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Abstract We propose a new fully automated velocity-
based algorithm to identify fixations from eye-movement
records of both eyes, with individual-specific thresholds.
The algorithm is based on robust minimum determinant
covariance estimators (MDC) and control chart procedures,
and is conceptually simple and computationally attractive.
To determine fixations, it uses velocity thresholds based on
the natural within-fixation variability of both eyes. It
improves over existing approaches by automatically iden-
tifying fixation thresholds that are specific to (a) both eyes,
(b) x- and y- directions, (c) tasks, and (d) individuals. We
applied the proposed Binocular-Individual Threshold (BIT)
algorithm to two large datasets collected on eye-trackers
with different sampling frequencies, and compute descrip-
tive statistics of fixations for larger samples of individuals
across a variety of tasks, including reading, scene viewing,
and search on supermarket shelves. Our analysis shows that
there are considerable differences in the characteristics of
fixations not only between these tasks, but also between
individuals.

Keywords Eye tracking . Fixation detection . Saccade
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The volume of eye-tracking applications in vision research,
human factors, psychology, engineering, and business re-
search has grown exponentially in recent years (Duchowski,
2003; Henderson & Hollingworth, 1998; Poole & Ball,
2006; Rayner, 1998; Wedel & Pieters, 2007). Sequences of
eye fixations are basic components of eye movements in
these fields to gain understanding in visual behavior. Various
algorithms have been proposed to identify eye fixations from
the recordings of the point of regard (POR) that the eye-
tracking equipment provides (e.g., Urruty, Lew, Ihadeddene,
& Simovici, 2007). Most algorithms commonly used in eye-
movement research have identified fixations based on
thresholds of velocity, distance or dispersion, duration, angle,
and/or acceleration of the POR. In practice, dispersion-based
methods have been most often implemented in various
commercial eye-tracking software, such as Tobii Clearview
(described in Nyström & Holmqvist, 2010). Recently
however, velocity-based algorithms have gained increasing
interest because they are more transparent, and more
accurate in identifying the precise onset and offset of
saccades (Nyström & Holmqvist, 2010). For instance, the
EyeLink 1000 uses a combined velocity and acceleration
algorithm (Stampe, 1993). In this article, we propose a new
velocity-based algorithm for fully automated identification of
fixations and saccades from records of the point of regard,
which addresses important challenges of the currently
available algorithms.

First, virtually all algorithms to determine fixations from
eye-movement recordings have involved the POR of a single
eye (for reviews see Duchowski, 2003; Salvucci & Goldberg,
2000), and most eye-movement research to date has relied
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on such data about monocular viewing. Exceptions are
Duchowski et al. (2002), Engbert and Kliegl (2003) and
Engbert and Mergenthaler (2006). Duchowski et al. (2002)
presented a binocular velocity and acceleration-based algo-
rithm that allowed for the measurement of vergence eye-
movements and is therefore applicable to 3-D eye-movement
data. In addition, these authors used binocular information,
and reduced noise in the eye-tracking data by averaging the
position of the left and right eye. The velocity-based
algorithm by Engbert and Kliegl (2003), which was later
updated in Engbert and Mergenthaler (2006), calculated
fixations and saccades for each eye separately. In a second
step, binocular saccades were defined as saccades occur-
ring in the left and right eye with a temporal overlap.
Application of this algorithm during reading, revealed the
importance of binocular coordination (Nuthmann &
Kliegl, 2009). Liversedge, White, Findlay, and Rayner
(2006) and Vernet and Kapoula (2009) recently also
documented the importance of binocular coordination of
eye movements during reading, and call for more research
in this emerging field (see also Kloke & Jaschinski, 2006).
Our algorithm for identifying fixations therefore accom-
modates binocular viewing.

Second, in most fixation identification algorithms to
date, the thresholds to identify fixations and distinguish
them from saccades in the eye-movement records are fixed
a-priori across individuals and often even across tasks.
Exceptions are two-state Hidden Markov models (Rothkopf
& Pelz, 2004; Salvucci & Goldberg, 2000), and the
velocity-based algorithms by Nyström and Holmqvist
(2010), Engbert and Kliegl (2003), and Engbert and
Mergenthaler (2006). Fixed, a-priori set thresholds have
the drawbacks that the resulting fixation data may be
sensitive to the specific thresholds chosen, and that
potential differences in characteristics of fixations between
directions of movement of the POR, stimuli and individuals
are ignored. This is important because the characteristics of
fixations and their role in information processing may vary
systematically between tasks and individuals (Rayner, Li,
Williams, Cave, & Well, 2007), and they may also vary due
to the instrumentation. It thus seems crucial to enable the
fixation thresholds to vary not only between tasks, but also
between individuals. For example, in the open source ILAB
program for eye-movement analysis (Gitelman, 2002), eye
blinks are automatically removed and fixations are calcu-
lated using the dispersion-based algorithm by Widdel
(1984). Gitelman reports that the algorithm is sensitive to
the choice of thresholds for defining a fixation, including
the maximum horizontal and vertical eye movements, and
the minimum fixation duration (Karsh & Breitenbach,
1983), and the user has to define these thresholds based
on the task, stimuli and equipment. Two-state Hidden

Markov models avoid these problems, and probabilistically
determine fixations and saccades based on the different
distributions of velocities during fixations and saccades. An
advantage of these algorithms is that all parameters are
estimated from the eye-tracking data and that thus differ-
ences between researchers are avoided. However, they are
computationally unattractive, i.e., needing relatively long
computation times, and are more difficult to implement,
which is the reason that they have rarely been used in
practice. Another solution is provided by the velocity-based
algorithms by Engbert and Kliegl (2003), Engbert and
Mergenthaler (2006), and Nyström and Holmqvist (2010)
that use the variability of the eye-tracking data to determine
individual- and task-specific velocity thresholds. Nyström
& Holmqvist iteratively update velocity thresholds based
on the variability of the POR until a convergence criterion
(set to 1 deg/s) is reached. Engbert and his colleagues use a
multiple λ (λ = 6 in Engbert and Kliegl, and λ = 5 in
Engbert and Mergenthaler) of the median standard deviation
of the POR to determine velocity thresholds. In addition to
individual- and task-specific thresholds, the algorithm of
Engbert and his colleagues also determines eye (left vs.
right)-, horizontal- and vertical-direction-specific velocity
thresholds. These algorithms are computationally attractive,
but researchers still need to set specific parameters, i.e.,
the convergence criterion in the algorithm by Nyström
and Holmqvist, or λ in the algorithms by Engbert and his
colleagues. In addition, these algorithms do not fully
explore the statistical relationships between the left and
right eye, and horizontal and vertical directions of eye
movements. Yet, such correlational information is valuable
in classifying eye-movement data in fixations and sac-
cades. Our Binocular-Individual Threshold (BIT) algo-
rithm for identifying fixations is therefore a parameter-free
fixation-identification algorithm that automatically identi-
fies task- and individual-specific velocity thresholds by
optimally exploiting the statistical properties of the eye-
movement data across different eyes and directions of eye
movements.

Differences in fixations and saccades
between individuals and tasks

In two influential reviews of research on eye-movements
in information processing, Rayner (1998, 2009) provided
eye-movement statistics for a range of tasks. Mean
fixation durations were reported of 225–250 ms for (silent)
reading, 180–275 ms for visual search, and 260–330 ms
for scene viewing, amongst others. Saccade lengths were
about 2° for reading, 3° for visual search and 4° for scene
viewing. These average eye-movement statistics have been
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shown to vary systematically between individuals and
tasks.

Andrews and Coppola (1999) recorded eye-movements
(sampling frequency 100 Hz) for a sample of 15
individuals for various tasks and image types (simple
textured patterns, complex natural scenes, visual search
display, text). Horizontal and vertical differences in POR
location were computed at each time point to determine
eye velocity. The threshold for detecting a saccadic eye
movement was an eye displacement greater than 0.2° at a
velocity of not less than 20°/s across all individuals. The
epochs between saccades were labeled as fixations
(procedures to deal with blinks and other outliers are not
described in the article). The average fixation durations
during reading varied from 150–220 ms, during visual
search from 190–230 ms, and during scene viewing from
200–400 ms. Saccade sizes varied from 3–7° during scene
viewing, 3–8° during reading, and 4–7° during visual
search. Thus, mean fixation durations tend to be shorter
and saccade sizes tend to be bigger than those reported by
Rayner (1998, 2009).

