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Abstract This study examined the degree to which outliers
were present in a convenience sample of published single-case
research. Using a procedure for analyzing single-case data
Allison & Gorman (Behaviour Research and Therapy, 31,
621–631, 1993), this study compared the effect of outliers
using ordinary least squares (OLS) regression to a robust regression
method and attempted to answer four questions: (1) To what
degree does outlier detection vary from OLS to robust
regression? (2) How much do effect sizes differ from
OLS to robust regression? (3) Are the differences
produced by robust regression in more or less agreement
with visual judgments of treatment effectiveness? (4)
What is a typical range of effect sizes for robust
regression versus OLS regression for data from “effective
interventions”? Results suggest that outliers are common
in single-case data. The effects of outliers in single-case
data are explored, and the implications for researchers
and practitioners using single-case designs are discussed.
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Historically, statistical analysis has been infrequently used
in single-case research (SCR), with researchers typically
preferring visual analysis. In part, this was due to the strong
roots SCR has in applied behavior analysis, which relies on
visual analysis to detect large changes. Given that there was
a strong tradition of visual analysis across several decades

(see Busk & Marascuilo, 1992; Kratochwill & Brody, 1978;
Parker & Brossart, 2003), it is somewhat understandable
that the practice of using visual analysis as the sole means
of summarizing SCR data continued in spite of a number of
studies that documented the unreliability of visual analysis,
showing low-to-moderate interrater reliabilities, in the
range of .40–.60 (DeProspero & Cohen, 1979; Harbst,
Ottenbacher, & Harris, 1991; Ottenbacher, 1990; Park,
Marascuilo, & Gaylord-Ross, 1990). Brossart, Parker,
Olson, and Mahadevan (2006) designed a study of visual
analysis that avoided most of the design limitations of
earlier research, but they still obtained an average individ-
ual rater-to-group correlation of .58, a level similar to that
in earlier research. Such findings suggest that supplement-
ing visual analysis with statistical analysis should be
standard practice.

Changes in the research climate have likely necessitated
a move toward incorporating statistical analysis. The
current climate values the documentation of treatment
effects to meet expectations for accountability and to
provide objective evidence for funding agencies. This trend
toward objectively measured outcomes and greater scien-
tific rigor can be seen in a wide range of published research
(e.g., Kaplan & Groessl, 2002; Newnham & Page, 2010)
and policy statements by influential groups such as the
National Research Council (Shavelson & Towne, 2002).
The call for empirically supported treatments, evidence-
based practice (McHugh & Barlow, 2010) and the growing
importance of meta-analysis also contribute to the need for
statistical analysis in SCR.

In addition, there appears to be an increasing awareness
that SCR designs have an important role in developing the
evidentiary foundation of many domains, such as behav-
ioral, psychological, rehabilitation, and educational re-
search. This may be due in part to the contemporary
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dialogue regarding the role of randomized clinical trials
(RCTs) in terms of their strengths and important limitations
(e.g., Tucker & Reed, 2008; Tucker & Roth, 2006). Some
have criticized the push for making the RCT the standard
for evaluating psychological treatment as premature and as
promoting a tendency toward methodcentric reasoning —“a
form of cognitive myopia that leads psychologists to judge
their preferred research methodology superior to all others”
(Blais & Hilsenroth, 2006, p. 31).

Although SCR designs are often more feasible to
conduct than RCTs (e.g., Morgan & Morgan, 2001), the
increasing attention SCR is receiving may be due to an
upsurge in researchers’ awareness that single-case designs
can be among “the most effective and powerful” (Shadish,
Cook, & Campbell, 2002, p. 171) nonrandomized experi-
mental designs (Shadish, Rindskopf, & Hedges, 2008).
With increased use of SCR designs comes the need for
researchers to continue to evaluate the performance of
statistical techniques for single-case data (e.g., Brossart,
Meythaler, Parker, McNamara, & Elliott, 2008; Brossart et
al., 2006; Parker & Brossart, 2003; Parker, Cryer, & Byrns,
2006; Parker, Hagan-Burke, & Vannest, 2007).

