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Abstract
In this paper, we investigate, by means of a computational model, how individuals map quantifiers onto numbers and how
they order quantifiers on a mental line. We selected five English quantifiers (few, fewer than half, many, more than half, and
most) which differ in truth conditions and vagueness. We collected binary truth value judgment data in an online quantifier
verification experiment. Using a Bayesian three-parameter logistic regression model, we separated three sources of individual
differences: truth condition, vagueness, and response error. Clustering on one of the model’s parameter that corresponds to
truth conditions revealed four subgroups of participants with different quantifier-to-number mappings and different ranges of
the mental line of quantifiers. Our findings suggest multiple sources of individual differences in semantic representations of
quantifiers and support a conceptual distinction between different types of imprecision in quantifier meanings. We discuss the
consequence of our findings for the main theoretical approaches to quantifiers: the bivalent truth-conditional approach and the
fuzzy logic approach. We argue that the former approach neither can explain inter-individual differences nor intra-individual
differences in truth conditions of vague quantifiers. The latter approach requires further specification to fully account for
individual differences demonstrated in this study.

Keywords Quantifiers · Vagueness · Response error · Hierarchical Bayesian model

Introduction

In English, like many other languages, one can express
numbers and quantifiers (many, few, most, some, and at
least 5). Researchers have been trying to establish the link
between quantifiers and the mental number line (e.g., Ham-
merton, 1976; Newstead et al., 1987; Pezzelle et al., 2018;
Abbondanza et al., 2021). In this study, we developed a
computational model to investigate the mapping between
numbers and quantifiers. Firstly, we quantified between-
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individual variability in the quantifier-to-number mapping to
establish how flexible this mapping is. Secondly, we tested
whether participants put quantifiers on the number line in the
same order according to their associate quantity.

Psycholinguistic studies on quantifiers

Quantifier-to-number mapping has been extensively studied
for psychometric purposes (see Moxey and Sanford (1993)
for review) to assesswhether experimental scales constructed
using quantifiers are rank or interval and how distinguish-
able items of these scales are Moxey and Sanford (1993).
For example, Hammerton (1976) found that while between-
subject variability in quantifier-to-number mapping is high,
individuals tended to rank order quantified sentences consis-
tently. Newstead et al. (1987), in turn, found that participants
were less consistent in the usage of low-magnitude quan-
tifiers (e.g., few, several) than high-magnitude quantifiers
(e.g., many, most). More recently, Pezzelle et al. (2018)
investigated the order of quantifiers on a mental line of num-
bers by measuring the range of proportions covered by each
quantifier. They established a consistent order of quantifiers,
however, they also showed that the ranges of proportions
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coveredbyquantifiers highlyoverlap, and thehigh-magnitude
quantifiers are less distinguishable. Overall, the psycholog-
ical studies suggest that despite high individual differences
in quantifier-to-number mapping, quantifiers are put in the
same order on a scale.

Semantic approach to quantifiers

Traditionally, formal semantics analyses the meaning of
quantifiers in terms of bivalent truth conditions (e.g., Gen-
eralized Quantifier Theory, Barwise and Cooper (1981);
Mostowski (1957)). The truth condition of a quantifier speci-
fies a threshold above or below which the quantifier is true1.
Some quantifiers like more than half have a clear threshold.
For example, in the sentence “More than half of the As are
B” the threshold equals half of set A. Other quantifiers, like
many, have various thresholds depending on the context Par-
tee (1989). In this study, we use thresholds as a measure of
quantifier-to-number mapping.

In addition to thresholds, quantifiers can differ in how
precise their meaning boundaries are. We will refer to this
phenomenon as vagueness. The role of vagueness in natural
language has been extensively debated in the linguistic and
philosophical literature (e.g., Douven, 2019;Glöckner, 2006;
Solt, 2015). Vagueness expresses the intuition that meaning
boundaries are gradable. Quantifiers like many and few do
not have a specific threshold. The lack of a specific thresh-
old correlates with borderline cases which constitute a key
characteristic of vagueness. For example, if we agree that the
sentence “Many of the students failed an exam." is true when
20% of students failed, we will also probably agree that the
sentence is true when 19% failed. Thus, the threshold for
accepting a statement as true for many and few is fuzzy even
given a fixed context (Solt, 2011).

Both threshold and vagueness could give rise to individual
differences. Participants might disagree about the threshold
for a given quantifier, which results in between-subjects dif-
ferences in thresholds. Moreover, participants could differ in
how consistent they are about the threshold, which results
in between-subjects differences in vagueness. While indi-
vidual differences in categorization of vague concepts have
been studied (e.g., Verheyen et al., 2019), they are some-
what neglected in the domain of quantifiers. This could
be because vagueness cannot be fully captured by biva-
lent semantics. Zadeh (1983) proposed to treat quantifiers
as fuzzy concepts in which truth conditions take a value in
[0, 1]. Therefore, investigation of individual differences in
threshold and vagueness of quantifiers is critical for under-
standing the nature of quantifier representations.

1 In this paper, we focus only on quantifiers with one threshold. Some
quantifiers can have two or more thresholds, e.g., between 3 and 6 has
two thresholds, 3 and 6.