Rayner et al. (2007) provided the first systematic study
of eye-movement patterns for a larger sample of partic-
ipants (n = 74) and larger numbers of stimuli, using the
Eyelink II tracker that samples eye movements at 250 Hz.
This tracker has manufacturer settings of thresholds for
displacement, velocity and acceleration of 0.10°, 30°/s, and
8,000°/s2, respectively, to define fixations and saccades, for
all tasks and individuals. Fixations with durations of more
than three times the standard deviation were removed, as is
common. Rayner et al. found average fixation durations of
254 ms during (English) reading, 210 ms during visual
search, and 280 ms during scene viewing, amongst others.
Average saccade lengths were 2.19°, 5.45°, and 5.21°,
respectively for these three tasks. Cultural differences
(between Chinese and bilingual individuals) were observed,
mostly when reading Chinese text. The fixation durations
were in the same range whereas the saccades sizes were
somewhat larger than those reported by Rayner (1998,
2009), but similar to those reported by Andrews and
Coppola (1999).

Over, Hooge, Vlaskamp, and Erkelens (2007) investi-
gated fixation duration and saccade size during the time
course of search in two experiments. Participants in the first
experiment did not know target conspicuity, whereas
participants in the second experiment did. In both experi-
ments, the authors used an Eyelink I tracker (sampling
frequency 250 Hz) and identified fixation durations using a
velocity-based algorithm, using different parameter settings
in the two experiments. In experiment 1, they identified
saccades based on a velocity threshold of 30°/s, and
determined the start and end of a saccade as having a

velocity of at least two standard deviations higher than the
velocity of the previous fixation (see also van der Steen &
Bruno, 1995). Saccades with amplitudes smaller than 0.5°
were discarded and the fixation before and after the
saccade in question were considered as one. Fixations
shorter than 20 ms were also discarded. In their second
experiment, these authors used a velocity threshold of
50°/s, and discarded saccades with amplitudes of .1° and
fixations shorter than 50 ms. In both experiments, the
authors found that during the time-course of search,
saccade amplitude decreases and fixation duration
increases (although this effect was stronger in their first
experiment). In their first experiments, from the second
until the last fixation, durations increased from 173 to
252 ms (43% increase), and saccade amplitudes de-
creased from 7.7° to 5.3° (35% increase). The results of
the second experiment are reported in normalized values,
and show that the increase in fixation duration is 18%,
while the amplitude of saccades decreases on average by
23%. This supported a coarse-to-fine search pattern in
terms of eye-movement statistics.

Nakatani and van Leeuwen (2008) distinguished
between durations of the initial and re-fixations on objects.
They used the EyeLink I tracker and used a velocity-based
algorithm to identify fixations. Before applying the
algorithm, bad segments of eye-movement records were
removed. Although the authors do not give the exact
parameter settings for their algorithm, they mention that
thresholds were set to detect saccades larger than 0.6° and
fixations longer than 100 ms. The tasks presented to
participants were sequences of letters and digits, and the
tasks constituted several category (letter/digit) and loca-
tion (odd/even rows), judgment tasks. To identify multi-
modal distributions of fixation durations, the authors
applied a logarithmic (ln) transformation to fixation
durations, which reduced the skewness of their distribu-
tion. They observed multimodal distributions of fixation
durations, caused by differences in the durations of first
versus subsequent fixations, which were larger than
differences in fixation durations between tasks. Multimodality
of the distribution was explained from the fact that the
duration of a single fixation on an object was longer (6.09 ln
(ms) corresponding to 420 ms, SD = 0.54 ln(ms)), than the
first fixation in a two- (or more) fixation sequence on an object
(5.12 ln(ms) corresponding to 167 ms, SD = 0.59 ln(ms)). The
subsequent fixation in a two-fixation sequence was of
intermediate length (5.83 ln(ms) corresponding to 339 ms,
SD = 0.55 ln(ms)).

Castelhano and Henderson (2008) also distinguished
initial and later fixations in picture viewing. They moni-
tored eye movements at a sampling rate of 1,000 Hz using a
Generation 5.5 Stanford Research Institute Dual Purkinje
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Image Eyetracker. Fixations were identified using a
velocity-based algorithm with a velocity threshold of
6.58°/s (see Henderson, McClure, Pierce, & Schrock,
1997). Fixations with durations less than 90 ms were
removed from their analysis. They observed significant
differences between picture types (longest for photo,
followed by line drawings and 3D renderings). Generally,
they found durations for the first five fixations to be shorter
compared to the last five fixations, whereas the first five
saccades tended to be shorter compared to the last five
saccades (experiment 1).

These studies all report systematic differences in fixation
durations and saccade lengths across individuals and tasks.
In addition, Foulsham, Kingstone, and Underwood (2008)
recently found that next to these measures, saccade
directions also vary systematically across tasks. They found
in scene perception tasks that the dominant saccade
direction follows the orientation of scenes, with a predom-
inant horizontal direction of saccades for natural scenes
(they used the Eyelink II tracker with manufacturer settings
mentioned above).

Taken together, these studies reveal systematic differ-
ences in fixation durations and saccade lengths between
individuals, stimuli, tasks and from early-to-later expo-
sure. However, different studies use different algorithms
and settings to identify fixations and saccades from the
eye-movement records, and different procedures to filter
out bad samples, blinks and other anomalies. It is
reassuring that despite these variations in algorithms
and settings there has been consistency across eye
movement studies in overall findings, but, prior research
has also found differences between individuals, stimuli,
tasks, and eye-movement directions, which begs the
question whether the thresholds used to separate fixations
from saccades should also vary accordingly. Possibly
with the exception of an early study by Harris, Hainline,
Abramov, Lemerise, and Camenzuli (1988), who used
extremely laborious, manual coding of the complete
sequence of fixations and saccades, most studies, includ-
ing the ones summarized above, assume constant thresh-
olds to define saccades and fixations. In addition, most
studies define fixations based on the eye-movement
recordings of a single eye, or the average of both eyes.
Recent studies using new generations of affordable
binocular eye-tracking systems however report significant
disparities between the movements of both eyes (Kloke &
Jaschinski, 2006; Liversedge et al., 2006; Nuthmann &
Kliegl, 2009; Vernet & Kapoula, 2009). Using the record-
ings of both eyes can provide needed insights into the
coordination of binocular viewing, as well as information
to determine the thresholds to define fixations that may
even differ between the right and left eye, for a specific
individual.

In this study, we propose an algorithm for the identifi-
cation of fixations from eye-movement records—described
in the next section—that alleviates some of the limitations
of previous approaches and that is conceptually simple and
computationally attractive. It is based on principles in
robust statistics (see Engbert and Kliegl (2003) and Engbert
and Mergenthaler (2006), for an application of robust
methods to the identification of micro-saccades) and control
charts techniques. Our algorithm identifies fixations from
the POR after automatically eliminating outliers due to
blinks and anomalies in the recording. Based on the natural
variability of the POR within-fixations, it identifies thresh-
olds for fixations that are specific to each of the eyes, to
directions of eye-movements, to tasks, and to individuals.
Because the algorithm appropriately deals with differences
in thresholds for fixations between individuals, tasks and
both eyes, it can contribute to further knowledge accumu-
lation and theory development in the emerging fields of
binocular eye-movement coordination, and individual dif-
ferences in eye-movements.

Using the proposed algorithm, we compute eye-movement
statistics for both eyes for samples of about 70 participants
across a variety of common tasks and stimuli (two reading
tasks, static scene viewing, and search) and provide descrip-
tive statistics for them, which reveal that individual differ-
ences in fixation durations and saccade sizes are large.

BIT: Binocular-Individual Threshold algorithm

Our fixation identification algorithm is a velocity-based
algorithm, which improves over extant algorithms in three
ways. First, it accommodates binocular viewing and uses
information about covariations between movements of both
eyes to identify fixations and saccades. Second, it estimates
rather than pre-sets the velocity threshold to detect fixations
and saccades, and it allows the threshold to differ between
eye-movement directions, tasks and individuals. Third, it
accommodates the inherent stochasticity in eye movements
such that not every record that exceeds the threshold is
labeled as a saccade.

To determine individual, task, and eye-specific thresh-
olds, we use techniques from Robust Statistics (Maronna,
Martin, & Yohai, 2006) that enable us to estimate velocity
thresholds based on individual-level variability of the eye-
movement recordings within a fixation. These velocity
thresholds are input to Shewhart quality control chart
procedures (Shewhart, 1931), that classify the POR as a
saccade or a fixation. The intuition of the algorithm is that it
determines the variability of the POR of both eyes within a
fixation for a specific individual, and then determines when
the velocity of the POR exceeds the within-fixation
variability, and label the corresponding epochs as saccades.
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The next two sections describe the components of the BIT
algorithm.