As was noted by Parker and Brossart (2003), the number
of statistical analytic techniques available has tripled since
the early 1980s, but little information is available on how
these techniques typically perform: their typical effect sizes,
their dependability (confidence intervals), and how well
they handle atypical data sets. Currently, regression models
such as those presented by Center, Skiba, and Casey (1985–
1986) and Allison and colleagues (Allison & Gorman,
1993; Faith, Allison, & Gorman, 1996) appear to be among
the more promising methods available, although not
without limitations (Faith et al., 1996; Parker & Brossart,
2003). Among the strengths of these regression models is
their adequate power for short data series, their ability to
control for baseline trend, and their ability to address both
change in level and change in trend.

The need for robust methods

All of the regression-based techniques noted above use
ordinary least squares (OLS) regression, which has impor-
tant limitations that are too often overlooked. These
limitations include the following: (1) Small departures from
normality produce low power; (2) even with normal
distributions, heteroscedasticity can markedly lower power;
(3) with small departures from normality, typical confi-
dence intervals and measures of effect size can be very
inaccurate; (4) OLS is not an effective method for
ascertaining and examining outliers (Wilcox, 1998a, b);
and (5) outlier data points can produce unstable results in
multiple regression methods (Hutcheson & Sofroniou,

1999). Yet, in applied work, it is very common for data to
show skewness, outliers, unequal variance along the score
distribution, and heavy-tailed distributions (Tukey, 1960;
Wilcox, 1998a). Single-case researchers often find these
undesirable characteristics in their time series data. Fur-
thermore, single-case data sets often contain one or more
outliers. Thus, one statistician has concluded that the OLS
estimator may be “one of the poorest choices researchers
could make” (Wilcox, 1998b, p. 311).

A common strategy to deal with outliers has been to delete
them. This makes some sense, because detecting and
removing outliers provides a way to reduce heteroscedastic-
ity, but it also results in using the wrong standard error and
can lead to low power. Unfortunately, the presence of outliers
can result in a failure to detect all of the outliers present in a
data set (Wilcox & Keselman, 2004). This problem is called
masking, and it affects many of our traditional statistical
methods (Hampel, Ronchetti, Rousseeuw, & Stahel, 1986).
Traditional methods of detecting outliers may also lead to
some points labeled as outliers by chance and can result in
using the incorrect standard error (Wilcox & Keselman,
2004).

Robustness historically referred to the problem of
controlling for Type I error when testing hypotheses.
Population parameters were said to be robust if slight
changes in the distribution did not have an arbitrarily large
effect on their value. Today, this definition has been
expanded; suffice it to say, a major goal of robust
estimators is to avoid having a few aberrant data points
dominate or overly influence one’s statistical results.
Alternatively, robustness “refers to the ability of a statistic
to be insensitive to small deviations from statistical
assumptions” (Anderson & Schumacker, 2003, p. 84).

This article demonstrates the use of robust regression as a
method for controlling outlier data in SCR; however, our
primary task is not to show that robust methods are superior to
standard OLS, because, as Wilcox (1998b) has noted,
hundreds of articles have shown the deficiencies of standard
methods and summaries have been presented in numerous
books (e.g., Birkes & Dodge, 1993; Hampel et al., 1986;
Hoaglin, Mosteller, & Tukey, 1983, 1985; Wilcox, 1996). In
spite of this large literature base, it appears that misconcep-
tions about robust methods persist (Wilcox, 1998a). While
there is a preponderance of evidence that robust regression is
an improvement over traditional methods, robust methods
have yet to be demonstrated with single-case time series data.

To effectively use a statistical technique, the user must
have a sense of how the technique performs with real data.
Our goal in this article is to help the applied researcher gain
a better understanding of how robust regression works with
single-case data. We compare applications of OLS regres-
sion and robust regression on a convenience sample of 61
single-case data sets from published studies. We also
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compare OLS and robust regression against visual analysis
by expert single-case researchers.