Vagueness and threshold are difficult to separate in exper-
imental studies. For example, according to semantic analysis
(see Hackl (2009)), most and more than half have the same
threshold, namely 50%. However, Solt (2011) observed that
in certain contexts most seems to be inappropriate to use
when referring to a proportion slightly above 50%. As one
explanation, Kotek et al. (2015) argued that most and more
than half have the same threshold and the observed differ-
ences is only due to vagueness (cf., Solt, 2011; Carcassi
and Szymanik, 2021). Others Denić and Szymanik (2022);
Ramotowska et al. (2023) argued that most and more than
half have different thresholds and in addition,most is vague.
The observed response differences in the experiment could
be attributed to both different thresholds of the quantifiers
and differences in vagueness. To test these two effects inde-
pendently, we propose to measure threshold and vagueness
by mapping them onto two different parameters of a compu-
tational model.

Additionally, individual differences in task performance
hinder the interpretation of behavioral data. Depending on
task difficulty and some properties of quantifiers, partici-
pants make mistakes which we refer to as response errors.
For example, participants make more mistakes in truth value
evaluation of negative quantifiers (fewer than half, few) for
which the threshold constitutes an upper bound of the scale
than positive quantifiers (more than half, many) for which
threshold constitute a lower bound of the scale (Szymanik &
Zajenkowski, 2013; Deschamps et al., 2015; Schlotterbeck
et al., 2020). Importantly, the higher error rate for negative
quantifiers is independent of the proportion against which
they were verified (Deschamps et al., 2015). This effect,
also known as the polarity effect, was replicated also in
other languages than English, for example, in German (e.g.,
Grodzinsky et al., 2021) and Dutch (e.g., Potthoff et al.,
2023). Therefore, we include response error as a third param-
eter in our model.

The basis for our model is the logistic regression model
which is suitable for modeling threshold variability (Ver-
heyen and Égré, 2018; Ramotowska et al., 2020). The
three-parameter logistic regression model assumes that the
probability that participants verify a statement as true or false
depends on the proportion that was presented on a particu-
lar trial and the values of the logistic function parameters
asymptote, midpoint, and scale:

response = asymptote

1 + exp
( − midpoint−proportion

scale

) (1)

Figure 1 highlights how our parameters threshold, response
error, and vagueness map onto the parameters of the logistic
regression. For the quantifier more than half, for example,
ideal responding is achieved when the proportion of ‘true’
responses below 50% is zero, and above 50% is one. The
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Fig. 1 Predicted logistic curves under different threshold (thr.),
response error (resp. error), and vagueness (vague) parameters. The
dashed line indicates the 0.5 proportion of true responses. The percent-
age for which the logistic curve crosses the dashed line is the threshold

logistic curve has a sharp shape, indicating a rapid shift
from false to true responses with a midpoint parameter
corresponding to the threshold of 50%. Individual differ-
ences in threshold mean that the midpoint (0.5 proportion
of true responses) of the logistic curve shifts towards left
or right. When the shape of the logistic curve is sharp, par-
ticipants endorse bivalent truth-conditional semantics.When
the responses are affected by vagueness, the perceived thresh-
old varies from trial to trial, and the logistic curve increases
gradually corresponding to an increased scale parameter. The
response error, in turn, does not change the shape of the
response curve. Instead, it lowers the probability of the true
response above the threshold and increases the probability of
the true response below the threshold equally for all propor-
tions corresponding to the asymptote parameter.

Current study

We chose five proportional quantifiers, with different degree
of potential vagueness, not vague quantifiers (fewer than half
and more than half ); vague quantifiers (few and many); and
one quantifier with a debatable status (most). Using a cluster
analysis on the threshold parameter, we tested if the vari-
ability of individual thresholds and the distance between
quantifiers on a mental line can be systematically explained
by subgroups of participants. Previous studies (e.g., Bott and
Noveck, 2004) have shown that participants can form groups
with different interpretations of quantifiers. For example,
some participants have a literal interpretation of this quan-
tifier (some and possibly all, logical responders group) and
have an upper-bounded interpretation (some but not all, prag-
matic responders group). Similarly,most could be interpreted
as a synonym ofmore than half or as a quantifier indicating a
proportion significantly greater thanmore than half (cf. Solt,

2016). Based on the studies discussed above, we hypoth-
esize that the cluster analysis will distinguish at least two
subgroups: one with a 50% threshold and one with a higher
threshold. We also predicted between-subjects variability in
thresholds of few and many. We expected that participants
would choose a smaller proportion for the threshold of few
than of many, however, the vagueness of these quantifiers
would lead to disagreement concerning the threshold-to-
number mapping and the numerical distance between the
thresholds of these quantifiers. In addition, negative quanti-
fiers (few, fewer than half ) can be linguistically analyzed as
negations of positive quantifiers (e.g., fewer than half means
not more than half, and fewmeans not many). The meanings
of polar-opposite quantifiers depend on each otherHeim et al.
(2015).While some participants might treat few as a negation
ofmany, others might endorse a semantic gap between these
quantifiers (Égré & Zehr, 2018) and judge some proportions
as neither few nor many. No such gap is expected for the
non-vague pair of polar-opposite quantifiers (fewer than half
and more than half ). Because neither semantic theories nor
empirical findings predict a specific number of subgroups
for few and many, we applied a data-driven approach to
determine the number of clusters. Finally, we predicted that
all participants should have a 50% threshold for fewer than
half and more than half. Based on the previous psycholin-
guistic studies on quantifiers introduced above, we predicted
between-subject consistency in the order of quantifiers.

