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Abstract We propose a two-stage method for comparing
standardized coefficients in structural equation modeling
(SEM). At stage 1, we transform the original model of interest
into the standardized model by model reparameterization, so
that the model parameters appearing in the standardized model
are equivalent to the standardized parameters of the original
model. At stage 2, we impose appropriate linear equality
constraints on the standardized model and use a likelihood
ratio test to make statistical inferences about the equality of
standardized coefficients. Unlike other existing methods for
comparing standardized coefficients, the proposed method
does not require specific modeling features (e.g., specification
of nonlinear constraints), which are available only in certain
SEM software programs. Moreover, this method allows
researchers to compare two or more standardized coefficients
simultaneously in a standard and convenient way. Three real
examples are given to illustrate the proposed method, using
EQS, a popular SEM software program. Results show that the
proposed method performs satisfactorily for testing the
equality of standardized coefficients.
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In social science research, scales of measurement are usually
arbitrary, and using the same metric for all variables is rare.
Social researchers often have to consider the issue of
standardization. Generally speaking, unstandardized coeffi-
cients are model parameter estimates based on the analysis of
raw data. In contrast, standardized coefficients are model
parameter estimates based on the analysis of standardized
data, in the sense that all variables are supposed to have unit
variance. Standardized data are affected less by the scales of
measurement and can be used to compare the relative impact
of variables that are incommensurable (i.e., measured in
different units on the same/different scales). In multiple
regression analysis, for example, researchers are advised to
use the beta weights (i.e., standardized regression coefficients)
for comparing the relative importance of different incommen-
surable independent variables for the outcome (Fox, 1997). In
fact, there are two different contexts for comparing stan-
dardized coefficients. The first is a within-group comparison
in which standardized coefficients across different variables
are compared within a single sample. The second is a
between-group comparison in which standardized coeffi-
cients for the same variables are compared across different
samples. This article deals primarily with the first context,
because it is more likely for different variables to be
incommensurable within a single sample and the standard-
ization issue is of particular relevance to this context.

To put the standardization issue into perspective, let us
consider an example by using data from the Organization
for Economic Cooperation and Development (OECD)
Programme for International Student Assessment (PISA)
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2006 (OECD, 2009).1 Specifically, a regression model is
proposed for examining the effects of parental educational
level (V2) and child’s home possession (V3) on a child’s
educational resources at home (V4). Table 1 summarizes the
covariance matrix of the variables on a sample of 200 Hong
Kong students.

To evaluate the relative importance of the two predictors
for the dependent variable, we test the equality of the two
regression coefficients by using a likelihood ratio (LR) test.A
standard path model analysis is conducted to test the
unstandardized hypothesis H0: γ1 = γ2, whereas the proposed
method, which will be explained in the later section, is
applied to the test of the standardized hypothesis H0: γ1* =
γ2*. The analysis is done by using EQS 6.1.2 Table 2 (lower
panel) shows the LR test results. In the unstandardized
condition (H0: γ1 = γ2), the result is significant, with Δχ2 =
6.002, Δdf = 1, p < .05, suggesting that the effects of V2 and
V3 on V4 are different from each other. However, in the
standardized condition (H0: γ1* = γ2*), the result is not
significant, with Δχ2(1) = 0.011, Δdf = 1, p > .05, suggesting
that the standardized effects of V2 and V3 on V4 are the
same. The seemingly inconsistent findings indicate the fact
that these are, indeed, two different tests assessing the
equality of different model parameters. If H0: γ1 = γ2 is the
null hypothesis we test in the unstandardized condition, the
null hypothesis in the standardized condition will become
H0: γ1* = γ2*, where g1» ¼ SDðV2Þ

SDðV4Þ g1 and g2» ¼ SDðV3Þ
SDðV4Þ g2. It

is clear that if the standard deviations (SDs) of V2 and V 3 are
similar (i.e., V2 and V3 are measured by comparable
metrics), the two tests will lead to similar results. However,
V2 and V3 are measured in very different metrics in this
example. The variance of V 2 (=9.07) is about ten times
larger than the variance of V 3 (=0.84), and, therefore, the
two tests lead to a very different statistical conclusion.

Behavioral researchers are often interested in comparing
the effects of different variables. In some situations, one can
draw meaningful conclusions only by comparing different
variables in the standardized metric and the associated
standardized coefficients thereof. As in the example above,
the impact of parental educational level and child’s home
possession are, in fact, similar if we consider the two effects
in a standardized metric. Unfortunately, we sometimes may

fail to recognize the fact that the tests for H0: γ1 = γ2 and
H0: γ1* = γ2* are different and, therefore, may attempt to
make statistical conclusions about the standardized coef-
ficients on the basis of the comparison of their unstandard-
ized counterparts. This could be problematic because, as
was shown in our previous example, the two tests could
lead to a very different result.

Structural equation modeling (SEM) is becoming an
increasingly important statistical technique among applied
researchers because of its flexibility for studying a variety
of different models (e.g., Hershberger, 2003; Tremblay &
Gardner, 1996). Moreover, the development of user-
friendly and powerful software programs has contributed
significantly to the popularity of this technique (Guo,
Perron, & Gillespie, 2009). Nevertheless, different SEM
programs are equipped with different programming fea-
tures, which may be critical for addressing a particular
research question, such as the comparison of standardized
coefficients. The aim of this study, therefore, is to propose a
general method for comparing the standardized coefficients
in SEM based on the idea of model reparameterization.

Although there currently exist other methods for com-
paring standardized coefficients in SEM, we argue that the
proposed method is a more general and flexible one. These
existing methods are known to be program specific, in the
sense that their implementation depends critically on the
special features, such as the specification of nonlinear
constraints and the availability of an overall test for
comparing three or more parameters simultaneously, which
some popular programs are still lacking. Our proposed
method, on the other hand, does not require any advanced
programming features except the basic functions, and it is,
therefore, compatible with all major SEM software pro-
grams. We believe that one issue that prevents applied
researchers from comparing standardized coefficients is that
the researchers are limited by the inability of their SEM
software programs to provide the relevant tests. In the next
section, we will briefly summarize the existing methods for
comparing standardized coefficients in SEM. The proposed
method is then given in the third section. Three real
examples that illustrate the proposed method will be
considered in the fourth section. A discussion and con-
clusions will be provided in the final section.