There are numerous types of robust regression. For
example, four common methods include least median
of squares (Rousseeuw, 1984), least-trimmed squares
(Rousseeuw, 1984), biweight midregression (Wilcox,
1997), and an MM method supported in S+ (TIBCO
Software Inc., 2008a). One of the better “all purpose”
methods used in this study is the MM regression
method supported in current versions of S+ (Anderson &
Schumacker, 2003; TIBCO Software Inc., 2008a). It
should be noted that studies continue to be conducted,
and some investigators suggest there are other robust
regression methods that, in some instances, outperform the
technique illustrated here (Wilcox & Keselman, 2004).
The important point is that while robust methods usually
outperform OLS, as was noted by Wilcox (2005), “it
seems to be easy to find fault with any estimator that has
been proposed” (p. 461). Thus, the robust method used
here (if using R, the function MMreg applies the MM
estimator used here) should not be viewed as the best or
only robust estimator one should consider, because, in any
given situation, one particular robust method may be more
appropriate than another.

An example of how OLS and robust regression perform
differently is illustrated in Fig. 1. In this figure, the data
points are not connected between phases, as is typical in
graphs of single-case data. Instead, the data points are
represented by circles in the baseline phase and triangles in
the treatment phase. The lines represent an OLS and robust
regression line fit to each phase. There is no difference in
the treatment phase, but in the baseline phase, there is a
notable difference between the two regression methods.

OLS gives far more importance to three data points from
sessions 1, 9, and 10. The robust method is less susceptible
to being influenced by extreme values, so the slope is not
shifted clockwise, as it is with OLS. To confirm that these
three data points are outliers, one may create a q-q plot,
which tests the assumption that a model’s errors are
normally distributed. Figure 2 shows two q-q plots when
the baseline phase (phase A) is examined: The one on the
left is based on OLS, and the one on the right is based on a
robust regression method. Points lying outside of the dotted
lines above and below the solid regression line suggest
nonnormality in the residuals. OLS is unable to detect any
outliers (the masking limitation) and suggests that the
residuals are normally distributed, whereas the robust
method indicates nonnormality in the residuals and indi-
cates three data points as outliers. This example demon-
strates that robust methods are not as influenced by
problematic variability and that they may be able to detect
outliers that traditional methods miss.

As was noted by Wilcox (1998b), there is no need to
remain plagued by the limitations of OLS regression when
there are modern robust regression methods readily avail-
able. While using robust regression methods appears to
address some of the limitations of OLS regression, there are
many unanswered questions regarding the use of robust
methods in SCR. This article will attempt to answer some
of the initial questions a single-case researcher may have
regarding the use of a robust regression method: (1) To
what degree does outlier detection vary from OLS to robust
regression? (2) How much do effect sizes differ from OLS
to robust regression? (3) Are the differences produced by
robust regression in more or less agreement with visual
judgments of treatment effectiveness? (4) What is a typical
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Fig. 1 Comparison of phases A
and B for OLS and robust
regression (MM)
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range of effect sizes for robust regression versus OLS
regression for data from “effective interventions”?

Method

This study used two data sets. One data set addressed the
questions about the performance of robust regression when
compared with OLS. The second data set was used to
address questions about the relationship between robust
regression and visual analysis.

A convenience sample of AB data series was obtained
from ERIC and PsychINFO searches using the search terms
“single case,” “single subject,” “time series,” “baseline,”
“AB,” “ABA,” “ABAB,” and “ABC.” For multiphase
designs, the sample included only the initial AB phases.
For multiple baseline designs, each data series was treated
separately. When the graphs were clear enough for
electronic scanning, they were scanned and digitized using
i-extractor software (Linden Software Ltd., 1998). Addi-
tional detail on the procedure is explained in Parker et al.
(2005). A total of 61 graphs were used in this study. The
final sample represented 21 articles, listed in the Appendix.
This data set, consisting of published data, was used to
answer the first two questions: (1) To what degree does
outlier detection vary from OLS to robust regression? (2)
How much do effect sizes differ from OLS to robust
regression?

