as unbias-
edly estimated random parameters, whether the within-
cluster effect differs from the contextual effect or not. When
the OMM is applied to data with unequal covariate effects,
the residual variance on both levels is biased. However,

although the model is misspecified, the parameter of main
interest, the treatment effect, is unbiased in all conditions.

Standard error estimates

Since the treatment effect is the parameter of main interest
in trials, we start with inspection of the distribution of the
standard errors of this estimated parameter. Graphs of the
standard error (not presented here) showed nearly perfect
normal distributions, regardless of the magnitude of the
inequality, the magnitude of the total covariate effect, or the
model. Furthermore, we found consistent means (0.18),
standard deviations (0.019), and hence consistent values for
the 97.5th percentiles (0.216), over the conditions for the
CDEMM. Using the 97.5th percentile value as a cutoff
score, the percentages that exceed this value in the
distributions of the estimated standard errors for the
OMM were determined. When the within-cluster effect
was ten times as small as the contextual effect, we found
27.9% of the estimated standard errors to be larger than the
cutoff score. In the other conditions of unequal covariate
effects, the percentages were minor (5.7% when the within-
cluster effect was three times as small, 3.1% when it was
three times as large, and 6.3% when it was ten times as
large as the contextual effect). In other words, only when
the within-cluster effect is very small compared to the
contextual effect are the standard errors associated with the
treatment effect seriously inflated.

Although a comparison of the distributions of the
standard errors revealed in one of the conditions for the
OMM a considerable inflation of the standard errors,
inspection of the coverages gave no reason to be concerned

Table 6 Coverages evaluating the estimated standard errors per
model, by inequality of the covariate effects

ICE 0.1 0.333 1 3 10

CDEMM γconst .9902* .9892* .9910* .9910* .9918*

γtreat .9412 .9432 .9474 .9344* .9427

γW .9512 .9539 9492 .9480 .9494

γB .9454 .9444 .9436 .9482 .9468

s2
u .9386 .9390 .9356* .9364* .9387

s2
e .9991* .9996* .9991* .9989* .9994*

OMM g
0
const .9858* .9896* .9930* .9904* .9872*

g
0
treat .9451 .9449 .9439 .9443 .9448

g
0
W .8290* .8902* .9480 .9127* .8858*

s
0 2
u .8453* .9529 .9439 .9559 .9507

s
0 2
e .9997* .9991* .9992* .9996* .9991*

ICE, inequality of covariate effects; CDEMM, covariate different-
effects model; OMM, ordinary multilevel model. * Coverage outside the
interval < .9369: .9631 > for two estimated parameters. ** Coverage
outside the interval < .9365: .9635 > for three estimated parameters.
*** Coverage outside the interval < .9361: .9639 > for four estimated
parameters

Table 7 Coverages evaluating the estimated standard errors by total covariate effect, by unequal or equal within-cluster and contextual effects

Unequal Within-Cluster and Contextual Covariate Effects Equal Within-Cluster and Contextual Covariate Effects

Parameter .1 .3 .5 .1 .3 .5

CDEMM γconst .9896* .9907* .9914* .9900* .9907* .9923*

γtreat .9397 .9434 .9381 .9470 .9490 .9463

γW .9503 .9533 .9484 .9500 .9513 .9463

γB .9494 .9430 .9463 .9443 .9470 .9393

s2
u .9385 .9386 .9374 .9313* .9367* .9387

s2
e .9992* .9994* .9992* .9993* .9993* .9987*

OMM g
0
const .9915* .9888* .9844* .9930* .9930* .9930*

g
0
treat .9444 .9455 .9444 .9423 .9427 .9467

g
0
W .9368 .8832* .8183* .9437 .9537 .9467

s
0 2
u .9434 .9547 .8805* .9400 .9433 .9483

s
0 2
e .9994* .9993* .9994* .9997* .9993* .9987*

CDEMM, covariate different-effects model; OMM, ordinary multilevel model. * Coverage outside the interval < .9369: .9631 > for two estimated
parameters. ** Coverage outside the interval < .9365: .9635 > for three estimated parameters. *** Coverage outside the interval < .9361: .9639 > for four
estimated parameters
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about inflated Type II errors with respect to the treatment
effect. That is, the coverages show that, when the OMM is
applied, the standard errors of the treatment effect g

0
treat are

estimated without bias (lower panel of Table 6 and 7). The
standard errors associated with the constant g

0
const, however,

are biased. In the OMM, they are overestimated in all
conditions, even when the within-cluster and contextual
effects are equal. The estimate is affected by the inequality
of the covariate effects [χ2(4) = 30.368, p < .0001; Table 8].
Post hoc Fisher’s exact tests reveal that the overestimation
only differs when the condition with equal within-cluster
and contextual effects is compared to the condition in
which the within-cluster effect is ten times as large as the
contextual effect (Fisher exact p < .0001; Table 9). When
the within-cluster and contextual effects differ, the overes-
timation is also affected by the total covariate effect
[χ2(2) = 26.453, p < .0001; Table 8]. The overestimation
differs between the small and large total covariate effects
(Fisher exact p < .00033; Table 9). The standard error of
the cluster-level variance s2

u in the CDEMM is slightly
underestimated when the within-cluster effect is three times
as large as the contextual effect, and when the effects are
equal (Table 6). The underestimation is the same in both
conditions (Fisher exact p = .171; Table 9). The standard
error of the cluster-level variance s2

u is also underestimated
when the covariate effect is small or medium and the
within-cluster and contextual effects of the covariate are
equal (right-hand panel of Table 7). The underestimation is
the same for both conditions (Fisher exact p = .406;
Table 9). The standard error of the subject-level variance
s2
e , however, is overestimated in all conditions (Tables 6

and 7). The overestimation is not affected by the inequality
of the covariate effects [χ2(4) = 3.431, p = .488] or by the
total covariate effect [χ2(2) = 0.667, p = .716, and χ2(2) =
1.001, p = .606, for different and equal covariate effects,
respectively; Table 8].