Comparing standardized coefficients in structural
equation modeling

Built-in functions by different software programs

The early development of SEM software programs primarily
focused on parameter estimation and statistical inference of
unstandardized parameters. Although many programs nowa-

1 The Programme for International Student Assessment (PISA) is a
triennial international assessment of 15-year-old school children’s
capabilities in reading literacy, mathematics literacy, and science
literacy. The database can be accessed through the PISA Webpage
(www.pisa.oecd.org). In this article, data from PISA collected in 2006
was used. PISA 2006 was administrated in 57 countries/economies
(OECD 2009). Two hundred cases from Hong Kong were randomly
selected from the PISA 2006 data, and five variables are used in this
article.
2 EQS program codes for fitting the models are available as an
Electronic Supplementary Material.
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days have built-in functions for handling standardized
parameters, these functions are still very limited. For example,
the current versions of AMOS (Arbuckle, 2007), EQS
(Bentler, 1995), and LISREL (Jöreskog & Sörbom, 1996)
can provide only the standardized parameter estimates,
without their standard errors (SEs). Mplus 5.0 or above
(Muthén & Muthén, 2007) provides both the standardized
parameter estimates and their SEs. The program, however,
does not report the covariances among the standardized
parameter estimates, which are also important for the test
because the standardized coefficients being compared are
generally not independent. Moreover, none of these pro-

grams has any built-in function that allows their users to
compare the standardized coefficients directly.

Phantom variables approach

Cheung (2009b) has given a detailed description of how to
construct the confidence intervals on the difference between
two standardized coefficients with the use of phantom
variables. A phantom variable is a latent variable without
observed indicators and has no residual (Rindskopf, 1984).
It can be used to trick model-fitting programs into imposing
constraints that are not normally within their repertoire

Parental occupational
status (V1)

Parental education
level (V2)

Home possession
(V3)

Home educational
resources (V4)

Reading
scores (V5)

V1 1.0000 0.6606 0.3547 0.1570 0.2310

226.2577

V2 1.0000 0.3743 0.3962 0.2110

29.9232 9.0692

V3 1.0000 0.3887 0.2806

4.8812 1.0312 0.8371

V4 1.0000 0.2391

1.9878 1.0043 0.2993 0.7084

V5 1.0000

271.1429 49.5848 20.0337 15.7012

6088.8281

Table 1 Sample covariance
(below diagonal) /correlation
(above diagonal) matrix for
Hong Kong students from
PISA2006 (OECD, 2009)
(N = 200)

Table 2 Example of the comparison of unstandardized results and standardized results

Unstandardized estimatesa Standardized estimatesb

Unconstrained model Constrained modelc Unconstrained model Constrained modeld

Parameter Est. SE Est. SE Est. SE Est. SE

V2→V4 (γ1/γ1*) 0.081 0.019 0.109 0.015 0.292 0.065 0.286 0.032

V3→V4 (γ2/γ2*) 0.257 0.062 0.109 0.015 0.280 0.065 0.286 0.032

V3 ↔ V4 (f/f*) 1.031 0.209 1.031 0.209 0.374 0.061 0.374 0.061

Model chi-square (χ2) 0.000 6.002 0.000 0.011

Degree of freedom (df) 0 1 0 1

Testing H0: γ1 = γ2 Testing H0: γ1* = γ2*

Likelihood ratio test Δχ2 = 6.002, Δdf = 1, p = .014 Δχ2 = 0.011, Δdf = 1, p = .916

Wald teste γ2−γ1 = 0.176 γ2*−γ1* = −0.012
SE = 0.071 SE = 0.113

(γ2−γ1)/SE = 2.475, p = .013 (γ2*–γ1*)/SE = −0.107, p = .915

Est. = parameter estimate; SE = standard error
a Original model of interest was fitted to the observed data by using EQS6.1
bWe first transformed the original model into the standardized model by using the proposed method and fitted the model to the observed data by using
EQS 6.1
c Constrained model is fitted under H0: γ1 = γ2
d Constrained model is fitted under H0: γ1* = γ2*
eWald test resultsare based on the analysis by using Mplus5.2
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(Loehlin, 2004). Many SEM programs have functions that
help to simplify the model specification involving phantom
variables. For example, LISREL has an AP function
(Jöreskog & Sörbom, 1996), and Mplus has a MODEL
CONSTRAINT option (Muthén & Muthén, 2007) for
creating additional parameters. By defining an additional
parameter as the difference between two standardized
coefficients, we can readily obtain the parameter estimate
and its SE and can use the Wald statistic to test its statistical
significance (cf. Cheung, 2009b).

Although the phantom variable approach provides a
general solution for comparing standardized coefficients in
SEM, it can be implemented only by using a specific class of
SEM software programs. First, a nonlinear constraint is an
essential feature of the phantom variables approach, because
the difference in two standardized coefficients (i.e., the
additional parameter) is defined as a nonlinear function of
the basic model parameters. As a result, users must have an
SEM program that supports model fitting with nonlinear
constraints (e.g., LISREL and Mplus) in order to implement
the method. Unfortunately, not many applied researchers can
get access to these programs freely. In fact, most local
academic departments and research institutes can afford to
support and maintain only one SEM program due to various
practical reasons, such as limited resources, personal prefer-
ence, and faculty training. It is not feasible for them to switch
from one SEM program to another. Furthermore, many
reported SEM studies indicated that their analyses were based
primarily on AMOS or EQS, which currently do not support
the specification of nonlinear constraints. For example, a
review by Guo et al. (2009) showed that around 50% of the
studies used either AMOS or EQS but only around 3% of
those used Mplus. Similarly, another review by Jackson,
Gillaspy, and Purc-Stephenson (2009) suggested that the
figures were around 40% and 7%, respectively.

Second, the phantom variable approach basically defines
an additional parameter as the difference of two standard-
ized coefficients and tests its value against zero by using the
Wald statistic. Consequently, whether this approach can be
extended to the comparison of three or more standardized
coefficients simultaneously will depend further on the
availability of an overall test for all the additional
parameters concerned. As far as we know, most of the
SEM programs fail to perform an overall test like this,
except Mplus. This further narrows down one’s choices of
programs for comparing standardized coefficients.