Using robust statistics to determine within-fixation
variability of the POR

Figure 1 shows trace-plots of the POR of two individuals
(separately for the left and right eye) searching for a target
in a static image, measured with a Tobii ® 2150 eye-tracker
that images the pupil of the observers’ eyes, along with the
corneal reflections to estimate the position of the eye
sampling at 50 Hz. Although the data in Fig. 1 are collected
on a specific eye tracker (study 1), we hasten to emphasize
that the proposed algorithm is machine and sampling
frequency independent, and can be easily accommodated
to POR records from other eye-tracking equipment with
different precision and sampling frequency. To demonstrate
this and provide further substantive insights, we applied the
proposed fixation identification algorithm on a different
eye-tracker with a higher precision and higher sampling
frequency (study 2).

The observed process zt ¼ xt;left; yt;left; xt;right; yt;right
� �0

consists of the x-y locations of the left and right eyes
of the POR during exposure to the stimulus, for time
samples t = 1,…,T. Figure 1 shows spells of time in which
the POR is relatively stable, presumably fixations, as well
as larger jumps, presumably saccades. The natural within-
fixation variability of the POR, caused by tremor, drift and

micro-saccades (Rayner, 1998), is typically small relative
to variability of the displacement of the POR between
fixations, caused by saccades. As illustrated in Fig. 1, the
within-fixation variability of the POR is not constant
across individuals and the two individuals selected
represent extremes of the spectrum. Both individuals
exhibit a positive covariance of the x- and y- coordinates
of the location of the left, but not of the right eye. The
variability of the POR of the individual shown in the plots
in the top panel is considerably smaller than that of the
individual shown in the bottom panel. The average
fixation durations are 321 ms (SD = 241) and 456 (SD =
406), respectively, for the top and bottom panel. In
addition, the correspondence of the POR of the left and
right eye is substantially larger for the individual in the top
panel than for the individual in the bottom panel. The
variability of the POR of the latter individual is so large
that some researchers may consider removing this indi-
vidual from the data. Yet, we wish to retain the data of the
individual in the bottom panel as well, in absence of
external evidence that the data in question is invalid.
Therefore, the algorithm assumes the within-fixation
variability of displacement of the POR to have a
(multivariate normal) distribution with individual-, eye-
and task-specific means and covariance matrices.

To estimate individual-specific means, variances and
covariances of the within-fixation velocity of the POR,
the PORs are first differenced: ΔðztÞ ¼ zt � zt � 1ð Þ, for t =
2,…,T. These Δ(zt) reflect not only velocities of the POR

left eye right eye

Fig. 1 Illustrating the BIT Algorithm on two observed PORs during a
search task. The four plots on the top correspond to participant 71 and
the bottom plots to participant 11. The two left scatter plots represent
the velocities of the POR as expressed in differenced x- and y-
coordinates, for, respectively, the left and right eye. The red ellipses in
these plots represent the estimated threshold for determining fixations

and saccades (i.e., velocities outside the ellipse are labeled as
candidate saccades). The two right plots represent the POR of both
eyes (blue corresponds to left eye, and green to the right eye) in
respectively x- and y-coordinates, with estimated fixation positions
superimposed (in red)
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caused by within-fixation variability, but also displacement
of the POR during saccades. To obtain reliable estimates of
the mean and covariance of the within-fixation variability of
the velocity of the POR, we apply robust statistical
methods (Maronna et al., 2006). These methods consider
abrupt increases in Δ(zt) to be “outliers” relative to the
within-fixation distribution of Δ(zt). The most efficient
method to obtain robust estimates for the mean and
covariance by taking into account a possibly large number
of outliers is the Minimum Covariance Determinant method,
MCD (Rousseeuw, 1984). MCD finds a fraction of 1 − α
observations, such that their covariance matrix has the lowest
determinant, det(∑), where 0 � a � T�1

2 . We set α = 0.25,
which defines the maximum percentage of outliers in the
data, based on our review of published studies reporting the
percentage of saccades in POR records. The final robust
estimates of location and covariance are the sample average
and covariance matrix of the remaining 1−α points.
Although MCD is computationally intensive, involving
an iterative procedure, Rousseeuw and Van Driessen
(1999) developed an efficient algorithm that converges
rapidly, even for large T. Their approach was used in the
algorithm to obtain robust estimates of the mean and
covariance of the eyes, individual and task specific within-
fixation variability.

We need these reliable estimates of (eye-individual-task-
specific) within fixation POR-velocities to enable the
identification of saccades, with ‘extreme’ POR velocities
relative to the within-fixation variability. For this, a
Shewhart control chart procedure was used, which is
explained next.

Identification of saccades and blinks

The multivariate Shewhart control procedure is a popular
statistical process-control technique to objectively detect
unusual points of variability in process data. Such charts
have been used to identify anomalies in various disciplines,
such as in health care to identify increases in infection rates
(Benneyan, Lloyd, & Plsek, 2003), in neuroscience to
identify small changes in blood oxygenation-level-
dependent (BOLD) contrast in fMRI studies (Friedman &
Glover, 2006), and in manufacturing to quickly identify
fallout during the production process (Montgomery,
1997). The multivariate Shewhart control chart assumes
that data is generated from a multivariate distribution with
target mean μ and covariance ∑. The procedure flags
extreme data points that are unlikely to be generated from
the target distribution, i.e., if the probability of observing a
data point Δ(zt) is maller than a pre-specified value. In
the case of (x-y) POR data, for large T, the variable
wt ¼ ΔðztÞ � mð Þ0Σ�1 ΔðztÞ � mð Þ has approximately a Chi-

square distribution with four (xleft, yleft, xright, yright) degrees
of freedom (Montgomery, 1997)1. Hence, the multivariate
Shewhart control procedure flags those velocities Δ(zt) for
which p wtjm;Σð Þ < #, where # ¼ ffiffiffiffiffiffiffiffiffi

:001
p

.2

To apply this procedure to detect saccades from the
variability in PORs of eye-movement data, we use for each
individual and task the robustly estimated mean and
covariance (see Sect. 2.1). For each velocity Δ(zt) we
compute wt, defined above, which we use to determine
whether each POR at times t = 2,…,T is a candidate
saccade. The leftmost plots in Fig. 1 illustrate this for the
two individuals. The points on the “control ellipse”
illustrate those velocities Δ(zt) for which p wtjm;Σð Þ ¼ #,
the threshold. Hence, those points that lie inside the control
ellipse, i.e., velocities for which p wtjm;Σð Þ > #, indicate
PORs with velocities consistent with the within-fixation
variability for that individual and task. However, velocities
that lie outside the control ellipse, i.e., velocities for which
p wtjm;Σð Þ < #, are highly unlikely to be due to within-
fixation variability and are marked as candidate saccades.

However, these points will not always correspond to
saccades, because unlikely variations in the velocity of the
POR may also be due to blinks and other anomalies that
prevent accurate detection of the POR. Therefore, to
classify a candidate at time t, for which p wtjm;Σð Þ < #, as a
saccade we use a one-step-ahead forecast (Kumar, 2007). For
this, we compute the velocity of the POR from t-1 to t+1,
Δ2 ztð Þ ¼ ztþ1 � zt�1ð Þ, and measure it as a deviation from the
within-fixation variability: vt ¼ Δ2ðztÞ � mð Þ0Σ�1 Δ2ðztÞ � mð Þ. If
p vtjm;Σð Þ < #, this signifies that the average velocity
from t-1 to t+1 is larger than the within-fixation
variability, so that the POR does not return to the vicinity
of its prior location and its acceleration continues. Thus,
the POR at time t can be classified as a saccade.
Otherwise, the POR at t is classified as a blink or outlier,
because the POR returns to its prior location at t-1, after time
point t. Subsequently, all remaining points are classified as
possible fixation time points. Finally, a sequence of
candidate fixation time points is classified as a fixation if
at least three subsequent time points (i.e., 60 ms) are
classified as fixation points, possibly interrupted by a
maximum of three consecutive blinks or missing data points.