In the OMM, standard errors associated with the residual
variances are often biased as well. The standard errors of
the cluster-level variance s

0 2
u are underestimated in two

situations: when the within-cluster effect is ten times as
small as the contextual effect (Table 6) and when the total
covariate effect is small and the within-cluster and
contextual effects differ (Table 7). In all other situations,
the standard errors associated with the cluster-level variance
s

0 2
u are accurately estimated. The standard errors estimates

associated with the subject-level variance s
0 2
e are over-

Model Parameter Peculiarity χ2 df p Value

ICE

CDEMM γconst 3.630 4 .458

s2
e 3.431 4 .488

OMM g
0
const 26.737* 4 .00002

s
0 2
e 3.669 4 .453

TCE

CDEMM γconst Different covariate effects 2.179 2 .336

Equal covariate effects 0.972 2 .615

s2
e Different covariate effects 0.667 2 .716

Equal covariate effects 1.001 2 .606

OMM g
0
const Different covariate effects 26.453* 2 .00000

s
0 2
e Different covariate effects 0.348 2 .840

Equal covariate effects 2.803 2 .368

Table 8 Results of χ2 tests on
significant coverages, by in-
equality of the covariate effects
(top panel) and by total cova-
riate effect (bottom panel)

ICE, inequality of covariate
effects; TCE, total covariate ef-
fect; CDEMM, covariate
different-effects model; OMM,
ordinary multilevel model.
* Significant at the p < .0001 level

Table 9 Primary and post hoc Fisher’s exact tests on the significant
coverages, by inequality of the covariate effects (top panel) and by
total covariate effect (bottom panel)

Peculiarity σu
2 g

0
const

ICE

1 vs. 0.333 .013

1 vs. 3 .171A .059

1 vs. 0.1 .00000*

1 vs. 10 .00012

10 vs. 0.333 .026

3 vs. 10 .040

0.1 vs. 3 .005

0.1 vs. 10 .438

0.333 vs. 3 .550

0.333 vs. 10 .145

TCE

.1 vs. .3 Equal covariate effects .406A

.1 vs. .3 Different covariate effects .042

.3 vs. .5 .003

.1 vs. .5 .00000****

ICE, inequality of covariate effects; TCE, total covariate effect.
A Primary Fisher’s exact test. * Significant at the p < .0001 level.
** Significant at the p < .00017 level. *** Significant at the p < .001 level.
**** Significant at the p < .00033 level
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estimated in all conditions (Table 6 and 7). Table 8 shows
that the overestimation does not depend on the inequality of
the covariate effects [χ2(4) = 3.669, p = .453], nor on the
magnitude of the total covariate effect [χ2(2) = 0.348,
p = .840, when the within-cluster and contextual effects
differ, and χ2(2) = 2.803, p = .368, when they are equal].

To sum up, the standard errors of the constant and of the
first-level variance are biased in both models in all conditions.
The standard errors of the cluster-level variance are biased in
both models in some conditions. However, the standard errors
of the treatment effect are unbiased, whether the different
within- and between-cluster effects are ignored or not.

Summary and discussion

The parameter of main interest—that is, the treatment
effect, γtreat in the covariate different-effects multilevel
model and g

0
treat in the ordinary multilevel model—and its

standard errors are estimated without bias in all conditions
by both models. If a researcher’s only interest is in the
treatment effect, it is sufficient to apply an ordinary
multilevel model and ignore possible unequal within-
cluster and contextual effects of a subject-level covariate.
However, researchers who are interested in other parame-
ters as well should take notice of the differences between
the two models with respect to parameter and standard error
estimates.

When the CDEMM is applied—that is, when the model
takes into account the possibility of different within-cluster
and contextual effects of a first-level covariate—all param-
eter estimates are unbiased. This does not hold when a
model is applied that assumes the within-cluster effect to be
equal to the contextual effect when this assumption is
violated—that is, when the OMM is applied to data with
unequal within-cluster and contextual effects. In this
situation, the random parameters—that is, the cluster-level
variance s

0 2
u and the subject-level variance s

0 2
e —are biased

in almost all conditions. This may be tolerable, since the
random parameters in cluster-randomized trials are usually
viewed as nuisance parameters. However, in, for example,
school effectiveness research, the random parameters are of
particular interest. In these situations, biased random
parameters are not tolerable.

With respect to the standard errors, we have shown that
the standard errors of the constant γconst and of the variance
components s2

u and s2
e are biased in both the OMM and the

CDEMM when the models are applied to data with
different covariate effects. Again, these biases may be
tolerable, since they are associated with either a nuisance
parameter (i.e., the constant g

0
const) or with nonnormally

distributed parameters (i.e., the residual variances s2
u and

s2
e ). Even if variance parameters are of interest, it is not

advised to use the Wald test when evaluating variance
components.

In general, it is unknown whether the effect of the
first-level covariate differs from or equals the contextual
effect. When the effects are equal, both models perform
equally well, and when the effects differ, the CDEMM
gives better estimates of the variance components. When
a researcher is only interested in the treatment parameter,
ignoring a possible difference between the within-cluster
and contextual effects will do no harm. However, when a
researcher is also interested in the variance components
of his model, we advise that the covariate different-
effects model be used.
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