The proposed method

The proposed method uses model reparameterization for
standardizing model parameters. The idea of model
reparameterization is to transform the hypothesized model

into a set of successive covariance-equivalent models that
share the same implied covariance matrix as the original
model. As a result, a coefficient that does not exist as a
model parameter in the original model becomes a model
parameter in the final transformed model. Chan’s (2007)
sequential model-fitting method for comparing the indirect
(mediation) effects in SEM demonstrated one of the usages
of the model reparameterization technique. Our proposed
method applies the model reparameterization technique to
the standardization of model parameters and demonstrates
another usage of the technique.

The proposed method adopts a two-stage approach for
comparing standardized coefficients. At stage 1, we first
transform the original model (M1) into the standardized
model (M2) by reparameterization so that the path
coefficients as described in the transformed model are
equivalent to the standardized path coefficients of the
original model. Once the standardized coefficients appear
as free model parameters in M2, we can test their differ-
ences. Hence, at stage 2, we compare the standardized
coefficients by imposing appropriate equality constraint(s)
on the parameters of interest in M2 and perform statistical
inference on the basis of the LR test. In the following
section, we give a detailed description of how to transform
the original model into the standardized model at stage 1.

General framework of model transformation at stage 1

Like other SEM analyses, we first define a given model that
is of theoretical interest. We label this model as the original
model, M1. Figure 1a show M1 with k effects acting on Y,
where γ1, γ2, . . .γk are the unstandardized path coefficients,
fij is the covariance between Xi and Xj, and E is the error
term. Without loss of generality, all variables are assumed
to have zero means. The model equation of the original
model in standardized form can be written as follows:

Y ¼
Xk
i

gi Xiþ E

Y

SDðY Þ ¼
Xk
i

SDðXiÞgi
SDðY Þ � Xi

SDðXiÞ
� �

þ E

SDðY Þ

ð1Þ

Our task is, therefore, to transform the original model so
that the standardized coefficients, gi» ¼ SDðXiÞ

SDðY Þ gi, become
model parameters of the standardized model, M2.

Figure 1b shows a half-transformed model of M1. We
first transform the model by regressing the (k + 1)observed
variables on (k + 1) dummy latent variables (DLVs), F1,
F2, . . . , Fk, and FY, which are manipulated to have unit
variance. D is the disturbance term. Chan (2007) has used
the term DLV to denote the variable that was used to
factorize the original mediator in the sequential model-
fitting method. The function of DLV is similar to
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Fig. 1 A general regression model with k effects on Y. a Original model (M1). b Half –transformed model. c Final standardized model (M2).
Observed variables (X1, . . . , Xk and Y) are omitted in panel c
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Rindskopf’s (1984) concept of a phantom variable.3 The
model equation of the half-transformed model is as follows:

FY ¼
Xk
i

gi»Fi þ D ð2Þ

By standardizing F1, F2, . . . , Fk, and FY (i.e., all the
variables have unit variance), Eq. 2 will be equivalent to
Eq. 1. In other words, γi* will be equal to the standardized
path coefficients of the original model. Since F1 to Fk are
independent variables, we can fix their variances directly as
1.0 in SEM. However, FY is a dependent variable, and its
variance does not exist as a free parameter in SEM, so we
cannot fix its variance directly. Therefore, the question
becomes how we can standardize FY. From Eq. 2, the
variance of FY is

varðFY Þ ¼ var
Xk
i

gi»Fiþ D

 !

¼
Xk
i

gi»
2 þ 2

XX
i6¼j

gi»gj»fij»þ varðDÞ

¼ gðqÞ þ varðDÞ

ð3Þ

where fij* is the covariance between Fi and Fj, θ is a vector

of unknown model parameters , gðqÞ ¼Pk
i
gi»

2þ
2
PP

i6¼j
gi»gj»fij» is defined as the total variances and

covariances due to the antecedent variables, and var(D) is
the disturbance variance. If var(D) = 1−g(θ), then var(FY)
will become 1.0 as var FYð Þ ¼ gðqÞ þ ½1� gðqÞ� ¼ 1:0.

In programs such as LISREL and Mplus, we can fix the
disturbance variance by using nonlinear constraints, but our
aim is to propose a method that does not involve nonlinear
constraints. Therefore, we need to further transform the
model into the final standardized model (M2) by regressing
the disturbance term on a phantom variable, F999,4 with
unit variance and k image latent variables (F1′, F2′ . . . Fk′),
with variance = −1.0.We labeled F1′, F2′ . . . Fk′ as image
latent variables and the structure formed by them as the
image structure of the effects on FY. An image structure is

defined by the following four properties: (1) The image
structure has the same structural form as the target
structure; (2) the path coefficients of the image structure
are the same as the corresponding path coefficients of
the target structure; (3) var(Fi′) = −var(Fi); and (4)
cov(Fi′, Fj′) = −cov(Fi, Fj). As can be seen in Fig. 1c,
F1′ to Fk′ has the same structure as F1 to Fk. The path
leading from Fi′ to D is the same as the path leading from
Fi to FY (i.e.,γi*). Var(Fi′) = −1, which is the image of
var(Fi) = 1; and cov(Fi′, Fj′) = −fij*, which is the image of
cov(Fi,Fj) = fij. In theory, the variance of a random
variable could not be negative. In this case, however, we
pragmatically consider negative unit variance of Fi′ to
generate the desired variance of D.