Concerning the vagueness parameter, we predicted that it
would reflect the distinction between vague and not vague
quantifiers. Égré (2017) argued that the vagueness of a
linguistic expression might persist even when there is no
uncertainty about the representation of a magnitude. In con-
trast, the computational model of van Tiel et al. (2021)
assumed that the crisp truth-conditional meanings of quanti-
fiers are captured by a threshold parameter,while imprecision
in the usage of quantifiers was achieved by incorporating
approximate number representations (Dehaene, 1997) into
the model. Therefore, the vagueness in their model was a
byproduct of uncertainty about perceived magnitude. When
a quantifier is evaluated against a magnitude given per-
ceptually, it is difficult to distinguish these two sources of
vagueness. In this study, the magnitudes were given as pre-
cise percentages, therefore, we expected that the vagueness
parameter would reflect an imprecision of quantifier mean-
ing. While both vagueness and response error account for
noise in behavioral data, they capture a different aspect
of participants’ performance. Response errors as a mea-
sure of the quality of task performance (e.g., mistakes,
attention lapse) should be participant-specific and, there-
fore, correlated across quantifiers. In addition, because the
verification of negative quantifiers is more error-prone, the
response error rate might be higher for few and fewer than
half than other quantifiers. In contrast, vagueness should be
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quantifier-specific, therefore higher for vague quantifiers and
not necessarily correlated across quantifiers. In correlation
analysis, we testedwhether all parameters of ourmodelmake
a unique contribution to explaining participants’ behavior.

Method

Data availability

The data and analysis code are available at https://github.
com/jstbcs/pling-quant. The data analyzed in the paper were
previously published by Ramotowska et al. (2023), however,
the model reported here was developed independently of that
analysis.

Participants

We recruited 90 English native speakers via the online
recruitment platformAmazonMechanical Turk.We included
71 participants (47 male, age M = 35, range 22–59) in the
final sample. Subjects gave informed consent before partic-
ipating in the experiment. The study was approved by the
Ethics Committee of the University of Amsterdam’s Faculty
of Humanities.

Experimental design and procedure

Participants had to indicate whether the sentence with the
quantifier: most, many, few, fewer than half, or more than
half was true or false based on the sentence containing a
proportion ranging from 1% to 99% (excluding 50%) (cf.
Deschamps et al., 2015; Hackl, 2009; Pietroski et al., 2009;
Schlotterbeck et al., 2020).We did not include the proportion
100%, because Ariel (2003) showed that most has an upper
bound on meaning, and using it with 100% proportion is
not accepted, although it is highly accepted with 99%. The
upper bound of most could cause a divergence in the logistic
function which we used in our model. We did not include
50%, because this proportion could be confusing for more
than half and fewer than half.

While most, more than half and fewer than half have
a proportional interpretation (Hackl, 2009), as explained
above,many and few are ambiguousbetween cardinal reading
(more/less than a certain number) and proportional reading
(more/less than a certain proportion) (Partee, 1989).We used
explicit partitive ‘of the’ and present proportions as a per-
centage for all quantifiers to ensure the proportional reading
and avoid confusion for ambiguous quantifiers.Moreover, by
using the percentage format we enforced the precise compar-
ison between the proportion and the threshold. In this way,
weminimized the differences between quantifiers in verifica-
tion strategies. For example, in some experimental paradigms

most is verified using an approximation strategy (Pietroski
et al., 2009), while in others mixtures of strategies are used
(Talmina et al., 2017).

The experiment started with a training block to familiar-
ize participants with the procedure. In the training block,
we used quantifiers all, some, none in the first sentence,
which were not used in the actual experiment. Next, partici-
pants completed 250 trials (50 per quantifier) in randomized
order. At the end of the experiment, participants provided
basic demographic information. Each trial of the experiment
consisted of two sentences displayed on separate screens.
The first sentence containing the quantifier was of the form
“[Most/Many/Few/More than half/Fewer than half ] of the
gleerbs are fizzda." To read this sentence participants had to
press the arrow down key and keep it pressed. When they
advanced to the next screen, they read a sentence contain-
ing proportion e.g., “20% of the gleerbs are fizzda." The
proportion was drawn randomly, however, for quantifiers
more than half, fewer than half, and most for which the 50%
threshold was expected, we balanced proportions above and
below 50% (25 proportions above and 25 proportions below
50%). Participants had to respond by pressing the right or left
arrowkeys corresponding to true or false judgments (counter-
balanced between participants). In addition to participants’
judgments, we also collected response time data. Response
times were measured from the onset of the second sentence
until response.

In our experiment, we used pseudowords generated from
50 English six-letter nouns and adjectives usingWuggy soft-
ware (Keuleers &Brysbaert, 2010).We used pseudowords to
avoid pragmatic effects associated with quantifiers. The orig-
inal words were controlled for frequency (Zipf value 4.06,
van Heuven et al. (2014)). A native English speaker assessed
the pseudowords in terms of how well they imitated English
words.

Computational model

The model was specified as a Bayesian hierarchical model.
Let i indicate participants, i = 1, ..., I, j indicate the quantifier,
j = 1, ..., 5, and k indicate the trial for each quantifier, k =
1, ..., Ki j . Then Yi jk is the i-th participant’s response to the
j-th quantifier in the k-th trial, and Yi jk = 1 if participant
indicated true, and Yi jk = 0 if participant indicated false.
Then, we may model Yi jk as a Bernoulli, using the logit link
function on the probabilities:

Yi jk ∼ Bernoulli(πi jk) (2)

where the probability space of π maps onto the μ.

πi jk = γi j + (1 − 2γi j )logit
−(μi jk ) (3)
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The additional parameter γi j determines the probability
of making a response error on either side of the threshold,
namely erroneously saying true, or erroneously saying false.
Each participant-quantifier combination has its own response
error parameter estimate. The parameter μi jk has a linear
model explication:

μi jk = ci jk − βi j

αi j
(4)

where ci jk indicates the percentage centered at 50%, parame-
ters βi j indicate the threshold, and parameters αi j correspond
to the vagueness of the quantifier.

