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Abstract
In recognition memory, retrieval is thought to occur by computing the global similarity of the probe to each of the studied
items. However, to date, very few global similarity models have employed perceptual representations of words despite the
fact that false recognition errors for perceptually similar words have consistently been observed. In this work, we integrate
representations of letter strings from the reading literature with global similarity models. Specifically, we employed models
of absolute letter position (slot codes and overlap models) and relative letter position (closed and open bigrams). Each of the
representations was used to construct a global similarity model that made contact with responses and RTs at the individual
word level using the linear ballistic accumulator (LBA) model (Brown & Heathcote Cognitive Psychology, 57 , 153–178,
2008). Relative position models were favored in three of the four datasets and parameter estimates suggested additional
influence of the initial letters in the words. When semantic representations from the word2vec model were incorporated into
the models, results indicated that orthographic representations were almost equally consequential as semantic representations
in determining inter-item similarity and false recognition errors, which undermines previous suggestions that long-term
memory is primarily driven by semantic representations. The model was able to modestly capture individual word variability
in the false alarm rates, but there were limitations in capturing variability in the hit rates that suggest that the underlying
representations require extension.

Keywords Recognition memory · Orthographic representations · Semantic space models · Linear ballistic accumulator

Possibly the single most important cornerstone of theo-
ries of episodic memory is the encoding specificity principle
(Tulving & Thomson, 1973), which states that retrieval of
a given memory is proportional to the similarity between
the memory-in-question and the cues present at the time of
retrieval. This principle is contrary to early notions of for-
getting, which placed considerably greater emphasis on the
strength of the encoded memories or the amount of time
between the learning and retrieval events. Since its incep-
tion, virtually all successful memory models embody this
concept at the core of the theory, including models of recog-
nitionmemory (Cox&Shiffrin, 2017; Dennis&Humphreys,
2001; Osth & Dennis, 2015; Shiffrin & Steyvers, 1997), free
recall (Howard & Kahana, 2002a; Lehman & Malmberg,
2013; Polyn et al., 2009; Raaijmakers & Shiffrin, 1981), and
serial recall (Farrell & Lewandowsky, 2002; Brown et al.,
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2000; Henson, 1998). In these models, both the successes
and errors of retrieval are direct consequences of similarity –
the test cues may be sufficiently dissimilar to a learned rep-
resentation to prevent remembering, or spurious similarity
between the test cues and learned information can result in a
false memory of an item having been studied.

Placing similarity at the heart of retrieval does, however,
invite a further question –what defines the similarity between
cues and memories? Without a definition of similarity, such
models risk falling prey to the circularity problem – themem-
ory judgments themselves define the similarity between cues
and studied representations with no recourse to an indepen-
dent standard. While the precise definition of similarity is
a very large question (e.g., Medin, Goldstone, & Gentner,
1993; Tversky, 1977), models of episodic memory often
define similarity as the overlap between the representation
of a probe and a stored representation in memory. How-
ever, precisely defining the content of such representations
is challenging, as finding "true" psychological representa-
tions might be considered the holy grail of cognitive science
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more generally. Many models circumvent the problem by
randomly generating stimulus representations – similarity
effects can be captured by assuming that items from a com-
mon category share features (e.g., Criss & Shiffrin, 2004;
Hintzman, 1988). While this allows models to make predic-
tions about different categories or list conditions, there are
no tractable means for making predictions about individual
items in an experiment.

Fortunately, there has been progress in defining stimulus
representations that allow models to make predictions with
fewer parameters, and even make predictions on an item-by-
item basis. In recent years, memorymodels have been able to
capitalize on the successes of the semantic space models (see
Günther, Rinaldi, & Marelli, 2019; Jones, Willits, & Den-
nis, 2015 for reviews). Using a large corpus of natural text,
semantic space models learn representations of words from
their co-occurrencewith otherwords in the text. The resulting
representations bear similarity relationships that resemble
human judgments – the similarity between the representa-
tions of "boy" and "girl" will be higher than the similarity
between unrelated concepts such as "truck" and "pool."
Memory models have enjoyed some success in using seman-
tic representations from suchmodels as word representations
in both recognitionmemory (Johns et al., 2012;Monaco et al.,
2007; Osth et al., 2020; Reid & Jamieson, 2023; Steyvers,
2000) and recall tasks (Kimball et al., 2007; Mewhort et al.,
2018; Morton & Polyn, 2016; Polyn et al., 2009). A dis-
tinct advantage of this approach is that false memory errors
as a consequence of semantic similarity emerge "for free" –
when a list of highly similar items is studied, the high degree
of overlap between the representations of unstudied probe
words and the list words naturally leads to the prediction of
false memory errors.