1 If the algorithm is applied to the POR of one eye (or the average of
both eyes), wt is two dimensional, and hence has approximately a Chi-
square distribution with two degrees of freedom.
2 In quality control, χ is usually set to .001. However, as described
below, we qualify velocities of the POR as saccades if at least two
consecutive PORs are outside the control ellipse. Assuming indepen-
dence, # ¼ ffiffiffiffiffiffiffiffiffi

:001
p

corresponds to the same control limit of .001 used
in quality control. In addition to this, results of sensitivity analyses, in
which this parameter was varied, supported the choice.
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The crucial differences of the proposed procedure with
commonly used velocity-based procedures is that we
determine a control ellipse from the observed variability
of the POR within fixations, which allows for different
thresholds that may differ in the x- and y-direction and that
may vary not only across tasks but also across eyes and
individuals. Importantly, these thresholds are set automat-
ically by the procedure. Although we are not the first to
propose a velocity-based algorithm that determines thresh-
olds based on the individual- and task-specific variability of
the POR (Engbert & Kliegl, 2003; Engbert & Mergenthaler,
2006; Nyström & Holmqvist, 2010), our algorithm opti-
mally uses the statistical information available in the
variability of both eyes. The algorithm by Nyström &
Holmqvist only applies to the POR of one eye (or the
average of both eyes) and does not take into account
direction-specific velocities, leading to control circles.
Similar to ours, the algorithm by Engbert and his colleagues
uses information of both eyes and determines direction
specific thresholds leading to control ellipses. Yet, their
approach does not take into account the relationship
between both eyes, or horizontal and vertical movements,
and implicitly assumes independence between these meas-
ures. Our MCD procedure accounts for the covariance of
within-fixation variability so that, in contrast to the
algorithm by Engbert and his colleagues, the control ellipse
can have an arbitrary direction for any task, eye, or
individual. Furthermore, based on well-established statisti-
cal procedures, our procedure fully explores this informa-
tion to determine candidate saccades. Allowing for
covariance between the left and right eye, and horizontal
and vertical movements is essential given the findings of
Liversedge et al. (2006), Nuthmann and Kliegl (2009) and
Foulsham et al. (2008). The results of Liversedge et al.
(2006) and Nuthmann and Kliegl (2009) suggest that the
movements of the left and right eye are possibly correlated
during reading fixations, since, on average, they find the
disparity of the left and right eye at the start of a fixation to
be larger than at the end of a fixation. Note that, as reported
by Liversedge et al. (2006), there could be a positive
correlation (both eyes move in the same direction but with
different velocities), a negative correlation (both eyes move
in opposite direction), or no correlation (one eye moving
alone). The results by Foulsham et al. (2008) show that the
directions of saccades are non-random and that the
dominant saccade direction follows the orientation of the
scene. This result therefore suggests that velocity thresholds
to determine candidate saccades might also be direction-
specific, which our algorithm allows for.

As illustrated in Fig. 1, within-fixation variability varies
strongly across individuals leading to very different control
ellipses. In addition, the shapes of these control ellipses also
vary across individuals because the covariance of the

velocities of the POR in the x- and y-direction is different
for these different individuals. For example, for the POR
record of the participant shown in the top plots in Fig. 1, the
within-fixation variability has a positive covariance in the
x- and y-directions, indicating that if the eye moves towards
the right it also tends to move upwards, while if it moves
towards the left it tends to move down. Note that the POR
for the participant shown in the plots in the bottom panel
does not exhibit such a pattern. While the cutoffs used in
most velocity-based approaches imply “control circles” (see
Engbert and Kliegl (2003) and Engbert and Mergenthaler
(2006) for exceptions), the proposed algorithm allows for
direction-specific elliptical control regions, which results in
direction-specific velocity thresholds. For instance, for the
individual presented at the top in Fig. 1, velocity thresholds
are larger for changes in the velocity of the POR in the
upper-right quadrant compared to changes in the lower-
right quadrant.

Thus, the proposed algorithm is a velocity-based
algorithm that automatically determines direction-, task-,
eye- and individual-specific thresholds to identify fixations
and saccades from the POR, and removes outliers, missing
data, blinks and other anomalies in the eye-movement
recording. The algorithm was implemented in MATLAB,
and the code is freely distributed at the personal webpage of
the first author (http://www.bm.ust.hk/~mark/staff/rlans.
html). Because it is programmed in MATLAB, the
algorithm would lend itself to be incorporated in the open
source Eyelink Toolbox (Cornelissen, Peters, & Palmer,
2002).

We investigated this algorithm in two empirical applica-
tions to POR records collected on two different eye trackers
having different sampling rates, and accuracies.

Study 1

Experimental setup

Participants

Seventy-one participants were recruited from the under-
graduate student population at a major University in the
Netherlands. They received course credit for their partici-
pation. All participants had normal uncorrected vision or
their vision was corrected via contact lenses or glasses.
They ranged in age between 18 and 24 years and were
native Dutch speakers.

Apparatus

Eye movements were monitored using a Tobii ® 2150
tracker, sampling infrared corneal reflections at 50 Hz, with
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a 0.35o spatial resolution, and with an accuracy of 0.5 o.
Stimuli were presented on the 21 inch LCD monitor of the
eye-tracker, controlled by a Dell PC with a display
resolution of 1600 × 1200 pixels. Participants responded
by pressing the space bar on the keyboard. Participants
were tested in a sound-attenuated, dimly lit room, and could
freely move their head in a virtual box of about 13 × 13
inches, while cameras tracked their head and eye-focus
position. The eye-tracking system compensates for head
movements with a resulting accuracy of 0.75–1.75 degrees.
Viewing was binocular and the position of the participant’s
left and right eye were separately recorded.

Tasks and procedures

All participants performed the following four tasks: (1)
Dutch reading (one out of two texts), (2) English reading
(one out of two texts), (3) scene viewing (two advertise-
ments), (4) visual search (two brands on retail shelves). In
all tasks, the stimuli used were common, natural stimuli that
the participants would encounter in day-to-day life, and
exposure to all stimuli was self-controlled, as in real life
exposures. The exposure tasks resemble tasks previously
used in reading (Rayner, 1998), scene perception (Andrews
& Coppola, 1999; Castelhano & Henderson, 2008) such as
ad viewing (Rayner, Rotello, Stewart, Keir, & Duffy, 2001;
Wedel & Pieters, 2000), and search on store shelves (van
der Lans, Pieters, & Wedel, 2008). All instructions and
experimental stimuli were shown on the Tobii eye-tracker.
Participants continued to the next stimulus by pressing the
spacebar on the computers’ keyboard. Prior to these tasks,
the eye-tracker was calibrated for each participant using the
manufacturer’s five-point calibration procedure. Partici-
pants were seated comfortably at a distance of about
60 cm from the screen and were free to move their heads
during calibration as recommended by Tobii’s user manual.
Before calibration, participants were carefully instructed to
fixate each of the five points that were sequentially
presented on the screen for about two seconds each. If
calibration was successful, the experiment started, other-
wise the eyes were recalibrated until calibration was
successful.

The two Dutch reading tasks both contained 18
sentences in respectively five and three paragraphs (in
Arial font). The average sentence length was respectively
13.9 and 9.9 words, with a range from two to respectively
twenty and sixteen words. The English reading tasks were
translations of the two Dutch tasks, and contained the same
number of paragraphs and, respectively, 18 and 17
sentences. Average sentence length was respectively 14.9
and 11.5 words, with ranges from respectively five to 19,
and two to 18 words. An example of a sentence used was:
“In the future, it will also be possible to receive your

boarding pass with a barcode on your mobile phone.”
Participants silently read the entire paragraph at their own
pace and pressed a key to proceed to the next task (average
reading time for the Dutch text was 52.6 s (SD = 23.0), and
for the English text 56.2 s (SD = 19.6)). In the reading
tasks, given the average font size and viewing distance,
about six characters subtended one degree of visual angle.
Following previous research on reading (Rayner & Pollat-
sek, 1989, p.117), return sweeps (i.e., when the eye moves
back to the beginning of the next line) were removed from
the saccade data after the algorithm was applied.

The scenes used were two color photographs of print
advertisements from pro-environment campaigns. The ads
were scanned and cropped so that they were shown in full
screen. Participants were asked to explore the ads as they
would normally do at home or in a waiting room at their
leisure, and to press the spacebar in order to proceed to the
next task. On average, participants viewed the ads 7.9 s
(SD = 4.4).

In the visual search task, participants were asked to find
a product (a brand of shampoo and a brand of margarine)
on an image of a retail shelf that contained packages of
various brands. The shampoo-shelf contained 43 different
brands, each represented by one package. The margarine-
shelf contained nineteen different brands and an average of
6.3 packages per brand. The location of the target items
were respectively center right and bottom left. Participants
were asked to press the spacebar to proceed to the next task
once they had located the target brand. On average,
participants took 6.7 s (SD = 4.3) to find the shampoo
and 8.6 s (SD = 2.7) to find the margarine brand.