In Fig. 1c, the effect of Fi′ on D (γi*) is equal to the
effect of Fi on FY, and the path leading from F999 to D is
always fixed at 1.0. By fixing var(F999) = 1.0,
var(Fi′) = −1.0, and cov(Fi′, Fj′) = −fij*, we will have

D ¼ F999þ
Xk
i

gi
»
Fi

0

varðDÞ ¼ varðF999Þ þ
Xk
i

gi»
2varðFi0Þ þ 2

XX
i6¼j

gi»gj»ð�fij»Þ

¼ 1:0�
Xk
i

gi»
2 þ 2

XX
i 6¼j

gi»gj»fij»

 !
¼ 1:0� gðqÞ

ð4Þ
In short, two sources of effects act on the disturbance

term, D, in M2: (1) the effect of phantom variable, F999,
with unit variance, and (2) the effects of the image structure
(F1′ to Fk′), which make up a total variance of −g(θ).By
substituting Eq. 4 into Eq. 3, we can see that the variance of
the dependent latent variable, FY, is fixed at 1.0 non-
stochastically:

varðFY Þ ¼ gðqÞ þ varðDÞ ¼ gðqÞ þ 1� gðqÞ ¼ 1:0: ð5Þ

To summarize, two important criteria need to be
observed when a model transformation is performed. First,
the variances of the DLVs in M2 must be fixed at 1.0
nonstochastically. Second, M2 must have the same implied
covariance structure as the original model. Once we
successfully transform the original model into the standard-
ized model at stage 1, comparing the standardized coef-
ficients using the LR test at stage 2 is straightforward.

Real examples

Three real examples are considered in order to
illustrate the proposed method using EQS (Bentler,
1995). Readers who are interested in working on these
examples can also download the complete EQS program

3 Unlike Rindskopf’s (1984) original definition of a phantom variable,
which is a latent variable with no observed indicators, a DLV has
other variables loaded on it. The concept of DLV, rather than phantom
variable, is adopted here because the latent variables in the
standardized model have the original observed variables loaded on
them.
4 Although the general function of phantom variables in both the
phantom variable approach and the proposed method is to impose
parameter constraints on the model, they serve different roles in the
two methods. The phantom variable is used for creating a new
parameter in the phantom variable approach, whereas the phantom
variable F999 is used for reparameterizing the disturbance variance
here.
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codes (see Electronic Supplementary Material). The
first two examples use a sample that consists of 200
(Hong Kong) cases randomly selected from the PISA
2006 data set (OECDS, 2009) on five variables. They are,
namely, parental occupational status (V1), parental
educational level (V2), child’s home possession (V3),
child’s home educational resources (V4), and child’s
reading ability (V5). Table 1 summarizes the sample
covariance matrix of the variables.

Example 1: A regression model with three predictors

Stage 1 Figure 2a shows the original model, M1. In this
example, a regression model with three predictors is
considered. Specifically, we attempt to compare the
standardized effects of parental occupational status (γ1*),
parental educational level (γ2*), and child’s home posses-
sion (γ3*) on child’s reading ability (V5). The model is
fitted to the observed data by using EQS6.1 for Windows.
Since M1is a saturated model with 0 degrees of freedom, it
has a perfect fit with model chi-square, χ2 = 0.

We follow the general framework to transform M1 into
the standardized model, M2. Figure 2b depicts the
standardized model, M2. First, each observed variable is
regressed on a DLV (F1 to F4). Variances of F1 to F3 are
fixed at 1.0. F5 is the disturbance term of F45. F999 is the
phantom variable with unit variance, and the path from
F999 to F5 is fixed at 1.0. F6 = F1′, F7 = F2′, and F8 = F3′
are image latent variables with negative unit variance, and
they form the image structure of F1, F2, and F3.

Second, M2 is fitted to the observed data.6 The path
coefficients of the image latent variables F6, F7, and F8 are
constrained to be equal to the coefficients of the
corresponding target variables F1, F2, and F3. Covariance
between the image latent variables is constrained to be
equal to the negative of the covariance between the target
variables. Six linear constraints (three on γi*'s and three on
fij*'s) are imposed on the model altogether. Again, the
model has a perfect fit with model chi-square, χ2 = 0, df =
0. Table 3 shows the parameter estimates and their standard
errors (SEs) in M2 (under the heading “reparameteriza-
tion”). By comparing the parameter estimates and their SEs

with the standardized parameter estimates and their SEs
reported by Mplus (with a built-in function) and LISREL
(by using the phantom variables approach7), they are
perfectly comparable with each other.8 In other words, the
original model has been successfully transformed into the
standardized model, and the path coefficients that appear in
M2 are equivalent to the standardized coefficients of the
original model, M1.

Stage 2 To test the equality of the three standardized
coefficients from V1, V2, and V3 to V5, we fit a constrained
model under H0: γ1* = γ2* = γ3* by imposing two linear
equality constraints: (1) F1→F4 = F3→F4 and (2) F2→
F4 = F3→F4. The model chi-square is χ2 = 2.070, df = 2,
p = .355. Table 4 shows the model chi-squares and the
parameter estimates of the constrained and unconstrained
models. We compare the chi-square of the constrained
model with that of the unconstrained model. The LR test
gives Δχ2 = 2.070−0 = 2.070, Δdf = 2−0 = 2, p > .05,
suggesting that there is no significant difference among the
standardized regression coefficients. Hence, we can con-
clude that the relative effects of parental occupational
status, parental educational level, and child’s home posses-
sion on child’s reading ability are the same.

Example 2: A path model with three antecedent variables,
one mediator, and one outcome variable

Stage 1 We further hypothesize that the child’s educational
resources at home (V4) mediates the relationships of parental
occupational status (V1), parental educational level (V2), and
child’s possession at home (V3) with child’s reading ability
(V5). Therefore, we define the original model, M1 (Fig. 3a),
as a five-variable path model with V1, V2, and V3 as the
antecedent variables, V4 as the mediator, and V5 as the
outcome variable. In this example, the aim is to compare the
standardized effects of V1, V2, and V3 on V4. When γ1* =
γ2* = γ3*, the indirect effects on V5 are said to be equal. We
fit M1 to the observed data using EQS. The chi-square
goodness-of-fit statistic is χ2 = 13.218, df = 3, p < .01.

5 In EQS, the disturbance term can appear only as an exogenous
variable, which cannot be regressed on other variables. To solve this
problem, we rename the disturbance term as F5, an ordinary latent
factor.
6 In all examples, the standardized model fails to converge initially
with the default starting values in EQS. The problem is solved by
providing better starting values to the algorithm. As a general
guideline, one can first fit the original model to obtain the
standardized parameter estimates and use them as the starting values
in the transformed model. AMOS, on the other hand, does not have
such a problem with their default starting values.