The second data set was initially presented in a previous
study (Brossart et al., 2006). In that study, 250 single-case
AB (baseline and intervention phases) data sets were

created from random number series to represent a range
of degrees and types of intervention effects. Each phase
was transformed separately by adjusting four levels of four
statistical characteristics: (1) variability, (2) trend, (3) mean
level, and (4) gap of trend line intercepts between data
points 10 and 11. Each data set contained a total of 20 data
points, with 10 per phase. Thirty-five graphs were then
selected that were representative of the 250 on the four
attributes; however, they also had to show comparatively
little trend in phase A (to mirror most published graphs).

Brossart et al., (2006) recruited judges who were
doctoral students and faculty in an educational psychology
department. After interviewing each potential rater, they
classified each of the 45 respondents as being experienced
or not in teaching graphic analysis. They omitted all
respondents who did not have sufficient experience
evaluating SCR graphs, leaving 15 judges.

The judges were presented details of a scenario
describing the baseline and treatment phases, as well as a
description of the instrument used to monitor progress.
Acting as consultants, the judges were asked to evaluate
intervention effectiveness on the basis of visual analysis of
the AB graphs of the target behavior. Thirty-five graphs
were evaluated, which the authors reported to be the
maximum number for obtaining cooperation and maintain-
ing good concentration with their sample of judges. These
data were reanalyzed using robust regression to link the
results in that previous study to the performance of OLS
regression and the ratings of treatment effectiveness by the
judges. Thus, this second data set was used to answer the
remaining questions (Are the differences produced by
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Fig. 2 Normal q-q plot of resid-
uals comparing OLS with robust
regression (MM)
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robust regression in more or less agreement with visual
judgments of treatment effectiveness? and What is a typical
range of effect sizes for robust regression vs. OLS
regression for data from “effective interventions”?).

Procedure The procedure for this study was to evaluate the
single-case data sets using a method that removes trend in
the baseline phase or phase A (Allison & Gorman, 1993;
Faith et al., 1996). The model allows one to test for mean
phase differences only (which we will call the Allison
mean, or AM) or to include both phase and trend
components (which we will call the Allison mean plus
trend, or AMT) after controlling for phase A trend only.
This method has shown promise in evaluating single-case
data in previous studies (Parker & Brossart, 2003; Parker et
al., 2005), and AMT appears to possess enough power for a
large proportion of data series found in the literature (Parker
et al., 2005). Both OLS and robust regression (MM) were
used to produce results with the AM and AMT method on
the same 61 data sets, using S+ (TIBCO Software Inc.,
2008a). A second data set, originally presented in Brossart
et al. (2006), was reanalyzed using robust regression as
well, so that comparisons could be made to data sets rated
visually by judges.

To run these regression models, both AM and AMT
require preliminary detrending in four steps: (1) Create a
temporary variable containing the scores for Phase A only;
(2) regress this new variable on trend (the time variable);
(3) save the predicted output; and (4) subtract these
predicted values from the original scores. The resulting
differences or residual scores are used, instead of the
original scores, in the final regression analysis for AM
R2

detY.M, and for AMT R2
detY.M.TB, (where detY is the

detrended Y scores, subscript M is a dummy-coded phase
mean shift vector variable, T is a time or trend variable, and
TB is a variable containing trend scores for phase B only).

Results

To what degree does outlier detection vary from OLS to
robust regression? There are multiple ways one may
evaluate data sets for outliers. For this study, a q-q plot
for each of the 61 data sets was created that compared OLS
with the robust method. Those data points that fell outside
the 95% simulation envelopes for the normal q-q plot,
shown as dotted lines, are outliers (see Fig. 2 for an
example). This reveals one of the most important advan-
tages of a good robust fit; it clearly exposes outliers, while
the least squares fit is highly influenced by outliers in such
a way that the outliers are often not clearly revealed in the
residuals. The results show that for OLS, 51 (83.6%) of the
q-q plots revealed no outliers, whereas the robust method