Results

Within fixation variability

Tables 1 and 2 provide the robust estimates of the means
and standard deviations of the x- and y-velocities of the
POR of the left and right eye and their correlations, for each
of the 12 tasks. That is, they provide the estimates of the
elements of the mean vector μ (Table 1) and covariance
matrix ∑ (Table 2) corresponding to the variability of the
POR during fixations (i.e., excluding outliers that are
classified as candidate saccades), estimated with the MCD
procedure. Table 3 shows the velocity thresholds deter-
mined by our algorithm, for the different tasks and
individuals. These quantities are of interest because they
reflect the within-fixation variability of the POR per eye
and are directly related to the Shewhart control limits to
identify fixations. We examined how these control limits in
the x-y direction as well as their correlations, vary across
eyes, tasks and individuals. For this purpose, we fitted a
linear mixed effects model on the measures presented in
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Table 2, with eye, task and individual differences as their
predictors, using the WINBUGS software (Lunn, Thomas,
Best, & Spiegelhalter, 2000).3 We used the procedure by
Gelman and Pardoe (2006) to compute the part of the
variation that is attributable to eyes, individuals, and tasks.
These results are summarized in Table 4.

Table 1 shows that across all tasks the means of within-
fixation velocity are on average small, but yet significantly
different from zero, except for the x-direction of the right
eye. For reading tasks only, the right-eye velocities in the x-
direction appear smaller than the left eye velocities (0.22°/s
versus 0.50°/s). Table 2 shows, as expected, that the
horizontal and vertical velocities of the left and right eye
are significantly positively correlated (.13 for the horizontal
direction, and .03 for the vertical direction). However, these
correlations are rather small, which suggest that both the
left and right eye contain distinct information to determin-
ing fixations.

The mean fixation variability μ is relatively stable across
tasks and individuals (see Tables 1 and 4). Most of the
variation in this measure is random, only 21% (horizontal
x-direction) and 16% (vertical y-direction) can be explained
by individual differences, while the effect sizes of the eye
and task are negligible. Furthermore, except for the mean
horizontal movement of the left eye during reading,
parameter estimates of the linear mixed effects model show
that these mean fixation variabilities are not significantly
different from zero. These results suggest that in this study
it is not necessary to allow for non-zero mean velocities in
both the x- and y-direction within fixations in identifying

fixations and saccades, and supports the previous finding
that this parameter is effectively zero (Engbert & Kliegl,
2003; Engbert & Mergenthaler, 2006).

Whereas the mean of the POR during fixations does not
vary systematically across tasks, the within-fixation varia-
tion ∑ does, even if not by very much (the explained
variance equals .05 for the x-direction, and .08 for the y-
direction, see Table 4). The effects for search tasks are
significantly smaller compared to reading and scene
viewing, and the within-fixation variability of the POR
does not significantly differ for reading and scene viewing.

Individual differences

There are significant differences between tasks in fixation
variability, although these account for only 5% of the
variability in the x-direction and 8% in the y-direction.
Furthermore, left vs. right eye does not account for any
variation of the within fixation variability (see Table 4). In
contrast, individual differences are much more important
and account for, respectively, 83% of the variation in the x-
direction and 77% in the y-direction. Figure 2 illustrates the
importance of individual differences for the left and right
eye (respectively top and bottom plot). In the figure, the
average standard deviations in the x- and y- directions are
plotted for the three tasks, as well as for each individual.
The figure illustrates that differences in within-fixation
variability are substantially larger between individuals than
between tasks.

Table 2 shows between-individual standard deviations of
the within-fixation variability ranging from a minimum of
3.27°/s to a maximum 9.72°/s, implying that large differ-
ences in velocity thresholds should be used to determine
fixations. For instance, for reading the average robust
estimator for the within fixation variation for, respectively,

Task Left eye Right eye

Mean xl Mean yl Mean xr Mean yr

Reading English 1 .49 (.57) .17 (.37) .31 (.54) .12 (.41)

Reading English 2 .28 (.42) .12 (.57) -.03 (.47) .08 (.42)

Reading Dutch 1 .50 (.52) .25 (.30) .12 (.42) .27 (.30)

Reading Dutch 2 .65 (.40) .04 (.45) .35 (.34) .23 (.49)

Reading Overall .50 (.49) .14 (.42) .22 (.47) .18 (.42)

Search Shampoo .02 (.98) .27 (.79) -.02 (.57) .26 (.87)

Search Margarine .26 (.61) .32 (.69) -.34 (.57) .02 (.58)

Search Overall .12 (.85) .29 (.75) -.15 (.58) .16 (.77)

Ad Exploration 1 .08 (.87) .50 (.91) -.38 (.77) .27 (1.01)

Ad Exploration 2 .23 (.74) .20 (.76) -.04 (.76) .35 (.69)

Ad Exploration Overall .15 (.81) .36 (.85) -.21 (.78) .31 (.87)

Overall .26 (.74) .26 (.71) -.05 (.66) .22 (.72)

Table 1 Robust estimates of the
mean changes (μ) of the POR
during fixations in x- and
y-directions for different tasks
(in °/s)

Note: Standard deviations across
individuals in parentheses. Posi-
tive (negative) values correspond
to movements to the right (left)
for the x-coordinates, and up
(down) for the y-coordinates

3 Because we estimated the linear mixed effects model in a Bayesian
framework, throughout this manuscript we judge something statisti-
cally significant if the 95% posterior distribution does not overlap with
the hypothesized value.
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the left and right eye in the x-direction is 18.9°/s and 19.3°/s
and for the y-direction is 24.8°/s and 24.9°/s, leading to
velocity thresholds for the left eye of –61.0°/s to 62.0°/s in
the x-direction and –80.6°/s to 80.8°/s in the y-direction, and
for the right eye of -62.6°/s to 63.0°/s in the x-direction and –
80.8°/s to 81.2°/s in the y-direction (see Table 3).

Participant 71’s (shown in Fig. 1) robust estimate of the
within-fixation variability for the left and right eye equals
10.1°/s in the x-direction, and are 13.4°/s and 14.5°/s in the
y-direction, respectively, leading to velocity thresholds that
are almost 50% smaller than those for the average
participant, which is large. On the other hand, within-
fixation variability of participant 11 (shown in Fig. 1) for
respectively the left and right eye are 31.5 °/s and 32.0 °/s
in the x-direction and 37.8 °/s and 42.0 °/s in the y-
direction, which is about three times those of participant 71.
These results show that different thresholds are required to
define fixations of different individuals, which the proposed
algorithm automatically does.

Descriptive statistics of eye-movement characteristics

Table 5 presents the descriptive statistics of the fixations
defined by our BIT algorithm for the sample of 71
participants, for each of the 12 tasks. We show the average
number of fixations, the mean, median and standard
deviation of fixation duration (in ms), and the mean,
median and standard deviation of saccade size (in degrees,
see Rayner et al., 2007). In addition, Fig. 3 presents the
frequency distributions of fixation durations and saccade
lengths as identified by the algorithm.

Overall, the fixation durations for the scene viewing (ad-
exploration) task are shortest (mean 233 ms), with reading
(mean 257 ms) slightly but not significantly longer than
search (mean 254 ms). The duration of fixations is most
variable for search (SD = 166 ms), followed by those for
reading tasks (SD = 145 ms). Our results also show that
fixation durations are skewed to the right, with median
fixation durations much shorter than their mean. In general,
the average fixation durations identified through our
algorithm are similar to those in previous accounts
summarized above. For instance, similar to Rayner (2009)
we find that fixation durations for reading are in the same
range as those for visual search (Rayner: silent reading:
225–250 ms; visual search: 180–250 ms). Although Rayner
reports slightly longer fixation durations for scene percep-
tion (260–330 ms), in another study he and his coauthors
presented significantly shorter fixation durations in ad
processing (234 ms for fixations on text vs. 251 ms for
fixations on pictorials; Rayner, Miller, & Rotello, 2008)
that are relatively close to what we find in our study. The
top panel of Fig. 3 contains the distributions of the fixation
durations across the three tasks. The figure shows thatT
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fixation durations have a skewed distribution, comparable
to, for example, with Fig. 2 of Henderson and Hollingworth
(1998). Similar to Henderson and Hollingworth, we find
that the modal fixation duration is the same across the tasks.
However, differently from Henderson & Hollingworth, we
find a substantially higher proportion of longer fixation
durations and a lower proportion of fixations below 100 ms
in the reading task. This may be caused by the specific
reading tasks that we use, which included reading a foreign
language, which may require more time for comprehension
and lead to longer fixations. In addition, different from

Table 4 Explained variation of POR during fixation across individ-
uals, eyes (left vs. right) and tasks

Predictor Predictor

Individuals Tasks Eye (left vs. right)

Mean x .21 .04 .03

Mean y .16 –.06 –.02

sd(x) .83 .05 –.00

sd(y) .77 .08 –.00

r(xl, yl) .26 .06 –

r(xr, yr) .29 .01 –

r(xl, xr) .57 –.00 –

r(yl, yr) .61 .01 –

r(xl, yr) .39 –.01 –

r(yl, xr) .25 –.01 –

Note: Reported values are median posterior estimates of the explained
variance in the linear mixed effects model in WINBUGS using the
procedure of Gelman and Pardoe (2006). Similar to the adjusted R2 , it
is possible for this procedure to produce negative values if the explained
variance of a parameter is so poor that it is larger than the variance of the
data (see Gelman and Pardoe (2006), p.244)