8 In addition, we fit the same original model (M1) to the correlation
matrix by using the SEPATH module (Steiger, 1995) in Statistica 9.0,
which has a built-in option for implementing a constrained estimation
method (Browne, 1982; Browne & Mels, 1992; Mels, 1989),and the
program returns the same standardized results (not presented here), as
compared with those of our proposed method (including estimates,
SEs, test statistics, model fits, and chi-square change).

7 By following the phantom variable approach, we create additional
parameters to define the standardized parameters (using AP keyword)
in LISREL. The estimated SEs of the additional parameters, which are
equivalent to the estimated SEs of the corresponding standardized
parameters, are reported.
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Table 3 Summary of the standardized parameter estimates and their estimated standard errors in Example 1 by analysis using different structural
equation modeling programs and approaches

Program EQS6.1 Mplus5.2 LISREL8.8

Method Reparameterization Correlation Bootstrapa Built-inb Phantom variable

Parameter Est. SE Est. SE Est. SE Est. SE Est. SE

γ1* .121 .090 .121 .091 .125 .083 .121 .090 .121 .091

γ2* .049 .091 .049 .091 .044 .088 .049 .091 .049 .092

γ3* .219 .072 .219 .073 .222 .074 .219 .072 .219 .072

f12* .661 .040 .661 .085 .660 .037 .661 .040 .661 .040

f13* .355 .062 .355 .075 .353 .057 .355 .062 .355 .062

f23* .374 .061 .374 .076 .377 .057 .374 .061 .374 .061

Est. = parameter estimate; SE = standard error; Standard errors that deviate substantially from estimates of other methods are in bold face.
a Regular (i.e., completely nonparametric) bootstrap is used; replication = 1,000
b The StdYX standardization are reported here. StdYX uses the variances of the continuous latent variables, as well as the variances of the background and
outcome variables for standardization (L. K. Muthèn & B. O. Muthèn, 2007)

Fig. 2 Models in Example 1. a Original model (M1). b Standardized model (M2). V1 = parental occupational status, V2 = parental educational level,
V3 = child’s home possession, V5 = reading scores. Labels for parameters of interest are printed
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Following the proposed method, we first transform the
model into the standardized model. Although the original
model is more complex in this example, the logic of model
transformation remains the same. Figure 3b depicts the
standardized model. Again, each observed variable is
regressed on a DLV (F1 to F5). F1 to F3 are independent
variables, and their variances are fixed at 1.0. F4 and F5 are
the dependent variables, so we use the disturbance terms,
F6 and F7, to standardized F4 and F5, respectively.

For F4, let g4(θ) be the total variances and covariances
due to F1 to F3. Our task, therefore, is to cancel out g4(θ)
by making use of F6 so that F4 can have unit variance. We
follow the general framework and regress F6 on F888, F8,
F9, and F10. Hence, F888 = F999 is the phantom variable
with unit variance. F8 = F1′, F9 = F2′, and F10 = F3′ are
image latent variables with negative unit variance, and they
form the image structure of F1, F2, and F3 on F4. The path
leading from F888 to F6 is fixed at 1.0.

Similarly, for F5, g5(θ) is equal to the variance due to F4.
To standardized F5, we need to cancel out g5(θ) by
regressing F7 on F999 and F11. F999 is the phantom
variable with unit variance, and F11 = F4′ is the image latent
variable of F4 in this case. The path leading from F999 to F7
is fixed at 1.0. Since the variance of F4 has been fixed at 1.0
indirectly in the previous step, we can cancel the effect of F4
and impose unit variance on F5 by simply fixing the
variance of F11 at −1.0 and constraining the path from
F4 to F5 to be equal to the path from F11 to F7.

As in Example 1, we fit M2 to the observed data. Four
linear equality constraints are imposed on the path
coefficients of the image latent variables (F8 to F11) and
those of their corresponding target variables (F1 to F4). The

three covariances among F8, F9, and F10 are constrained to
be equal to the negative of the covariances among F1, F2,
and F3. Seven linear constraints are specified altogether. M2
gives exactly the same chi-square value as M1, χ2 = 13.218,
df = 3, p < .01, indicating that the two models are covariance
equivalent and have the same implied covariance matrix.
Table 5 shows the parameter estimates and their SEs, which
again are the same as the results given by Mplus and
LISREL.9

Stage 2 To compare the standardized coefficients of V1, V2,
and V3 on V4, we fit a constrained model by imposing two
linear equality constraints: (1) F1→F4 = F3→F4 and (2)
F2→F4 = F3→F4. As is shown in Table 6, the model chi-
square is χ2 = 39.097, df = 5. The LR test gives Δχ2 =
39.097−13.218 = 25.879, Δdf = 5−3 = 2, p < .001,
suggesting that the relative effects of parental occupational
status, parental education level, and child’s home posses-
sion on child’s educational resources at home are not all
equal.Hence, the indirect effects on child’s reading ability
are also not all equal.

Example 3: A structural model with two antecedent
variables and one outcome variable

This example further demonstrates how the proposed
method can be applied for comparing standardized coef-

Table 4 Hypothesis testing results based on the unstandardized model (M1) and standardized model (M2) in Example 1

Model M1(Unstandardized) M2 (Standardized)

Unconstrained Constraineda Unconstrained Constrainedb

Parameter Est. SE Est. SE Est. SE Est. SE

γ1/γ1* 0.626 0.470 1.107 0.305 0.121 0.090 0.125 0.026

γ2/γ2* 01.273 2.369 1.107 0.305 0.049 0.091 0.125 0.026

γ3/γ3* 18.712 6.261 1.107 0.305 0.219 0.072 0.125 0.026

Model chi-square (χ2) 0.000 8.201 0.000 2.070

Degree of freedom (df) 0 2 0 2

Likelihood ratio test results

Hypothesis Δχ2 Δdf p Δχ2 Δdf p

H0: γ1 = γ2 = γ3 / 8.201* 2 .017 2.070 2 0.355
H0: γ1* = γ2* = γ3*

Est. = parameter estimate; SE = standard error

*Result is significant at 5% significance level
a Constrained model is fitted under H0: γ1 = γ2 = γ3.
b Constrained model is fitted under H0: γ1* = γ2* = γ3*

9 Again, the same original model (M1) is fitted to the correlation
matrix by using the SEPATH module in Statistica 9.0. The same
standardized results (not presented here), as compared with those of
our proposed method, are obtained.