showed that 24 (39.3%) of the graphs had no outliers.
Across all graphs, the mean number of outliers detected per
graph by OLS was 0.87 (SD = 4.3), and for the robust
method, the mean number of outliers detected per graph
was 2.93 (SD = 5.46). Table 1 displays the number of
outliers detected for each method. A striking feature of this
table is that OLS detects far fewer outliers, especially in
those data sets with a single outlier or those with more than
4 outliers. The robust method detected 4 or more outliers in
21.3% of the data sets, whereas OLS detected 4 or more
outliers in only 4.9% of the data sets. Table 2 displays the
amount of disagreement between the two methods in
identifying outliers. There was no disagreement between
methods for 24 graphs (39.3%). Yet for 18% of the graphs,
the robust method detected 4 or more outliers than were
detected by OLS.

How much do effect sizes differ from OLS to robust
regression? Table 3 provides summary statistics for the R2

from OLS and robust regression (TIBCO Software Inc.,
2008b). It should be noted that R2 is a commonly reported
effect size, but it may be converted to other effect sizes,
such as Cohen’s d, where it can be computed from R
R ¼ d

ffiffiffiffiffiffiffiffi

d2þ4
p

� �

(Rosenthal, 1991; Wolf, 1986). Most single-
case researchers will be largely interested in the first two
columns, because they address treatment effects in terms of
the mean difference between the two phases. For complete-
ness, the third and fourth columns list the results with a

Table 1 Number of outliers detected for each method

Method Detected Outliers Frequency %

OLS 0 51 83.6

1 4 6.6

2 1 1.6

3 2 3.3

≥4 3 4.9

Robust 0 24 39.3

1 15 24.6

2 5 8.2

3 4 6.6

≥4 13 21.3

Difference Number %

−2 1 1.6

−1 2 3.3

0 24 39.3

1 17 27.9

2 4 6.6

3 2 3.3

≥4 11 18.0

Table 2 Number of outliers
detected by robust method
minus number of outliers
detected by OLS
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slope parameter added to the model. Overall, in comparison
with OLS, the robust method has a smaller standard
deviation and a smaller mean R2. Figure 3 displays the
descriptive information in the form of box plots. Correla-
tions comparing OLS and the robust method effect sizes
show that with a phase only model (AM), they correlate
highly (r = .86), and with slope added (AMT), the
correlation was .77. Subtracting the robust R2 from the
OLS R2 portrays the magnitude and direction of the
differences between the two methods. These results are
given in Table 4. For the model with phase or mean level
only comparisons (AM), there were 15 data sets (24%)
where the robust method produced larger R2 values than did
OLS. For the remaining 47 data sets, OLS produced larger
R2 values than did the robust method for 46 data sets
(74%), with 1 data set producing no difference in the R2

values. When trend was added to the model (AMT), there
were 10 data sets (16%) where robust regression produced
larger values than OLS. With 3 data sets producing no
difference, for the remaining 49 data sets (79%), OLS
produced larger R2 values.

If one assumes that a difference equal to or greater than
10% between the R2 produced by OLS and robust
regression is large enough to be meaningful or important
(a 10% difference in the amount of variance accounted for),
then, with the AM model, 54.8% (and 75.8% with AMT) of
the data sets analyzed exhibited a difference large enough

to be considered problematic. This suggests that in many,
but not all, data sets, robust regression should be seriously
considered over OLS. Thus, OLS was found to frequently
over- or underestimate R2 to such an extent as to be of
concern.