We defined prior probabilities on response error (γ ),
threshold (β), and vagueness (α) parameters:

γi j ∼ Beta(2, 20) (5a)

βi j ∼ Normal(δ j , σ
2
j ) (5b)

αi j ∼ log-normal(ν j , σ
2
α j

) (5c)

ν j ∼ Normal(0, 52) (5d)

σ 2
α j

∼ Inverse-gamma(2, 0.2) (5e)

σ 2
j ∼ Inverse-gamma(2, 0.2) (5f)

δ j ∼ Normal(0, 52) (5g)

The hierarchical nature of the distributions for αi j and βi j

indicate that we estimated the effect of threshold and vague-
ness for each participant under the assumption that they had
a common mean and variance. The vagueness and thresh-
old priors were fairly uninformative to avoid the inclusion
of incidental constraints. Vagueness (αi j ) came from a log-
normal distribution to ensure only the positive estimates.
Its mean (ν j ) had a normal distribution, and its variance
(σ 2

α j
) was drawn from the inverse-gamma distribution, as

this distribution is typically used to model variance. For the
thresholds (βi j ) we used a normal distribution with a com-
mon, normally-distributed mean (δ j ) and the same variance
distribution (σ 2

j ) as for αi j . The response error (γi j ) came
from a more informed distribution with most of its mass
below an error rate of 20% for each true and false response2.

We used a hierarchical Bayesian model to estimate the
parameters for each participant-quantifier combination. To

2 To reduce the complexity of the model, we did not use hierarchical
modeling for response errors.

fit the model, we used the rstan package in R (Stan Develop-
ment Team, 2017) with six chains, 750 warm-up iterations
per chain, and 2500 iterations per chain. Convergence for
the model was not ideal, but after running 15000 iterations
there were no divergent transitions and Rhats were within a
reasonable range for all parameters (mostly < 1.05).

Cluster analysis and correlations between
parameters

Concerning between-subject consistency in vague quantifier-
to-number mapping, we computed the difference in thresh-
olds between pairs of vague quantifiers for each participant.
Concerning howstretched themental line of quantifiers is,we
tested if the distance between thresholds of vague quantifiers
was the same for all participants. This property is essential
to establish what type of scale quantifiers create (e.g., rank
vs. interval scale).

To investigate if subgroups of participants can explain
the variability in thresholds, we ran an exploratory clus-
ter analysis for the threshold parameter of all quantifiers3

estimating the clusters using agglomerative hierarchical clus-
tering which groups observations into clusters based on their
similarity. We chose this method because it does not require
defining a specific number of clusters upfront. An additional
advantage of hierarchical clustering is that it provides a hier-
archical structure of the distance between observationswhich
allows formore qualitative interpretation of the data. Because
thenumber of participants entering the analysiswas relatively
small for the clustering method, we anticipated that some
clusters might contain only a few participants. Therefore, we
intended to use clustering to help us in the interpretation of
individual differences rather than ultimately determining the
number of subgroups. We also provided the interpretation of
small clusters if the constellation of thresholds in these sub-
groups was meaningful in the light of linguistic theories. We
used the Euclidean distance measure suitable for continuous
input variables and the Ward linkage method ((Murtagh &
Legendre, 2014), hclust function in Rwithward.D2method)
which minimizes variance inside the clusters.

To assess the contribution of quantifier thresholds to
the clustering, we performed a linear discriminant analy-
sis (LDA). We used the stepwise procedure Wilks’ lambda
assessment (greedy.wilks function in R package klaR, Roever
et al. (2015)) to determine which variable contributed sig-
nificantly to cluster formation. Next, we ran the LDA (lda
function in R package MASS) to test how accurately the
selected variables could predict the clusters. To validate the
LDA, we ran leave-one-out cross-validation.

Finally, we tested whether there were any systematic pat-
terns of correlations between parameters within quantifiers.

3 See cluster analysis for vagueness and response errors in Appendix.
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Significant high correlations between the parameters of our
model would mean that the parameters do not capture the
unique source of variability in the data. Thus a more parsi-
monious model would be desired.

Results

Data pre-processing

Weexcluded19participants basedon three exclusion criteria.
Firstly, we excluded 11 participants who had 50% or more
response times faster than 300 ms. Secondly, we excluded
seven participants who failed to obey the monotonicity of
quantifiers, defined in the following way: for positive quan-
tifiers (many, most, and more than half ) we expected the
probability of providing the true response to increase with
increasing proportion. The opposite effect should hold for
negative quantifiers. To apply this criterion, we fitted the gen-
eralized linear model to participants’ response data with the
proportion as a predictor and with by-subject random inter-
cept and slope for proportion (glmer R function, Kuznetsova
et al. (2017)). We excluded participants, who had a negative
slope for positive quantifiers or a positive slope for negative
quantifiers. Finally, we excluded one participant, who pre-
viously participated in a similar experiment. We excluded
trialswith response times shorter than 300ms and longer than
2500 ms (similar cut-offs to Ratcliff and McKoon (2018)).
This exclusion criterion aimed to exclude the fast guessing
responses and the trials when participants drifted attention
away from the task. Because we used pseudowords in our
experiment, we anticipated that after a few trials, partici-
pants would only read carefully the quantifier (in the first
sentence) and proportion (in the second sentence). There-
fore, we expected that participants would perform the task
fast. This justifies the 300-ms exclusion threshold.Moreover,
2.5 s was sufficient time to process the information about the
proportion and execute the response.Altogether,we excluded
6% of trials, 1% of fast guessing and 5% of long responses.
To be able to fit the same logit model to all quantifiers we
flipped the true and false responses for few and fewer than
half.