However, few models have further specified perceptual
representations of words, despite the fact that perceptual
similarity among words produces the same types of false
memory errors as semantic similarity (e.g., Shiffrin, Huber,
&Marinelli, 1995; Sommers&Lewis, 1999; Steyvers, 2000;
Watson, Balota, & Roediger, 2003). One notable exception
is the dissertation of Steyvers (2000), who specified a variant
of the retrieving effectively from memory (REM) model that
employed semantic representations derived from word asso-
ciation spaces in addition to orthographic representations of
the letter strings. Specifically, Steyvers employed what is
referred to as a slot code – letters are coded with respect to
their absolute position of occurrence, meaning that the letters
in theword "cat"would be encoded as "c" in the first position,
"a" in the second position, and "t" in the third position.

As we will elaborate below, there are a number of other
representational schemes besides slot codes for represent-
ing letter position, each with their own consequences for
similarity between letter strings. An additional class of rep-

resentations are models that code for the relative position
within a letter string, such as coding for whether letters are
adjacent to other letters in the string or alternatively coding
for the distances between letters in the string, without regard
to their absolute position.

The present work aims to explore the consequences of
such representations on both the accuracy and latency of
episodic recognition memory decisions. While many mod-
els and analyses only consider the accuracy of recognition
memory, the latency of recognition memory decisions often
co-varies with accuracy such that more accurate stimuli or
conditions often exhibit shorter response times (Murdock &
Dufty, 1972; Ratcliff & Murdock, 1976). In the first part of
the article,wewill describe a set of perceptual representations
of words that define string similarity solely in terms of letter
position. While the similarity among the letters undoubt-
edly would play a role, the positional schemes we pursue
in this work are relatively simple and can capture similarity
effects in recognitionmemory, where orthographic similarity
is often manipulated by the number of shared letters rather
than the similarity of the letters themselves (e.g., Sommers
& Lewis, 1999). These representations of letter order are
quite common in the psycholinguistics literature and have
often been used either as the core representations of models
of reading (Coltheart et al., 2001; McClelland & Rumelhart,
1981; Snell et al., 2018) or to explain phenomena such as
priming effects and response times in same-different judg-
ments among pairs of letter strings (Davis & Bowers, 2006;
Gomez et al., 2008). In this work, we will factorially explore
representations that a.) code for absolute or relative posi-
tion of the letters within the string and b.) code with respect
to one other element or multiple elements within the string,
and, for the class of absolute position models, c.) whether
letter position is purely forward-ordered or whether there
are both forward- and backward-ordered representations. To
date, such representations have not been used to explore per-
ceptual confusions betweenwords in episodicmemory tasks,
although they do bear a resemblance to the representational
schemes in models of serial order memory (Caplan, 2015;
Osth & Hurlstone, 2023).

These orthographic representations will make contact
with recognition memory data by calculation of the global
similarity between the probe word and each of the words
in memory – each probe-item similarity will be averaged
together to produce an index of how similar the probe is to the
contents ofmemory, as in globalmatchingmodels of recogni-
tion memory (e.g., Clark & Gronlund, 1996; Osth & Dennis,
2020). The global similarity values will make contact with
both choice and latency data from individual participants via
the linear ballistic accumulator model (Brown & Heathcote,
2008), which enables the models to make contact with both
choice and response time data simultaneously.
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In the second part of the article, we will explore how
orthographic representations combine with semantic repre-
sentations, specifically those fromWord2Vec (Mikolov et al.,
2013).When both orthographic and semantic representations
are included, we can measure the respective weights of both
representations in determining the similarity between the
probe and each memory, which allows us to measure how
these weights vary across shallow and deep processing tasks
in a depth of processingmanipulation. In addition, themodels
will also be tested to evaluate how well they capture memory
performance on an item-by-item basis in a recognition mem-
ory megastudy of individual words (Cortese et al., 2015).