Table 3 Velocity thresholds for the left and right eye in horizontal (x) and vertical (y) directions (in °/s)

Task Left eye Right eye

Horizontal Vertical Horizontal Vertical

Reading English 1 [–61.3 ; 62.3] [–83.1 ; 83.5] [–62.2 ; 62.8] [–82.9 ; 83.1]

Reading English 2 [–57.6 ; 58.2] [–76.0 ; 76.3] [–60.5 ; 60.5] [–75.7 ; 75.9]

Reading Dutch 1 [–60.0 ; 61.0] [–76.2 ; 76.7] [–63.0 ; 63.2] [–76.5 ; 77.1]

Reading Dutch 2 [–63.1 ; 64.4] [–82.9 ; 83.0] [–63.7 ; 64.4] [–85.3 ; 85.8]

Reading Overall [–61.0 ; 62.0] [–80.6 ; 80.8] [–62.6 ; 63.0] [–80.8 ; 81.2]

Search Shampoo [–51.4 ; 51.4] [–64.5 ; 65.0] [–50.5 ; 50.4] [–60.3 ; 60.8]

Search Margarine [–55.7 ; 56.2] [–57.6 ; 58.2] [–55.3 ; 54.6] [–60.2 ; 60.2]

Search Overall [–53.2 ; 53.5] [–61.5 ; 62.1] [–52.5 ; 52.2] [–60.0 ; 60.4]

Ad Exploration 1 [–64.3 ; 64.5] [–69.8 ; 70.8] [–65.1 ; 64.4] [–70.0 ; 70.6]

Ad Exploration 2 [–61.6 ; 62.1] [–74.6 ; 75.0] [–60.2 ; 60.2] [–72.5 ; 73.2]

Ad Exploration Overall [–63.0 ; 63.3] [–72.2 ; 72.9] [–62.7 ; 62.3] [–71.3 ; 71.9]

Note: Lower (left) and upper (right) thresholds given in square brackets

Fig. 2 Individual-specific and average standard deviations of the
within fixation variability in eye-velocity in the x- and y-directions
across tasks. The scatter plots show the average standard deviation of
the first-order differences of the POR in the x- and y-directions for
each task in large symbols, and they show the individual-level
standard deviations in the x- and y-directions in small symbols, for
respectively the left eye (top panel) and right eye (bottom panel)
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some prior research, our scene viewing tasks involves
advertisements, which are multimodal stimuli comprised of
both pictorial and textual information. This may explain
why we do not replicate previous findings that fixation
durations during reading tend to be somewhat shorter than
those in scene viewing.

The saccade size was largest for the scene viewing task
(mean 4.90°) and smallest for the reading task (mean
1.94°). Saccade lengths during search were in-between
those during ad exploration and reading (mean 3.86°).
Similar to fixation durations, these saccade sizes are similar
to those reported in previous studies, indicating that the
algorithm correctly identifies velocity thresholds. Saccade
sizes are highly variable with standard deviations of similar
magnitude as the means, which vary significantly across
tasks. Saccade lengths are also skewed to the right, with—
except for reading—median lengths that are more than 1°
shorter than their corresponding means (see Table 5). This
is shown in the bottom panel in Fig. 3, which represents the
distribution of saccade lengths across the three tasks.
Similar to Henderson and Hollingworth (1998), we find
that the modal saccade length for reading is substantially
higher compared to scene viewing (ad exploration).
Although individual differences were much more important
than task differences in accounting for within-fixation
variability of the POR, a linear mixed effects model shows
that task differences play a significant role in explaining
characteristics of fixations and, especially, saccades. That
is, for fixation durations, individual differences account for
49% of the variation, but task differences still account for a
significant 5%. For saccade lengths, individual differences
only account for 12%, with 61% being due to task
differences. These results are in line with the findings of
Rayner et al. (2007) and Castelhano and Henderson (2008),

Table 5 Characteristics of fixation durations and saccade sizes for different tasks

Task No. of fixations Fixation durations (ms) Saccade lengths (°)

Mean Mean Median SD Mean Median SD

Reading English 1 203 (65) 261 (41) 229 (28) 150 (50) 1.77 (.35) 1.60 (.31) 1.20 (.34)

Reading English 2 175 (68) 251 (36) 223 (32) 135 (43) 1.95 (.49) 1.70 (.37) 1.45 (.54)

Reading Dutch 1 192 (86) 250 (45) 220 (23) 141 (62) 2.03 (.63) 1.88 (.68) 1.41 (.41)

Reading Dutch 2 169 (60) 261 (54) 229 (34) 149 (67) 2.06 (.42) 1.83 (.45) 1.52 (.26)

Reading Overall 185 (69) 257 (44) 226 (29) 145 (56) 1.94 (.47) 1.74 (.46) 1.38 (.40)

Search Shampoo 23 (14.0) 245 (43) 214 (42) 149 (50) 3.41 (.95) 2.25 (1.01) 3.34 (1.03)

Search Margarine 26 (7.5) 267 (57) 207 (67) 190 (67) 4.50 (1.49) 3.31 (1.60) 4.21 (1.40)

Search Overall 24 (11.8) 254 (50) 211 (43) 166 (60) 3.86 (1.31) 2.69 (1.38) 3.70 (1.26)

Ad Exploration 1 21 (10.6) 230 (46) 206 (41) 124 (48) 5.37 (1.17) 4.11 (1.89) 4.75 (1.03)

Ad Exploration 2 37 (15.9) 236 (35) 214 (24) 127 (47) 4.40 (.83) 2.90 (.89) 4.17 (.71)

Ad Exploration Overall 29 (15.6) 233 (41) 210 (34) 125 (47) 4.90 (1.13) 3.52 (1.61) 4.47 (.93)

Note: Standard deviations across individuals in parentheses

Fig. 3 Frequency distributions of the fixation durations (top panel)
and saccade lengths (bottom panel)
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but they are the first to quantify the size of individual and
task effects on fixations and saccades.

Importance of individual specific threshold velocities

Because individual differences in within-fixation variability
and their effects on velocity-based thresholds are large, we
investigate their influence on fixation and saccade charac-
teristics further. Table 6 compares the eye-movement
characteristics of fixations and saccades computed by our
algorithm with those computed by an alternative algorithm
that would use only task-specific velocity thresholds for
both eyes—the common procedure in current velocity-
based algorithms. For the alternative algorithm, we used the
average of the individual-specific velocity thresholds as
presented in Table 3 as fixation thresholds for all
individuals. Table 6 presents statistics for three eye-
movement measures: average number of fixations, mean
fixation durations, and average saccade sizes. It reports the
average difference, the mean absolute deviation (MAD; for
each measure the absolute value of the difference between
the values of that measure computed with the two
methods), the mean absolute percentage deviation (MAPD:
the MAD expressed as a percentage of the mean of the
measure in question), and the correlation between the three
eye-movement measures computed with the two methods.

As shown in Table 6, the overall differences in the
reported means for the three eye-movement measures
between algorithms that incorporate, respectively ignore
individual differences in within fixation variation of the

POR are very small. The average differences being –1.53
fixations, 1.24 ms fixation duration and 0.01° saccade size.
Table 6 shows that this holds by-and-large for all tasks. The
fact that the aggregate effect is small on average is
reassuring in view of prior studies that have used thresholds
that are fixed across individuals and report eye-movement
statistics averaged across samples.

However and importantly, inspection of the correspon-
dence of eye-movement measures at the individual level
reveals large significant differences for all eye-movement
measures. At the individual level, the mean absolute
deviation (MAD) of the estimated number of fixations
varies from 41.6 for search to 46.15 for reading. This
corresponds to a 21% mean absolute percentage difference
(MAPD). The magnitude of this difference increases as the
length of the task increases; reading being the longest tasks
in general. Moreover, the correlations between the numbers
of fixations computed by the two algorithms are low, for
reading this is only .55, although the overall correlation is
high (.90). This reveals the importance of accounting for
individual-specific, and not just task-specific, fixation
thresholds, in particular when interest focuses on
individual-level characterization of the eye-movement
process.