Estimated parameters

Table 1 shows the mean estimated model parameters.
Figure 2 shows the estimated item response curves for
each participant-quantifier combination; the overall response
curves for the quantifiers are represented by the bold lines.
We found greater individual variation in thresholds for most,
many, and few, compared to more than half and fewer than
half. At the group level, quantifier thresholds were repre-
sented in the following order (Friedman test χ2(4) = 134, p
< 0.001, moderate effect sizeW = 0.47): few had the lowest
threshold, followed by many, then were fewer than half and
more than half, andmost had the highest threshold (pairwise
comparison, Wilcoxon signed-rank test with Bonferroni cor-
rection).

The quantifiers fewer than half and more than half were
the least vague as indicated by the steep response curves in
Fig. 2. Moreover, few was more vague than fewer than half
(V = 2556; p < 0.001), many was more vague than more
than half (V = 2556; p< 0.001),manywas more vague than
most (V = 2556; p < 0.001), and most was more vague than
more than half (V = 2556; p < 0.001). We also found that
fewer than half had a greater response error than more than
half (V = 2323; p < 0.001), and few had greater response
error than many (V = 1809; p = 0.002). All p values based
on Wilcoxon signed-rank test.

Mental line of quantifiers

Concerning the order of vague quantifiers, Fig. 3a (the col-
ors indicate cluster membership of each participant) shows
that while all participants had lower or equal thresholds for
many than formost, the distance between thresholds differed
substantially between participants. Figure 3b, in turn, shows
that many participants had similar thresholds for many and
few, some participants had higher thresholds for many than
for few, and some had lower thresholds many than for few.

Cluster analysis results

We interpret the hierarchical clustering result as indicating
four subgroups of participants with different constellations

Table 1 Mean (SD) parameters of individual participants for each quantifier, and additionally for threshold parameter the percent corresponding
to mean thresholds

Threshold Vagueness Response error

Few –.103 (.073), 39.7% .016 (.001) .062 (.042)

Fewer than half –.006 (.027), 49.4% .002 (.00004) .074 (.047)

Many –.061 (.094) 43.9% .019 (.003) .048 (.024)

More than half .001 (.012) 50.1% .001 (.00003) .042 (.019)

Most .029 (.056) 52.9% .009 (.001) .047 (.024)
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Fig. 2 The left panels show the response data from participants. The
gray lines represent individual participants and the dots represent aggre-
gated binned responses (e.g., the first dot is the proportion of true
responses for presented percentages between 0 and 10). The right pan-

els show the logit curves estimated for each quantifier. The colored lines
indicate the mean curves and the gray lines represent individual partic-
ipants. The logit curves for the few and fewer than half were plotted
consistently with the raw data

of thresholds (Fig. 1 in Supplementary materials). The four
clusters were indistinguishable for the quantifiers fewer than
half and more than half but differed substantially in thresh-
olds for the quantifiers few, many, and most (see Table 2 and
Fig. 3).

Participants in Cluster 4 (N = 30) had the lowest threshold
formost, and the highest for few, while participants in Cluster
2 (N = 10) had the highest threshold for most and many.
Participants in Cluster 1 (N = 6) had lower threshold for
many than for few.

We found that only vague quantifiers contributed to the
clustering: many (λ = 0.15, p < 0.001), most (λ = 0.07, p <

0.001), and few (λ = 0.06, p < 0.001). The LDA accuracy

in classification into Clusters 1 to 4 based on thresholds for
many, few and most was 100%, and the leave-one-out cross-
validation accuracy was 96%.

Correlations between vagueness, threshold,
and response error

We tested the correlations between vagueness, threshold,
and response error parameters of the model (Supplementary
materials, Fig. 4). We found significant correlations between
threshold and vagueness for few (r = -0.33), many (r = -
0.31), and more than half (r = 0.30), between threshold and
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Fig. 3 Differences between individual thresholds. The error bars indi-
cate the 95% credible intervals. All participants are ordered by the
posterior mean of their threshold for many. (a) The difference between
the threshold formany andmost. (b) The difference between the thresh-

old for many and few. Colors are used to indicate cluster membership:
Cluster 1 (N = 6) in orange, Cluster 2 (N = 10) in green, Cluster 3 (N
= 25) in pink, and Cluster 4 (N = 30) in purple

Table 2 Mean (SD) threshold parameter in each cluster and percentage corresponding to mean thresholds, four-cluster solution

Quantifier Cluster 1 Cluster 2 Cluster 3 Cluster 4
(N = 6) (N = 10) (N = 25) (N = 30)

Few –.16 (.11) –.13 (.07) –.14 (.06) –.05 (.04)

34.5% 36.5% 36.2% 44.6%

Fewer than half –.01 (.01) –.0001 (.01) –.02 (.02) –.01 (.03)

49.9% 50.0% 49.8% 48.7%

Many –.28 (.01) .03 (.01) –.11 (.04) –.012 (.03)

21.5% 53.7% 39.3% 48.8%

More than half –.004 (.01) –.002 (.01) .001 (.01) .002 (.01)

49.6% 49.8% 50.1% 50.2%

Most .06 (.08) .12 (.04) .012 (.04) .006 (.03)

55.9% 62.1% 51.1% 50.5%
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response error for fewer than half (r = -0.32), and response
error and vagueness for many (r = 0.53) and most (r = 0.52).