Orthographic representations

Orthographic representations are representations of the word
form, specifically how the letters are arranged together. The
similarity of such representations has clear consequences for
episodic memory –when categories are constructed of ortho-
graphically similar words, such as mate, late, and date, one
often finds the same patterns of performance aswith semantic
categories, namely an increase in the false alarm rate (FAR)
as the category size on the study list is increased (Heathcote,
2003; Shiffrin et al., 1995; Steyvers, 2000), as well as high
FAR to a non-presented prototype (Chang &Brainerd, 2021;
Coane et al., 2021; Sommers & Lewis, 1999; Watson et al.,
2003) when lists of orthographic/phonemic categories are
constructed using the Deese-Roediger-McDermott (DRM)
paradigm (Deese, 1959; Roediger & McDermott, 1995). In
addition, lure probes that are orthographically similar to even
a single target item often elicit higher rates of false recogni-
tion than lure probes than semantically similar lures (Cramer
&Eagle, 1972;Gillund&Shiffrin, 1984). Finally, lure probes
containing letters that were not present in any of the study
list words are rejected substantially more easily than words
that contain matching letters (Mewhort & Johns, 2000).

Wewill detail belowanumber of representational schemes
for letter strings that can be used for each individual word in
a recognition memory experiment. For each representational
scheme, the matches between the memory and the probe
string are summed together and divided by the alignment
length, which is defined as the number of letters in the longer
of the two letter strings, to produce a measure of similarity
between 0 and 1.

In addition, each scheme contained weighting parameters
that allowed for extra weight of the beginning and end let-
ter of each string. This is on the basis of previous work in
word identification that suggests that the exterior letters are
more consequential for identification than the interior letters
(Grainger & Jacobs, 1993; Jordan et al., 2003; Scaltritti et al.,
2018; Whitney, 2001), which can be considered analogs of
the primacy and recency effects at the within-word level.

Absolute position codes

In the absolute position scheme, similarity between letter
strings is highest when the letters occur in the same abso-
lute position across the two strings. Absolute position can be
coded relative to either the beginning or the end of the letter
string. In the simplest schemes, a match is only considered
if the letter occurs in the exact same position across the two
strings. In variants based on the overlap model (Gomez et al.,
2008), partial matches are allowed when a letter occurs in a
similar position across the two strings. We will elaborate on
these schemes below.

Slot codes

Slot codes involve the association of each letter within the
word to its position relative to the start of the string. Words
such as "candy" and "carton" can be recoded as c1a2n3d4y5
and c1a2r3t4o5n6, which both share "c" in the first position
and "a" in the second position. The similarity between the two
strings is proportional to the number of these matches. Slot
coding has traditionally been a very popular form of word-
form representation. It was the representational scheme used
by the interative activation model (McClelland & Rumel-
hart, 1981), the multiple readout model (MROM: Grainger
& Jacobs, 1996), the dual-route cascade (DRC) model (Colt-
heart et al., 2001), as well as the connectionist dual process
(CDP++: Perry, Ziegler, & Zorzi, 2010) model. In episodic
memory, slot coding strongly resembles (Conrad, 1965)’s
box model of serial order memory and was the representa-
tion of word-form used in (Steyvers, 2000)’s variant of the
REM model.

Formally, we can express amatchm on position k between
two letter strings i and j as:

mk = 1 if ik = jk and k �= 1, k �= jW ( j) (1)

m1 = α if i1 = j1

mW ( j) = � if iW ( j) = jW ( j)

otherwise mk = 0

where W refers to the length of the word, α is a parameter
for the weight of the match on the start letter, and � refers
to the weight of the final letter. The α and � parameters
are common to all of the models and are freely estimated
to capture the importance of exterior letter effects. Here, we
assumed that the� parameter only applies to the final letter of
the studied word j and not the probe word. This assumption
is inconsequential if both words are of the same length, but if
the words are of different lengths, any changes in the weight
of the terminal letter apply only to studied words and not to
probed words.
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The number of matches is simply the sum m across all
letter positions:

Mi j =
∑

k

mk (2)

The similarity s between the two letter strings is:

si j = Mi j

ai j + (1 − α) + (1 − ω)
(3)

where ai j is the alignment length of i and j , which is the
lengthW of the longer of the twowords. If the exterior letters
are weighted the same as the other letters (e.g., α = 1 and
� = 1), then the entire equation is simply the number of
matches M divided by the alignment length a. The inclusion
of α and� in the equation ensures that the similarity remains
bounded between 0 and 1 as the weights of the exterior letters
diverge from one.