738 Behav Res (2011) 43:730–745



ficients in models with latent variables. Six variables were
selected from the dataset in Schoon and Parson (2002), who
studied how the social structure influences teenage aspira-
tions and subsequent occupational attainment. They are,
namely, examination score (V1), highest qualifications (V2),
job aspiration (V3), educational aspiration (V4), Goldthorpe
(V5), and RGSC (V6). The six selected variables together
measure three latent factors: educational achievement (F1),
teenage aspiration (F2), and occupational attainment (F3).
The sample consists of 6,407 cases from the 1970 British
Cohort Study (BCS70). Table 7 summarizes the sample
covariance matrix of the variables.

Stage 1 Figure 4a shows the original model, M1. Our aim
is to compare the standardized coefficients of educational
achievement (γ1*) and teenage aspiration (γ2*) on occupa-
tional attainment. The model is fitted to the observed data
by using EQS. The chi-square goodness-of-fit statistics are
χ2 = 1.199, df = 6, p > .05.

We follow the general framework to transform M1 into
the standardized model, M2. Fig. 4b depicts the standard-
ized model, M2. Since the latent factors F1, F2, and F3 are
the target factors that we are going to standardize, each
latent factor is regressed on a DLV (F4 to F6). Variance of
F4 and F5 are fixed at 1.0. F7 is the disturbance term of F6.

Fig. 3 Models in Example 2. a Original model (M1). b Standardized model (M2). V1 = parental occupational status, V2 = parental educational level,
V3 = child’s home possession, V4 = child’s home educaitonal resources, V5 = reading scores. Labels for parameters of interest are printed
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F999 is the phantom variable with unit variance, and the
path from F999 to F7 is fixed at 1.0. F8 = F4′ and F9 = F5′
are image latent variables with negative unit variance, and
they form the image structure of F4 and F5.

M2 is then fitted to the observed data. The path
coefficients of the image latent variables, F8 and F9 are
constrained to be equal to the coefficients of the
corresponding target variables F4 and F5. Covariance

between F8 and F9 is constrained to be equal to the
negative of the covariance between F4 and F5. Three linear
constraints are imposed on the model altogether. A
comparison with the model chi-square of M1, M2 gives
the same chi-square value, χ2 = 1.199, df = 6, p>.05,
indicating that the two models are covariance equivalent
and have the same implied covariance matrix. Table 8
shows the parameter estimates and their SEs. The parameter

Table 5 Summary of the standardized parameter estimates and their estimated standard error in Example 2 by analysis using different structural
equation modeling programs and approaches

Program method parameter EQS6.1 Mplus5.2 LISREL8.8

Reparameterization Correlation Bootstrap Built-inb Phantom variable

Est. SE Est. SE Est. SE Est. SE Est. SE

γ1* −.245 .081 −.245 .082 −.242 .075 −.245 .081 −.245 .082

γ2* .442 .079 .442 .083 .440 .082 .442 .079 .442 .080

γ3* .310 .064 .310 .067 .306 .065 .310 .064 .310 .065

β* .239 .067 .239 .069 .238 .066 .239 .067 .239 .067

f12
* .661 .040 .661 .085 .660 .038 .661 .040 .661 .040

f13* .355 .062 .355 .075 .353 .057 .355 .062 .355 .062

f23* .374 .061 .374 .076 .377 .057 .374 .061 .374 .061

Est. = parameter estimate; SE = standard error; standard errors that deviate substantially from estimates of other methods are in bold face.
a Regular (i.e., completely nonparametric) bootstrap is used; replication = 1,000
b The StdYX standardization are reported here. StdYX uses the variances of the continuous latent variables, as well as the variances of the background and
outcome variables for standardization (L. K. Muthèn & B. O. Muthèn, 2007)

Table 6 Hypothesis testing results based on the unstandardized model (M1) and standardized model (M2) in Example 2

Model M1 (Unstandardized) M2 (Standardized)

Unconstrained Constraineda Unconstrained Constrainedb

Parameter Est. SE Est. SE Est. SE Est. SE

γ1/γ1* −.014 .005 .011 .003 −.245 .081 .164 .024

γ2/γ2* .124 .023 .011 .003 .442 .079 .164 .024

γ3/γ3* .285 .061 .011 .003 .310 .064 .164 .024

Model chi-square (χ2) 13.218 62.244 13.218 39.097

Degree of freedom (df) 3 5 3 5

Likelihood ratio test results

Hypothesis Δχ2 Δdf p Δχ2 Δdf p

H0: γ1 = γ2=γ3/H0: γ1* = γ2* = γ3* 49.026 2 <.001 25.879 2 <.001

Lagrange multiplier test (for releasing constraints) results

Hypothesis χ2 df p χ2 df p

H0: γ1 = γ3/H0: γ1* = γ3* 39.252* 1 <.001 22.999* 1 <.001

H0: γ2 = γ3/H0: γ2* = γ3* 25.404* 1 <.001 3.403 1 .065

Est. = parameter estimate; SE = standard error.
* Result is significant at 5% significance level
a Constrained model is fitted under H0: γ1 = γ2 = γ3
b Constrained model is fitted under H0: γ1* = γ2* = γ3*
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estimates and their SEs are the same as the standardized
parameter estimates and their corresponding SEs reported
by Mplus, suggesting that we successfully transformed the
model into the standardized model.

Stage 2 To test the equality of the two standardized
coefficients from F1 and F2 on F3, we fit a constrained
model by imposing a linear equality constraint—that is,
F4→F6 = F5→F6—on M2. Table 8 shows the model chi-
squares and the parameter estimates of the constrained and
unconstrained model (under the heading “Standardized”).
We compare the chi-square of the constrained model with
that of the unconstrained model. The LR test gives Δχ2 =
2.981−1.199 = 1.782, Δdf = 7−6 = 1, p > .05, suggesting
that the relative effects of educational achievement and
teenage aspiration on occupational attainment are not
significantly different from each other. As compared with
the Wald test results based on the analysis by Mplus, the
two tests give the same conclusion about the two
coefficients.