A similar pattern is found for average fixation durations.
At the individual level, the MAD is 56.98 ms overall, and
for reading even 71.15 ms. Similarly, the correlations
between the computed average fixation durations based on
our algorithm and the alternative are low, ranging from .28
for reading to only .20 for ad exploration. The results for

Table 6 Comparison of eye-movement measures computed with algorithms that use individual and task-specific, respectively, only task-specific
velocity thresholds

Measure Statistic Overall Reading Search Ad exploration

Number of fixations Mean difference –1.53 –2.78 –.32 –1.26

MAD 19.27 46.15 4.16 5.82

MAPD .21 .27 .18 .18

Correlation .90 .55 .92 .84

Fixation durations (ms) Mean difference 1.24 –.02 –2.14 4.65

MAD 56.98 71.15 55.85 45.26

MAPD .22 .26 .22 .19

Correlation .14 –.08 .38 .07

Saccade size (°) Mean difference –.01 –.00 –.06 .02

MAD .56 .34 .63 .70

MAPD .17 .18 .17 .16

Correlation .89 .59 .82 .69

Note: The reported statistics are: mean difference: the overall mean for the eye-movement measure in question, computed using individual specific
velocity thresholds minus the overall mean computed using the average velocity threshold for individuals, within a specific task; MAD Mean
absolute deviation of the measures computed using individual and average velocity thresholds; MAPD Mean absolute percentage deviation of the
measures computed using individual and average velocity thresholds; Correlation Correlation coefficient of the measures computed using
individual and average velocity thresholds
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the average saccade sizes follow a similar pattern, with
absolute differences that range from .34° (18% MAPD) for
reading to .70° (16% MAPD) for ad exploration. Although
the overall correlation between computed average saccade
sizes is relatively high (.89), the correlation is only .59 for
reading (a mere 35% shared variance).

These results imply that if the goal is to characterize
aggregate eye-movement patterns across samples of indi-
viduals and/or differences between tasks and stimuli, using
only task-specific fixation thresholds will yield approxi-
mately unbiased results. This has been the case for prior
research that has used thresholds that were constant across
individuals. However, our results also reveal that if the goal
is to characterize eye-movement patterns at the individual
level it is essential to allow for individual differences in the
variability of the POR. Allowing for individual differences
in the variability of the POR is even more important when
the focus is on understanding coordination of binocular
viewing.

Importance of binocular information

The algorithm can be easily applied to the POR of only one
eye (see Footnote 1 in Sect. 2.2). However, using the POR
of one eye possibly eliminates valuable information to
identify fixations, which is suggested by Table 2. Such loss
of information is likely as the correlation between velocities
of both eyes are low. Table 7 reports the average difference,
the mean absolute deviation (MAD), the mean absolute
percentage deviation (MAPD), and the correlation between
the eye-movement measures computed with the algorithm

applied to POR of both eyes vs. the POR of only the left
eye. The results in Table 7 clearly show a bias in all three
measures. That is, when using information of one eye, the
algorithm overestimates fixation durations by 19% and
saccade lengths by 16%. This results in an overall decrease
in the number of fixations of 14%. The reason for these
results is that the information available from the POR of the
second eye provides additional evidence for the algorithm
to qualify high velocities of the POR as potential saccades.
The results in Table 7 also explain why our algorithm finds
fixation durations and saccade lengths that are somewhat
shorter than previously reported measures. Previous re-
search mostly uses velocity thresholds based on a single
eye, which on average produces slightly longer fixation
durations and longer saccades.

Study 2

Description and experimental setup

As discussed in the description of our algorithm, it is
machine and sampling frequency independent. The results
of the previous studies were collected on an eye tracker
with a relatively low sampling frequency (50 Hz), and a
relatively high inaccuracy because it compensates for head
movements. Such an eye tracker is popular in applied
research, but for basic research a tracker with a higher
sampling frequency and accuracy (supplanted for instance
by a chinrest or bite bar to immobilize the head during
tracking) is required. Therefore, we also demonstrate the

Table 7 Comparison of eye-movement measures computed with algorithms that use the POR of both eyes, respectively only the left eye

Measure Statistic Overall Reading Search Ad exploration

Number of fixations Mean difference 13.65 33.37 3.00 3.47

MAD 13.79 33.37 3.19 3.71

MAPD .14 .17 .13 .12

Correlation .99 .96 .98 .98

Fixation durations (ms) Mean difference –44.69 –57.74 –46.07 –32.24

MAD 47.64 57.75 52.53 35.40

MAPD .19 .21 .22 .16

Correlation .79 .92 .61 .78

Saccade size (°) Mean difference –.46 –.34 –.47 –.56

MAD .51 .34 .52 .65

MAPD .16 .19 .16 .14

Correlation .97 .93 .95 .89

Note: The reported statistics are: mean difference: the overall mean for the eye-movement measure in question, computed using individual specific
velocity thresholds based on both eyes minus the overall mean computed using individual specific velocity threshold based on only the left eye;
MAD Mean absolute deviation of the measures computed using velocity thresholds based on both eyes and only the left eye; MAPD Mean
absolute percentage deviation of the measures computed using velocity thresholds based on both eyes and only the left eye; Correlation
Correlation coefficient of the measures computed velocity thresholds based on both eyes and only the left eye
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performance of the algorithm with data collected on a
different machine, i.e., a Fourward Technologies Genera-
tion V dual-Purkinje eye tracker (Buena Vista, VA). Using a
bite bar, it has an accuracy of <10 min arc, a precision of
about 1 min of arc, with a sampling rate of 200 Hz. The
specific eye-tracking data we use was published by van der
Linde, Rajashekar, Bovik, and Cormack (2009), and is
called DOVES. Among others, this dataset contains the raw
POR records of one eye of 29 observers that viewed a total of
101 scenes each one for 5 s. For a more detailed description,
we refer to the original publication of this dataset by van der
Linde Rajashekar, Bovik, and Cormack (2009).

The DOVES database only contains the raw data of the
POR of one single eye. Therefore we applied our algorithm
to these measures (as explained above, our algorithm can
easily be applied to the POR of one eye). However, the
accuracy of the eye-tracker in this study is much higher (see
also Fig. 4 for two examples of the POR of this study).
Next, we present the results of applying our algorithm to
the DOVES database. Although this is not our primary

purpose, this dataset allows us to compare the performance
of our algorithm to the one applied by van der Linde et al.
(2009). They use the algorithm recommended by the
manufacturer, which defines a fixation if the POR remains
within a diameter of 1° for at least 100 ms.

Results

Within-fixation variability

Figure 4 presents the variability of the POR of the eye of
two observers. The two left plots represent the velocity of
the POR and the individual specific velocity thresholds
computed by our algorithm. The two right plots indicate the
x- and y- coordinates of the POR and the identified
fixations by our algorithm (red) and the ones reported by
van der Linde et al. (green). Clearly and as expected, the
within-fixation variation in this study is much lower than in
study 1. This leads to much smaller thresholds to identify
fixations and saccades. On average, our algorithm finds

Fig. 4 Illustrating the BIT Algorithm on observed PORs for two
individuals in the DOVES database. The three plots on the top
correspond to participant 2 and the bottom plots to participant 21
while they are viewing picture 2. The left scatter plots represent the
velocities of the POR as expressed in differenced x- and y-coordinates.
The red ellipses in these plots represent the estimated threshold for

determining fixations and saccades (i.e., velocities outside the ellipse
are labeled as candidate saccades). The two right plots represent the
POR in respectively x- and y-coordinates, with estimated fixation
positions superimposed (red: the proposed algorithm that determines
individual specific velocity thresholds; green: the algorithm by the
manufacturer as used by van der Linde et al. (2009))
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standard deviations of the POR within fixations in the
horizontal direction of 2.77° (median: 1.68°), and of 1.94°
(median: 1.62°) in the vertical direction. Furthermore, the
within-fixation variation of the POR of horizontal and
vertical movements in this study are on average unrelated
(average correlation: –.02). However, there are substantial
differences of the within-fixation variability of the POR
across individuals and tasks (SD = 7.84 in x-direction and
SD = 1.51 in y-direction). For instance in Fig. 4, the within-
fixation variabilities of participant 5 (plots at the top of
Fig. 4) are 2.10° and 2.00° in, respectively, the horizontal
and vertical direction, while for participant 21 (plots at the
bottom of Fig. 4) these values are .95° and 1.12°,
respectively. These results again show the importance of
allowing for individual differences in velocity thresholds to
identify fixations and saccades.

The within-fixation variability is much lower in this
study, suggesting that our algorithm does not only pick up
individual and task differences but also differences due to
instrumentation. Furthermore, for some individual-task
combinations we find extremely high within-fixation
variability of the POR. We manually investigated these
individual-task combinations and found an extremely high
noise during some periods of the eye-tracking experiment
in study 2. Figure 5 presents such a case in which
participant 6 is viewing image 2. Our algorithm finds a
within-fixation variability of 90.3 in the horizontal x-
direction, 14.3 in the vertical y-direction, indicating very
high noise. This shows that our algorithm is not only useful
to identify fixations but also to identify potential recording
problems during eye-tracking.