According to the slot code scheme, the strings "baseball"
and "based" would result in M = 4 due to "b", "a", "s",
and "e" occurring in the same positions and s = .5 due to
the division of M by 8 (the number of letters in "baseball")
if all letters are equally weighted. The strings "raided" and
"hamburger", in contrast, would result in M = 1 as there is
only a single letter that occurs in the same position across the
two strings ("a" in the second position).

Consequently, slot coding yields similar representations
when words share the same stems. For instance, the words
"breakfast" and "breaks" will exhibit high similarity due to
sharing the first five letters in the same positions across the
two words. However, while slot coding succeeds at aligning
words relative to the beginning of the word, it is unable to
align words that share the same suffixes or endings if the
two words are of different lengths. For instance, the words
"vacation" and "representation" share the same "-ation" end-
ing, but the two words will exhibit little similarity under a
slot coding representation due to the fact that the common
letters are not aligned.

Both-edges slot codes

The fact that words of different lengths cannot be easily
aligned within a slot code can be remedied by augmenting
the representation with representations that are aligned to
the ends of the words. This is referred to as both-edges cod-
ing (Fischer–Baum et al., 2010; Jacobs et al., 1998). In this
scheme, letters are represented relative to not just the begin-
ning of the word, but the end of the word as well. Both-edges
schemes have been employed in competitive queuing mod-
els of spelling (Glasspool & Houghton, 2005) as well as the
MROM-p model (Jacobs et al., 1998). In episodic memory,
the start-end model (Henson, 1998) employs a both-edges

scheme in that each item in a list is encoded relative to the
beginning and end of the list.

We use the slot codes defined in the previous section to
define the start-based code. The end-based code can be done
in a similar manner by coding each position in the word rel-
ative to the end of the word. As an example, we could define
the word "kitten" as k−6i−5t−4t−3e−2n−1 and "smitten" as
s−7m−6i−5t−4t−3e−2n−1. Using this positional scoring, we
can calculatem,M , and s according to Eqs. 1, 2, and 3 above.
These two strings share four letters, resulting in a similar-
ity of 4/7 or .571. The start-based similarity, in contrast, is
zero (0/7 matches). For the end-based slot code, the α and �

parameters still correspond to the start and end of the initial
string.

Overall similarity between two letter strings i and j in the
both-edges code is a weighted combination of start-based
and end-based similarities:

si j = wsi j,start + (1 − w)si j,end (4)

where w is estimated as a free parameter, but can reasonably
be expected to be greater than .5 in most applications to data.

The overlap model

An alternative to both slot coding and both-edges representa-
tion is the overlapmodel (Gomez et al., 2008; Ratcliff, 1981).
In the overlap model, rather than having letters associated
with only a single position, letters are represented using posi-
tional uncertainty functions from the beginning of the string.
The overlap model is often referred to as a "noisy" slot code
because it is as if each letter occupies multiple letter position
slots, but the strength is different for each position and the
letter is most strongly associated to its true position. That
is, consider the letter "d" in the word "badge" – the overlap
model states that the "d" occupies all five letter slots, but
is most strongly represented in the third position and is the
weakest in the first and fifth positions. The positional uncer-
tainty functions in the overlap model are analogous to the
representations in many positional models of serial recall,
where representations of within-list position overlap with
each other (Brown et al., 2000; Burgess & Hitch, 1999; Lee
& Estes, 1981), and also bear a resemblance to the CODE
model of visual attention. (Logan, 1996).

The overlap model is formalized using Gaussian uncer-
tainty functions – each letter is associated with a Gaussian
distribution centered on its true position where the standard
deviation of the Gaussian distribution is a free parameter and
varies by serial position. In the overlap model, by conven-
tion the uncertainty is only present in one of the letter strings,
which is usually either a prime or a briefly presented target.
In the case of recognition memory, we define the uncertainty
in the studied word, as this is only in memory and no longer
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presented to the participant. We will define k as the position
of the letter in the probe string and l as the position of the
same letter in the encoded string in memory:

mk = G[�(k + .5, l, σ = σl) − �(k − .5, l, σl)]; if ik ∈ j
(5)

otherwise mk = 0

G = α if k = 1;G = ω if k = W ( j); otherwise G = 1

where� is the cumulative distribution function of the normal
distribution.