Discussion

In this study, we investigated between-subjects variability
in quantifier-to-number mapping by means of a computa-
tional model. We found that vague quantifiers had a higher
vagueness value and that negative quantifiers had a higher
response error value. Moreover, we found individual dif-
ferences in thresholds for many, few, and most. A cluster
analysis explains the differences between participants by
grouping them into four clusters. In all groups, most had
the highest threshold, which is compatible with the analysis
of most as a superlative of many (many-est, Hackl (2009)).
However, the mean threshold of most varied between clus-
ters (50.5% in Cluster 4 and 62% in Cluster 2). The members
of Cluster 4 kept the threshold for many close to most, while
members ofClusters 1, 2, and3kept a larger distance between
the thresholds (see Fig. 3a). Moreover, the vast majority of
participants judged few as less thanmany. However, they dis-
agreed on the numerical distance between the thresholds of
these quantifiers. This finding indicates the quantifier scale
is of rank type.

The cluster analysis revealed that subgroups differed in
the semantics of vague, polar-opposite quantifiers (few and
many). The mean thresholds in Clusters 3 and 4 are com-
patible with the interpretation of few as a negation of many.
While the mean thresholds of few and many were higher in
Cluster 4 than in Cluster 3, the numerical distance between
the thresholds of polar-opposite quantifiers was small in both
clusters.

In contrast, the semantics of vague, polar-opposite quan-
tifiers in Clusters 1 and 2 lead to two forms of borderline
contradiction (Égré & Zehr, 2018, cf. Ripley, 2009). Border-
line contradictions arise when a vague predicate P and its
negation are asserted or denied about the same entity (con-
junctive case "x is P and not P" or disjunctive case "x is
neither P nor not P", cf. Égré & Zehr, 2018). Our analysis
shows that this phenomenon extends to vague, polar-opposite
quantifiers. The conjunctive type of borderline contradiction
leads to glutty semantics (Égré & Zehr, 2018), as in Cluster
1, whose members accepted certain proportions asmany and
few. The disjunctive type leads to gappy semantics (Égré &
Zehr, 2018), as in Cluster 2, whose members accept certain
proportions as neither many nor few. The glutty semantics
of vague quantifiers endorsed by participants in Cluster 1 go
against the prediction of between-subject consistency in the
order of quantifiers.

The greater flexibility of many on the mental line as com-
pared to few cannot be explained by its context-dependency.
First, in our experiment, we used an artificial context by

introducing pseudowords. There was no reason for par-
ticipants to have different expectations about the context.
Second, the low-magnitude quantifiers are more context-
dependent than high-magnitude quantifiers, for example,
they can have different thresholds depending on the refer-
ence set (Newstead et al., 1987). This means that different
expectations about the contextwould lead to greater variation
in thresholds for few than many.

We attribute this asymmetry in threshold flexibility to
semantic competition between quantifiers. At the lower
bound many competes with few, while at the upper bound
withmost. These twoconstraints resulted in a different stretch
of quantifier mental line between subgroups. Participants in
Cluster 4 had the most shrunk mental line, ranging between
44% and 50%. In contrast, participants in Clusters 2 and 1
had stretched mental lines, ranging between 36% (21%) and
62% (55%). The mental line in Cluster 3 stretched moder-
ately between 36% and 51%.

Concerning the relationship between the three model
parameters, the only significant correlation between thresh-
old and response error was for fewer than half (however,
strongly affected by the outlier participants, see Supple-
mentary materials Fig. 5). The lack of correlations between
response error and threshold shows that the variation in
thresholds reflects variation in the quantifier-to-numbermap-
ping and it is not an artifact of task performance. Although
the correlation between vagueness and response error was
more consistent (at least in direction) than between the
other parameters, the lack of systematic pattern (only sig-
nificant for many and most) shows that they correspond to
two different processes that should be modeled by sepa-
rate parameters. Vagueness thus may correlate with response
error for some quantifiers, but it cannot be equated with
threshold-independent erroneous responding (cf. Denić and
Szymanik, 2022). Relatedly, the overall magnitude of the
vagueness parameters was quite small. One reason for both
the correlations and the low magnitude might be an issue in
identifiability in the model.

To summarize, computational modeling has been proven
useful in testing the meaning representations of quantifiers
predicted by different semantic theories. For example, van
Tiel et al. (2021) showed that bivalent truth-conditional
semantics can account for the meaning of quantifiers equally
well as prototype semantics when supplied with the prag-
matic interpretation of meaning. Our modeling uncovered
an additional challenge to the truth-conditional semantics
approach (Barwise & Cooper, 1981), individual differences
in thresholds. Égré (2017) argued that speakers can fault-
lessly disagree when evaluating sentences involving vague
adjectives (e.g., John is tall.) for three reasons. Theymay dis-
agree about the comparison class (e.g., children vs. basketball
players), standard (which height is representative for a given
comparison class), or criteria. While context can resolve the
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disagreement in the first two cases, the last case directly
relates to the semantic representation of threshold. Our inves-
tigation shows that even in an abstract context, participants
substantially differ in quantifier-to-number mapping. More-
over, in the task inwhich therewas little uncertainty about the
numerical information, the individual differences in impre-
cise number representation played a minor role. While we
found that vague quantifiers had a higher value of the vague-
ness parameter than other quantifiers, between-participants
variability in the vagueness was small (except for many, see
Supplementary materials).