Discussion

In this article, a method for comparing standardized
coefficients in SEM is proposed. Since different variables
are often measured in different units in behavioral research,
comparing their standardized effects will lead to a more
meaningful conclusion, because they are affected less by
the units of measurement. Three real examples are given to
demonstrate the implementation of the proposed method. In
all the examples, our method performs accurately in
standardizing the model at stage 1. It provides the same
standardized parameter estimates and standard errors, as
compared with those reported by Mplus and LISREL
(using the phantom variables approach). At stage 2, the
LR test can be employed as a routine step to compare the
coefficients of interest.

We also compare the LR test with the Wald test results in
the regression example at the beginning of this article and

Example 3. Theoretically, these tests address the same
question, and they are asymptotically equivalent under the
same null hypothesis (Chou & Bentler, 1990; Satorra,
1989). From Tables 2 and 8, the p-values reported by the
LR test and the Wald test are highly comparable, suggesting
that the LR test at stage 2 behaves similarly to the Wald test
used by the phantom variable approach for comparing
standardized coefficients.

It is worthwhile noting that the comparison of
coefficients based on the unstandardized and standard-
ized metrics lead to different statistical conclusions
throughout our examples (see Tables 2, 4, 6, and 8),
because the two tests test different null hypotheses, as was
discussed previously. If researchers fail to recognize the
difference between the two tests and make inference about
one metric on the basis of the analysis of the other, they
may risk drawing a misleading conclusion. Researchers
should pay special attention to the difference between the
two metrics, especially when the variances of the variables
are very different, and should choose the appropriate
metric for testing according to the questions they are going
to address.

There are several distinguishing features of the proposed
method. First, it gives accurate standard error estimates for
the standardized parameters. To obtain the standardized
estimates, it is procedurally tempting for one to standardize
the variables first and analyze the data on the basis of the
correlation matrix, because this can save lots of effort.
However, as is shown in Table 3 and 5 (under the heading
of “Correlation”), an analysis based on the correlation
matrix in general gives us correct parameter estimates but
incorrect SEs (e.g., Bentler, 2007; Cheung, 2009a; Cudeck,
1989). When we analyze the correlation matrix, the
variances of the dependent variables depend on other
random parameters and are, therefore, subject to sampling
variability (i.e., they are not fixed at 1.0 nonstochastically),
which eventually affects the accuracy of the standard error
estimates. We can further verify this by comparing the
correlation-based SEs and our SE estimates with the
bootstrap SEs. Tables 3 and 5 (under the heading
“Bootstrap”) show the standardized parameter estimates

Table 7 Covariance matrix for the 1970 British cohort (N = 6407) from Schoon and Parson’s (2002) study

Exam score (V1) Highest qualifications (V2) Job aspiration (V3) Educational aspiration (V4) Goldthorpe (V5) RGSC (V6)

V1 263.413

V2 5.996 0.436

V3 2.312 0.067 0.212

V4 7.591 0.213 0.164 0.722

V5 78.740 2.271 1.295 4.125 244.923

V6 6.622 0.190 0.110 0.347 14.648 1.440
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Fig. 4 Structural model in
Example 3. a Original model
(M1). b Standardized model
(M2). F1 = educational
achievement, F2 = teenage
aspiration, F3 = occupational
attainment. Labels for parame-
ters of interest are printed
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and their corresponding SEs by bootstrapping.10 As was
expected, the correlation-based SEs deviate quite substan-
tially from the bootstrap estimates for some of the
parameters, suggesting that they are problematic. In
contrast, the SE estimates given by our method agree with
the bootstrap SEs up to two decimal places, suggesting that
they can be trusted generally. Hence, as is shown in our
Examples 1 and 2, it is generally inappropriate to compare
the standardized coefficients based on the analysis of
correlations unless the method of constrained estimation,
which gives the correct SEs, is implemented when a
correlation matrix is analyzed (see Browne, 1982; Browne
& Mels, 1992; Mels, 1989).

Second, the method is compatible with all major SEM
software programs on the market. Unlike other approaches,
our method does not involve the use of nonlinear
constraints, and it requires only the basic standard functions
to work. Although we demonstrate the implementation of
the method only by using EQS, the method can work well

with other programs, such as AMOS,11 too. Researchers
can choose their favorite SEM programs for implementing
the proposed method.

In relation to this, another advantage of our method is
that one can keep the use of programming to a minimum.
The phantom variable approach requires researchers to fully
understand the functional relationships12 among the model
parameters before they can specify the nonlinear constraints
on the additional parameters correctly. In contrast, one can
use the graphical programming capabilities possessed by
some SEM software programs (e.g., EQS and AMOS) to
implement the proposed method and avoid the complicated

Table 8 Summary of the parameter estimates and hypothesis test results in Example 3 by analysis using EQS and Mplus

Program metrics
model Fitted

EQS Mplus

Unstandardized Standardized Unstandardized Standardizeda

Unconstrained
M1

Constrainedb

M1
Unconstrained
M2

Constrainedc

M2
Unconstrained M1 Unconstrained M1

Parameters Est. SE Est. SE Est. SE Est. SE Est. SE Est. SE

γ1/γ1* 0.192 0.024 0.418 0.015 0.212 0.025 0.245 0.006 0.192 0.024 0.212 0.025

γ2/γ2* 16.333 1.570 0.418 0.015 0.278 0.026 0.245 0.006 16.333 1.570 0.278 0.026

f12/f12* 2.332 0.095 2.341 0.096 0.713 0.014 0.710 0.014 2.332 0.095 0.713 0.014

Model
chi-square

χ2 = 1.199,
df = 6, p > .05

χ2 = 112.524,
df = 7,
p > .001

χ2 = 1.199,
df = 6,
p > .05

χ2 = 2.981,
df = 7,
p > .05

χ2 = 1.199,
df = 6, p > .05

χ2 = 1.199, df = 6,
p > .05

Testing H0: γ1 = γ2/H0: γ1* = γ2*

Likelihood
ratio test

Δχ2 = 111.325, Δdf = 1, p < .001 Δχ2 = 1.782, Δdf = 1, p = .182 – –

Wald testd – – bg2 � bg1 ¼ 16:141,
SE = 1.588
ðbg2 � bg1Þ=SE ¼ 10:162,
p < .001

bg2»� bg1» ¼ 0:066,
SE = 0.050,
(bg2»� bg1»Þ=SE ¼
1:325, p = .185

Est. = parameter estimate; SE = standard error
a The StdYX standardization is reported here. StdYX uses the variances of the continuous latent variables, as well as the variances of the background and
outcome variables for standardization (L. K. Muthèn & B. O. Muthèn, 2007)
b The constrained model is fitted under H0: γ1 = γ2
c The constrained model is fitted under H0: γ1* = γ2*
dWald test resultsare based on the analysis by using Mplus5.2