Graphs of intervention effectiveness Are the differences
produced by robust regression in more or less agreement
with visual judgments of treatment effectiveness? To
answer this question, we analyzed the data reported in
Brossart et al. (2006). Using the ratings of 15 experienced
users of single-case graphs, they categorized 35 graphs on
the basis of average intervention effectiveness ratings.
Using a 5-point judgment scale, mean ratings of 1–2.9
were defined as not effective or minimally effective
interventions (8 graphs, or 23%). Mean ratings of 3.0–3.5
were defined as somewhat effective interventions (13
graphs, or 37%), and mean ratings of 3.6–5.0 were defined
as effective or very effective interventions (14 graphs, or
40%). Robust correlations between the judges’ ratings and
the robust statistical regressions produced the following
results: AM-OLS, r = .56; AM-robust, r = .49,; AMT-OLS,
r = .57 (Brossart et al., 2006); AMT-robust, r = .53. Thus,
overall, there was a small reduction in the correlation
between the robust method and expert visual judgments.
The take-home message from this is that robust methods
(including non robust methods like OLS), correlate only
moderately with ratings from expert judges using visual
analysis.

What is a typical range of effect sizes for robust
regression, as compared with OLS regression, for data
from “effective interventions”? Using the aforementioned
categories, the performance of robust regression, as
compared with OLS, is reported in Table 5 for each
category of treatment effectiveness. In general, the robust
R2s are smaller for each category than those from OLS and
will be discussed further below.

Discussion

This study addressed several practical questions for single-
case researchers who are considering using robust statistical
methods. Beginning with the first question, we attempted to

0.0

0.2

0.4

0.6

0.8

1.0

R
 s

qu
ar

e

AM-OLS AM-Robust AMT-OLS AMT-Robust

Fig. 3 Box plots of R2 comparing AM and AMT with OLS and
robust regression (MM) methods

AM–OLS AM–Robust AMT–OLS AMT–Robust

1st quartile .36 .23 .53 .37

Mean .48 .39 .67 .51

Median .53 .40 .72 .53

3rd quartile .69 .56 .88 .61

Standard deviation .29 .21 .26 .18

Table 3 Summary statistics of
R2 values produced by OLS and
robust regression
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answer the following: To what degree does outlier detection
vary from OLS to robust regression? The results suggest
that the traditional methods based on OLS are inadequate to
detect outliers. For example, in 84% of the graphs
examined, no outliers were detected using OLS. In contrast,
using robust regression, at least one outlier was present in
61% of the data sets examined. Furthermore, the robust
method detected four or more outliers in just over 21% of
the data sets, whereas the traditional method found four or
more outliers in only 4.9% of the data sets. Thus, in terms
of the limitations of OLS regression noted earlier, the
warning that OLS is not an effective method for ascertain-
ing and examining outliers was confirmed.

The second question addressed was the following: How
much do effect sizes differ from OLS to robust regression?
This study showed that regardless of the model used (AM
or AMT), in over 70% of the data sets examined, OLS
produced a larger effect size than did the robust method.
Furthermore, the difference was larger than 10% (a 10-point
difference in the R2) in a little over half (55%) of the data
sets, using a phase or mean level comparison (AM), and in
roughly three fourths (76%) of the data sets when the trend
component was included (AMT). Thus, the differences
between the two methods were large enough to be generally
considered nontrivial. These differences highlight a limita-
tion noted earlier—that measures of effect size can be very
inaccurate when based on OLS regression.

Next, we asked the following: Are the differences
produced by robust regression in more or less agreement
with visual judgments of treatment effectiveness? The
correlations with visual judgments of treatment effective-

ness were smaller but similar to those produced by OLS.
This finding was in line with our expectations and was not
surprising given the unreliability of expert judges’ evalua-
tion of treatment effectiveness using visual analysis
(Brossart et al., 2006).

We then sought to answer the following: What is a
typical range of effect sizes for robust regression versus
OLS regression for data from “effective interventions”? The
results suggest that more work needs to be done in this area.
Specifically, we examined average judge ratings for each
category of treatment effectiveness (not effective, some-
what effective, very effective) and found that. often, the
differences between categories were very small. For
instance, when examining the full model with mean level
and trend included (AMT), there was only a 1-point
difference in the average effect size for graphs judged to
be not effective versus those deemed somewhat effective.
There was a 7-point difference in the average effect size
between the somewhat effective category and those graphs
rated very effective. When trend was not included in the
model (AM—mean level only), the categories showed a
greater degree of separation, yet there was only a 10-point
difference between the average effect size for the somewhat
effective category (R2 = .41) and those graphs rated very
effective (R2 = .51).