Bivalent truth-conditional semantics (Barwise & Cooper,
1981) are difficult to reconcile with individual differences
in thresholds and with the demonstrated vagueness of some
quantifiers. In contrast, fuzzy logic (Zadeh, 1983) predicts
vagueness and can incorporate individual differences by
allowing for graded truth values. In this view, the mean-
ing of a quantifier could be a function of the averaged truth
value judgments of this quantifier for each proportion. How-
ever, this approach obscures the distinction of two sources
of between-participant variability: vagueness and threshold.
In our study, we found significant correlations between these
parameters formore than half,many, and few, but not formost
and fewer than half. Therefore, our finding supports the con-
ceptual distinction between these sources, where vagueness
in criteria corresponds to threshold parameter and vagueness
in degree to vagueness parameter (cf. Devos, 1995).

In this paper, we presented a novel approach to study
truth-conditional meanings of quantifiers, while control-
ling for factors such as response error and vagueness. We
validated our approach by showing quantitative individ-
ual differences in truth conditions of vague quantifiers,
as exemplified by different quantifier-to-number mapping,
and qualitative differences in the semantics of vague quan-
tifiers, as exemplified by gappy vs. glutty semantics of
polar-opposite quantifiers. Further extension of our mod-
eling approach can make a two-fold contribution. On the
linguistic side, the model can be used to test individ-
ual differences in many other natural language categories,
including gradable adjectives (Verheyen & Égré, 2018;
Verheyen et al., 2018), semantic categorizations of nouns
Verheyen and Storms (2013); Verheyen et al. (2018, 2019),
probability terms (Wallsten et al., 1986; Mosteller & Youtz,
1990; Schuster & Degen, 2019), and presuppositions projec-
tion (Sudo et al., 2012). On the psychology side, the model
can be applied to test the structure of other quantifier scales
often used in psychometrics such as frequency or probabil-
ity terms scales. In sum, in this paper, we showed that our
computational model can bring together formal semantic and
psycholinguistic approaches to study meaning representa-
tions.
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Denić, M., & Szymanik, J. (2022). Are most and more than half truth-
conditionally equivalent? Journal of Semantics, 39(2), 261–294.

Deschamps, I., Agmon, G., Loewenstein, Y., & Grodzinsky, Y. (2015).
The processing of polar quantifiers, and numerosity perception.
Cognition, 143, 115–28.

Devos, F. (1995). Still fuzzy after all these years: A linguistic evaluation
of the fuzzy set approach to semantic vagueness. QUADERNI DI
SEMANTICA, 16(1), 47–82.

Douven, I. (2019). The Rationality of Vagueness. In R. Dietz (Ed.),
Vagueness and Rationality in Language Use and Cognition. Lan-
guage, Cognition, and Mind (vol. 5, p. 115–134). Springer, Cham.

Égré, P., & Zehr, J. (2018). Are gaps preferred to gluts? a closer look at
borderline contradictions. The semantics of gradability, vagueness,
and scale structure: Experimental perspectives, 25–58.

Égré, P. (2017). Vague judgment: A probabilistic account. Synthese,
194(10), 3837–3865.

Glöckner, I. (2006). Fuzzy Quantifiers: A Computational Theory.
Berlin, Heidelberg: Springer.

Grodzinsky, Y., Behrent, K., Agmon, G., Bittner, N., Jockwitz, C.,
Caspers, S., & Heim, S. (2021). A linguistic complexity pattern
that defies aging: The processing of multiple negations. Journal of
Neurolinguistics, 58, 100982.

Hackl,M. (2009). On the grammar and processing of proportional quan-
tifiers: Most versus more than half. Natural Language Semantics,
17(1), 63–98.

Hammerton,M. (1976). Howmuch is a large part?Applied Ergonomics,
7(1), 10–12.

Heim, S., McMillan, C. T., Clark, R., Golob, S., Min, N. E., Olm, C., . . .
Grossman, M. (2015). If so many are “few”, how few are “many”?
Frontiers in Psychology, 6, 441.

Keuleers, E., & Brysbaert, M. (2010). Wuggy: A multilingual pseu-
doword generator. Behavior Research Methods, 42(3), 627–633.

Kotek, H., Sudo, Y.,&Hackl,M. (2015). Experimental investigations of
ambiguity: the case of most. Natural Language Semantics, 23(2),
119–156.

Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B. (2017).
lmerTest package: Tests in linear mixed effects models. Journal of
Statistical Software, 82 (13), 1–26.

Mosteller, F.,&Youtz,C. (1990).Quantifying probabilistic expressions.
Statistical Science, 5(1), 2–12.

Mostowski, A. (1957). On a generalization of quantifiers. Fundamenta
Mathematicae, 44(1), 12–36.

Moxey, L. M., & Sanford, A. J. (1993). Communicating Quantities A
Psychological Perspective. Hove: Lawrence Erlbaum Associates.

Murtagh, F., & Legendre, P. (2014). Ward’s hierarchical agglomerative
clustering method:Which algorithms implement ward’s criterion?
Journal of classification, 31, 274–295.

Newstead, S. E., Pollard, P.,&Riezebos,D. (1987). The effect of set size
on the interpretation of quantifiers used in rating scales. Applied
Ergonomics, 18(3), 178–182.

Partee, B. (1989). Many Quantifiers. In J. Powers & K. de Jong (Eds.),
Escol 89: Proceedings of the Eastern States Conference on Lin-
guistics (pp. 241–258). Columbus,OH:Department of Linguistics,
Ohio State University.

Pezzelle, S., Bernardi, R., & Piazza, M. (2018). Probing the mental
representation of quantifiers. Cognition, 181, 117–126.

Pietroski, P., Lidz, J., Hunter, T., & Halberda, J. (2009). The mean-
ing of ‘Most’: Semantics, numerosity and psychology. Mind and
Language, 24(5), 554–585.