10 The application of bootstrapping in SEM has been discussed
extensively (e.g., Bollen & Stine, 1993; Yung & Bentler, 1996). The
bootstrap method does not rely on any distributional assumption about
the data. Therefore, it is expected to outperform the traditional method
for giving more accurate SE estimates when theoretical assumptions
underlying tradition parametric statistical inferences are in doubt.

12 For example, one must understand the functional relationship of
V4with V1, V2, and V3 in Example 1 before he/she knows to specify
the variance of V4 as g1

2var V1ð Þ þ g2
2var V2ð Þ þ g3

2var V3ð Þþð
2g1g2cov V1;V2ð Þ þ 2g1g3cov V1;V3ð Þ þ 2g2g3cov V2;V3ð Þ þ var
E4ð ÞÞ and, hence, the difference between two standardized
coefficients (γ1*−γ2*) as ðg1ðvarðV1ÞÞ^0:5� g2ðvarðV2ÞÞ^0:5Þ=ðg12varðV1Þ þ g2

2varðV2Þ þ g3
2varðV3Þ þ 2g1g2covðV1;V2Þ þ

2g1g3covðV1;V3Þ þ 2g2g3covðV2;V3Þ þ varðE4ÞÞ^0:5. We believe
this task is difficult and tedious for many applied researchers.

11 AMOS users cannot follow the proposed method to impose
constraints on the covariances (i.e. cov(Fi′, Fi′) = −cov(Fi, Fi),
because AMOS does not support the specification of constraints,
which are in the form of a = −b. Interested readers may find a
solution for this limitation, see Electronic Supplementary Material.
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syntax. Indeed, many SEM beginners welcome SEM
software programs such as EQS and AMOS because of
their well-designed graphical user interface (e.g., Kline,
1998). Some SEM practitioners may find our proposed
method favorable because they can follow the general
framework of model transformation and use the graphical
interface to specify the standardized model without going
into the mathematical details.

Finally, the proposed method is capable of comparing
three or more standardized coefficients simultaneously. By
using the LR test at stage 2, we can test the equality of k
standardized coefficients by simply imposing (k−1) linear
equality constraints on the standardized coefficients and
comparing the chi-square statistics between the constrained
and unconstrained standardized models. As a posthoc
comparison, we can apply the Lagrange multiplier (LM)
tests to further evaluate the significance of each equality
constraint in a pairwise fashion after an overall significant
LR test result has been observed. For example, we can
further test the null hypotheses H0: γ1* = γ3* and H0: γ2* =
γ3* after finding an overall significant difference among the
three standardized coefficients by using LM test in Example
2 (see Table 6). The LM test results show that releasing the
equality constraint, γ1* = γ3*, yields a significant improve-
ment in model fit for the standardized model with χ2 =
23.00, df = 1, p < .001.This improvement means that there
is a significant difference between the standardized coef-
ficients, γ1* and γ3*. In contrast, releasing the equality
constraint, γ2* = γ3*, in the standardized model does not
significantly improve the model fit, with χ2 = 3.40, df = 1,
p > .05, suggesting that there is no significant difference
between the standardized coefficients, γ2* and γ3*.

Conclusion

For many years, methodologists have studied how different
parametric statistical procedures such as canonical correla-
tion analysis can be incorporated into SEM (e.g., Fan,
1997; Graham, 2008). One reason is that many of these
multivariate techniques do not provide the SEs for different
types of coefficients and, therefore, statistical significance
tests cannot be conducted. The present study shows that if
these coefficients are made explicit in the model (i.e.,
appear as a model parameter in the specified model), we
can easily obtain the SE and carry out subsequent testing
involving these coefficients by using standard SEM
analysis. Our proposed method demonstrates one of the
usages of the model reparameterization technique in this
area of study.

In this article, only limited kinds of models are
considered in order to demonstrate how the method can
be applied for making relevant statistical inference. Model

transformation will become more tedious if the original
model is complex. However, the general principle of model
transformation for more complex models remains
unchanged. Although more image latent variables and a
larger image structure are involved for a more complex
model, it does not influence the effectiveness of the
proposed method for comparing standardized coefficients.
Nevertheless, the proposed model may fail in other extreme
model conditions, such as a nonrecursive model with the
presence of reciprocal effects. Further investigation is
required to evaluate the effectiveness of the proposed
method in these conditions.

Future studies can also be done to explore how model
reparameterization can be used for testing other parameters,
such as standardized indirect effects and squared multiple
correlation coefficients (R2) (Kwan & Chan, 2010).
Considering the general model in Fig. 2, R2 can be defined
as the proportion of total variance of Y that is accounted for
by the predictors (X1 . . . Xk). Mathematically, it can be
expressed as

R2 ¼ 1� varðDÞ¼ 1� ½1� g qð Þ�¼ g qð Þ ð6Þ
Therefore, R2 is, in fact, equivalent to g(θ), which is

defined as the total variances and covariances due to the
antecedent variables in the standardized model. It will be
interesting to reparameterize g(θ) as a single model
parameter in the transformed model, so that we can conduct
significance tests and subsequent analysis involving R2.

Finally, in addition to raising researchers’ awareness
about the difference between the tests of coefficients
based on standardized and unstandardized metrics, we
hope that our proposed method can also inspire method-
ologists about the potential usefulness of model repar-
ameterization as a general modeling technique in SEM.
Future research can probably be done to explore how
model reparameterization can be a useful technique in
other kinds of SEM analysis.
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