In study 1, we found that the mean of the within-fixation
variability was not significantly different from zero.

Interestingly, in this study the overall means of the
within-fixation variability is on average positive and
significantly different from zero (mean x-direction: .19°,
mean y-direction: .02°). Especially the mean in the
horizontal x-direction is substantial, suggesting that the
eye has the tendency to drift slightly towards the right
during a fixation. This effect is illustrated in the bottom-left
plot of Fig. 4, where the center of the ellipse is located
slightly towards the right (mean x-direction: .20°). This
shows that allowing for a non-zero mean for within-fixation
variability is important in this specific study, in which the
use of a chinrest that prevents head movements may have
caused a systematic within-fixation movement of the eye.

Descriptive statistics of eye-movement characteristics

Using the BIT algorithm, we find on average 16.3 (SD =
2.6) fixations per task of 5 seconds. Furthermore, we find
an average fixation duration of 257 ms (median = 255 ms,
SD = 46.3 ms). This is somewhat longer than the fixation
durations during the ad exploration task in study 1, and
somewhat shorter than the ones reported by Rayner (2009)
for scene perception (260–330 ms). The average saccade
length equals 2.7° (median = 2.73°, SD = .92°). This is
much shorter than what we found in study 1 during ad
exploration, and also much shorter than what was reported
by Rayner 2009 (4–5° during scene perception).

Table 8 presents the comparison of the eye-movement
characteristics found by our algorithm with the algorithm
used by van der Linde et al. (2009), who used standard
manufacturer settings. Their reported eye-movement char-
acteristics differ from those found by our algorithm. The
manufacturer algorithm used by van der Linde et al. (2009)

Fig. 5 Using the BIT Algorithm to identify possible PORs with
relatively high noise. The blue lines in these plots represent the x- (left)
and y- (right) coordinates of the POR of participant 6 while viewing the
second image. Estimated fixation positions are superimposed on these
plots (red: the proposed algorithm that determines individual specific

velocity thresholds; green: the algorithm by the manufacturer as used by
van der Linde et al. (2009)). Our algorithm reports a high within
fixation-variability sdðxÞ ¼ 90:3; and sdðyÞ ¼ 14:3ð Þ, indicating high
noise of the POR
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systematically finds fewer fixations compared to ours (an
average of 12.1 fixations; 4.13 fewer fixations than our
algorithm), leading to longer fixation durations (mean
difference = –172.54 ms) and longer saccades (mean
difference = –.74°). The mean fixation duration found by
the standard algorithm used by van der Linde et al. was
429 ms, which is longer than that reported in previous
studies. Visual inspection of the PORs of individuals and
identified fixations superimposed on these plots shows that
their standard algorithm merges fixations that our algorithm
separate. Although there are no absolute standards for the
definition and computation of oculomotor measures in the
study of cognitive processes (Inhoff & Radach, 1998), the
descriptive statistics and visual inspection suggest that our
algorithm better identifies fixations and saccades compared
to the manufacturer algorithm applied by van der Linde et
al. (2009). The two right plots in Fig. 4 illustrate two
examples. For participant 2 (plots in the top of Fig. 4), the
standard algorithm does a reasonable job at the beginning
in this task, however it only identifies two fixations during
the last 1,500 ms, while our algorithm suggests six
fixations. Similarly for participant 21, the standard algo-
rithm identifies only one fixation during the first second
and two during the final second. Our algorithm identifies
two fixations during the first second and three during the
final second.

Discussion

We proposed the BIT algorithm, a fully automatic velocity-
based algorithm for the identification of fixations from eye-
movement records. The procedure offers the advantages
that it automatically identifies velocity-based thresholds
that differ in x- and y- directions, the left and right eye,
tasks, individuals, and instrumentation, and removes blinks
and outliers from the POR record. It is based on robust
estimation methods and control chart procedures and is
computationally attractive. The MATLAB source code can
be freely downloaded from the webpage of the first author
(http://www.bm.ust.hk/~mark/staff/rlans.html).

In two studies, we found that within-fixation variability
differs considerably between individuals, and that there are
significant differences in the x- and y-directions as well.
Individual differences account for about 80% in the
variability of the movement of the POR within fixations,
substantially more than tasks which accounted for only a
little over 5% of the variability. This implies that setting a
constant fixation threshold may result in a substantial
number of within-fixation movements of the POR to be
classified inappropriately as saccades.

Using the BITalgorithm, we computed descriptive statistics
of fixations for a sample of over seventy participants across a
variety of tasks, including reading, search, and scene viewing.
The fixation durations and the saccades were somewhat on the
lower than previously reported numbers. This is likely caused
by the fact that our algorithm is based on the POR record of
both eyes. Individual differences explained less of the
variability in fixation and saccade measures as compared to
within-fixation variability of the POR: a little over 10% for
saccade sizes and close to 50% for fixation durations. This may
have been caused by the use of an eye-tracker that allows for
head movements and with somewhat lower accuracy, so that
instrumentation variability is included in the within-fixation
variability as well. Yet, there were considerable differences in
the characteristics of fixations not only between tasks, but also
between individuals, in line with previous reports.

A comparison of our algorithm to an alternative that uses
a single (velocity-based) threshold per task revealed that the
average differences in the number of fixations, fixation
durations, and saccade sizes are relatively small. However,
across individuals, (mean absolute, percentage) deviations
were considerable, and correlations were relatively low.
This shows that when the interest is in average differences
in eye-movement characteristics between tasks or stimuli,
using constant (task-specific) fixation thresholds will yield
fairly accurate results. This is reassuring for prior research
that has used such constant thresholds and reported sample
averages of the eye-movement measures. However, when
the goal is to describe eye-movement characteristics at the
individual level or the effect of individual specific

Table 8 Eye-movement measures computed by the proposed BIT
algorithm and manufacturer algorithm for the DOVES data

Measure Statistic Overall

Number of fixations Mean difference 4.13

MAD 4.43

MAPD .27

Correlation .23

Fixation durations (ms) Mean difference –172.54

MAD 175.57

MAPD .71

Correlation .09

Saccade size (°) Mean difference –.74

MAD 1.01

MAPD .51

Correlation .39

Note: The reported statistics are: mean difference: the overall mean for
the eye-movement measure in question, computed using individual
specific velocity thresholds based on one eye minus the overall mean
computed using the algorithm recommended by the manufacturer and
used in the DOVES database; MAD Mean absolute deviation of the
measures computed using the proposed algorithm and the ones
reported in the DOVES database; MAPD Mean absolute percentage
deviation of the measures computed using the proposed algorithm and
the ones reported in the DOVES database; Correlation Correlation
coefficient of the measures computed by the proposed algorithm and
the ones reported in the DOVES database
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characteristics on eye-movement patterns the effects of
ignoring individual differences in the thresholds to deter-
mine fixations can be large.

Application of our proposed algorithm in a second study
using data collected at a different eye-tracker, sampling at a
higher rate, and with better accuracy due to a chinrest,
shows that the proposed algorithm is robust and machine
independent. This study also showed how the parameter
estimates of the algorithm may be used to discover poor
eye-tracking data containing PORs that are very noisy.

The present study also quantifies the variability in
binocular viewing across a range of tasks and individuals,
following up on recent calls for such research (Kloke &
Jaschinski, 2006; Liversedge et al., 2006; Nuthmann &
Kliegl, 2009; Vernet & Kapoula, 2009). Individual differ-
ences in binocular eye-movement patterns have been
related to ordinary viewing and reading patterns (Nuthmann
& Kliegl, 2009), but also to abnormal performance, such as
in poor reading and dyslexia. The proposed algorithm may
prove useful in gaining further insights into individual
differences in binocular viewing coordination, and the
mechanisms that account for it. For instance, in the first
study we found systematically a positive correlation
between horizontal and vertical within-fixation variability
in the left eye, while this correlation was negative for the
right eye, which remains to be further investigated.

We therefore believe that the Binocular Individual
Threshold (BIT) algorithm will be useful in eye-tracking
research across a variety of disciplines, including vision
research, human factors, psychology, engineering, and
business. In each of those disciplines, the examination of
records of the point of regard of the eye relies heavily on
accurately identifying sequences of fixations and saccades.
Individual differences in within-fixation variability of the
POR and the resulting variation in fixation thresholds
across tasks, stimuli, and individuals can be expected to
influence the results, especially if one is interested in these
measures at the individual level such as in correlational
studies and experiments. The BIT algorithm is fully
automatic, and can easily be applied to POR records from
different eye-tracking devices. Future research could extend
the algorithm, for example, to identify smooth pursuits in
dynamic scenes, micro saccades from the POR, and eye-
movement characteristics in three dimensions.
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