Potthoff, R., Ramotowska, S., Szymanik, J., & van Maanen, L. (2023).
Time-pressure does not alter the bias towards canonical interpre-
tation of quantifiers. Proceedings of the Annual meeting of the
Cognitive Science Society, 45(45), 2275–2281.

Ramotowska, S., Steinert-Threlkeld, S., van Maanen, L., & Szymanik,
J. (2020). Most, but not more than half, is proportion-dependent
and sensitive to individual differences. In: M. Franke, N. Kompa,
M. Liu, J. L. Mueller, & J. Schwab (Eds.), Proceedings of Sinn
und Bedeutung 24 (vol. 2, pp. 165–182). Osnabrück University
and Humboldt University of Berlin.

Ramotowska, S., Steinert-Threlkeld, S., van Maanen, L., & Szymanik,
J. (2023). Uncovering the structure of semantic representations
using a computational model of decision-making. Cognitive Sci-
ence, 47(1), e13234.

Ratcliff, R.,&McKoon,G. (2018).Modeling numerosity representation
with an integrated diffusion model. Psychological Review, 125(2),
183–217.

Ripley, D. (2009). Contradictions at the borders. In: International
workshop on vagueness in communication (pp. 169–188). Berlin,
Heidelberg: Springer Berlin Heidelberg.

Roever, C., Raabe, N., Luebke, K., Ligges, U., Szepannek, G., & Zent-
graf, M. (2015). Package ’klaR’: Classification and visualization.
(R package version 0.6-15)

Schlotterbeck, F., Ramotowska, S., van Maanen, L., & Szymanik, J.
(2020). Representational complexity and pragmatics cause the
monotonicity effect. In: S. Denison, M. Mack, Y. Xu, & B. Arm-
strong (Eds.), Proceedings of the 42nd annual conference of the
cognitive science society (pp. 3398–3404). Cognitive Science
Society.

Schuster, S., &Degen, J. (2019). Speaker-specific adaptation to variable
use of uncertainty expressions. In: Proceedings of the 41st annual
conference of the cognitive science society (pp. 2769–2775). Cog-
nitive Science Society.

Solt, S. (2011).Vagueness in quantity: Twocase studies froma linguistic
perspective.Understanding vagueness.Logical, Philosophical and
Linguistic Perspectives, 36, 157–174.

Solt, S. (2015). Vagueness and imprecision: Empirical foundations.
Annual Review of Linguistics, 1(1), 107–127.

Solt, S. (2016). On measurement and quantification: The case of most
and more than half. Language, 92(1), 65–100.

Stan Development Team. (2017). Shinystan: interactive visual and
numerical diagnostics and posterior analysis for Bayesian mod-
els [Computer software manual]. (R package version 2.5.0)

Sudo, Y., Romoli, J., Hackl, M., & Fox, D. (2012). Presupposition
projection out of quantified sentences: strengthening, local accom-
modation and inter-speaker variation. In: Logic, language and
meaning (pp. 210–219).

Szymanik, J., & Zajenkowski, M. (2013). Monotonicity has only a rel-
ative effect on the complexity of quantifier verification. In: M.
Aloni, M. Franke, & F. Roelofsen (Eds.), Proceedings of the 19th
AmsterdamColloquium (pp. 219–225). University of Amsterdam.

Talmina, N., Kochari, A., & Szymanik, J. (2017). Quantifiers and ver-
ification strategies: Connecting the dots. In: A. Cremers, T. van

123



Psychonomic Bulletin & Review

Gessel, & F. Roelofsen (Eds.), Proceedings of the 21st Amster-
dam Colloquium (pp. 465–473). University of Amsterdam.

vanHeuven,W. J. B.,Mandera, P.,Keuleers, E.,&Brysbaert,M. (2014).
SUBTLEX-UK:Anew and improvedword frequency database for
British English. Quarterly Journal of Experimental Psychology,
67(6), 1176–90.

van Tiel, B., Franke, M., & Sauerland, U. (2021). Probabilistic
pragmatics explains gradience and focality in natural language
quantification. Proceedings of the National Academy of Sciences
of the United States of America, 118 (9), e2005453118.

Verheyen, S., Dewil, S., & Égré, P. (2018). Subjectivity in gradable
adjectives: The case of tall and heavy. Mind & Language, 33(5),
460–479.

Verheyen, S., & Égré, P. (2018). Typicality and graded membership in
dimensional adjectives. Cognitive Science, 42, 2250–2286.

Verheyen, S., & Storms, G. (2013). A mixture approach to vagueness
and ambiguity. PLoS ONE, 8(5), e63507.

Verheyen, S., White, A., & Égré, P. (2019). Revealing criterial vague-
ness in inconsistencies. Open Mind, 3, 41–51.

Wallsten, T. S., Budescu, D. V., Rapoport, A., Zwick, R., & Forsyth,
B. (1986). Measuring the vague meanings of probability terms.
Journal of Experimental Psychology: General, 115(4), 348.

Zadeh, L. A. (1983). A computational approach to fuzzy quantifiers
in natural languages. Computers & Mathematics with Applica-
tions,9(1), 149–184.

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123


	Most quantifiers have many meanings
	Abstract
	Introduction
	Psycholinguistic studies on quantifiers
	Semantic approach to quantifiers
	Current study

	Method
	Data availability
	Participants
	Experimental design and procedure
	Computational model
	Cluster analysis and correlations between parameters

	Results
	Data pre-processing
	Estimated parameters
	Mental line of quantifiers
	Cluster analysis results
	Correlations between vagueness, threshold,  and response error

	Discussion
	Open Practices Statement:
	Acknowledgements
	References