We attempted to link statistical results and visual
judgment, yet given the results, it appears that these
categories may be of limited use for those trying to
interpret an effect size using the method presented here.
More work needs to be done before it is clear as to how
these effect sizes are related to a given treatment effect.

R2 Differences in AM Model R2 Differences in AMT Model

Minimum −.35 −.40
10% −.11 −.06
25% 0 .14

50% .09 .17

Mean .09 .16

75% .21 .30

90% .38 .40

Maximum .48 .58

Table 4 Differences in R2

values when robust R2 is
subtracted from the OLS R2

Table 5 Mean effect size values (averaged over 15 judges) for three groups of graphs, judged as depicting “not effective,“ “somewhat effective,“
and “very effective“ interventions

Analytic Technique Not Effective (8 graphs) Somewhat Effective (13 graphs) Very Effective (14 graphs)

AM-OLS R2 .36 .52 .67

AM-robust R2 .29 .41 .51

AMT-OLS R2* .65 .73 .87

AMT-robust R2 .58 .59 .66

*Reported in Brossart et al. (2006)

716 Behav Res (2011) 43:710–719



These results may be viewed as “ball park” estimates or as
tentative suggestions for how one may interpret their
results, but all effect sizes should be placed in the context
of the study from which they were derived for a proper
interpretation. It seems worth repeating the caution voiced
by other researchers, that Cohen’s (1988) guidelines for
small, medium, and large effect sizes to do not hold for
single-case research and that the effect sizes produced may
vary greatly depending on the statistical method used (e.g.,
Brossart et al., 2006; Parker & Brossart, 2003; Parker et al.,
2005).

There are several important limitations to the present
study to consider. First, the results were based on 61
previously published data sets. A larger sample is desirable,
but the present sample contained a variety of studies and
probably provides a “rough sketch” of what the body of
published single-case data looks like in terms of providing
an initial examination of how robust regression using AM
or AMT would perform. Second, the comparisons with
judges’ ratings were based on a limited sample of graphs. It
may be that the distinctions investigators use to judge
graphs do actually translate into small effect size differ-
ences when distinctions are made between effective and not
effective interventions (e.g., an average of .58 for a not
effective intervention to an average of .59 for a somewhat
effective intervention, and then to an average of .66 for a
very effective intervention based on robust AMT), but until
more research is conducted in this area, the findings should
be viewed as tentative. Third, this article did not address
autocorrelation. Further investigation regarding the role of
autocorrelation in the robust method presented here is
warranted. Lack of independence in single-case data has
been found to exist and has been studied by a number of
researchers (e.g., Hartmann et al., 1980; Huitema &
McKean, 1991; Sharpley & Alavosius, 1988; Suen & Ary,
1987). It should be noted that serial dependence can be
removed before conducting one’s primary analysis, but in
most cases, its removal has little impact on any resulting
effect size (Parker, 2006). Even so, it may prove beneficial
to examine the effect of removing the autoregressive
component in single-case data, using an ARIMA model
suggested by Brossart et al. (2006) and Parker et al. (2006).
Some researchers have noted that even with the concerns of
serial dependence, the advantages of using statistical
methods overshadow the concerns (Matyas & Greenwood,
1996).

Given the current state of knowledge about SCR, few
researchers continue to advocate the sole use of visual
analysis. Yet our knowledge base about the meaning of the
effect sizes produced by various methods to analyze single-
case data suggests that abandoning some type of visual
analysis may be premature. The results presented illustrate
that reliance on nonrobust methods (OLS specifically) in

single-case data analysis should be questioned and that a
robust form of the AM or AMT model has clear advantages
over OLS-based AM or AMT. For those investigators who
need to document treatment or experimental effects and
who wish to supplement visual analysis with an empirical
method, MM robust regression appears to be a better choice
than OLS-based methods.
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