mk is maximal when a letter occupies the same position
in each word (k = l) and gets progressively weaker as l
deviates from k. It is also important to note that m crucially
depends on the standard deviation σ . As σ approaches zero,
the model reverts to the slot code as all of the probability
density in the encoded letter is centered on its true position.
However, as σ increases, mk < 1 even if ik = jl because
the probability density of the letter’s position is distributed
across multiple letters. In other words, the overlap model as
implemented by Gomez et al. (2008) makes no distinction
between strength and uncertainty (Davis, 2010). To correct
for this and to make the model comparable to the other mod-
els, we have introduced the α and� parameters, which allow
forflexiblyweighting the exterior letterswithout affecting the
precision of the letter representations. These were applied in
the same manner as the forward slot code model.

An illustration of the comparison between the studied
string "trial" and the test word "trail" can be seen in Fig. 1.
Each letter in the studied string is represented with uncer-
tainty, which varies with letter position, and the higher
uncertainty means that the letter’s identity "spills over" into
nearby positions. The letter "T" is represented with high pre-
cision such that it is almost entirely concentrated in the first
position, whereas the letter "L" is represented with low pre-

Fig. 1 Illustration of the match calculation for two letter strings: a
studied string “trial" in which each letter has uncertainty in its position
coding, and a test string “trail." The match values m for each letter in
the test string are also depicted. See the text for more details

cision, such that there is a reasonable degree of probability
mass in positions 3 and 4 of the string.

When the string "trail" is matched against the repre-
sentation of "trial", the match values depend on both the
displacement of the letters in the test string from the studied
string and the degree of uncertainty in the studied letter. The
match for the letter "T" is 1.0 because the probability density
for "T" is entirely in the first position. If another test word
was matched instead that contained the letter "T" in the sec-
ond position instead, such as "atlas", the match on the letter
"T" would instead be approximately zero because there is
very little probability density of "T" in the second position.

One can also see that for the other matching letters, the
match values are a function of the uncertainty of each letter
position. The match value of "L" is quite low because the
uncertainty is sufficiently high that there is little probability
mass in its true position. Nonetheless, this match value is still
higher than the mismatched letters "A" and "I", which have
lowermatch values because each of these letters are displaced
by one position and the probability mass for mismatching
letters is lower than for matching letters.

Conventionally, the standard deviation parameter varies
across each letter in the word, which can result in a very
large number of free parameters, especially in recognition
memorywherewords can be ten letters or longer. Fortunately,
Gomez et al. (2008) found that the standard deviations could
be described more simply as a two-parameter exponential
function in which the standard deviation increases with letter
position:

σl = d(1 − exp[−(i − .5)/r ]) (6)

where l is the serial position of a letter in the word, r is the
rate of growth, and d is the asymptote – both r and d are
estimated as free parameters in all of our fits to data below.

Both-edges overlap model

While the overlap model can be considered a noisy slot code,
it inherits some of the limitations of the slot code in that
positions are represented relative to the start of the string.
For this reason, we developed a both-edges overlap model
that can be considered a noisy version of the both-edges slot
code model described above. Equation 5 is used to calculate
similarity, with the exception that backward similarity within
the overlap model is calculated relative to the end of the
string. The forward and backward similarities are combined
using Eq. 4, which introduces the weighting parameter w.

Relative position codes

In relative position codes, a letter is coded relative to other
letters in the word rather than its position within the letter
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string. The most common implementation – and the one we
pursue in this work – is coding the string in terms of adjacent
letter bigrams. That is, a word such as "cat" can be decom-
posed into the bigrams CA and AT. The open bigrams allow
for bigrams separated by other letters to be represented, such
that an additional CT bigram would be represented in the
string. While there are some models of word recognition that
have considered letter trigrams (Seidenberg & McClelland,
1989), we know of little work exploring the consequences of
these representations and have not pursued them in order to
preserve a manageable number of representational schemes
to explore.

Closed bigrams

The simplest relative position code involves coding the string
into adjacent letter bigrams. Adjacent letter bigrams illus-
trate the advantage of relative position codes – similarity
can be preserved if the absolute positions of substrings are
perturbed across the two strings. For instance, consider the
two words "members" and "remembering" – "member" is an
embedded substring in both of these words, but there will be
little alignment between the two strings according to abso-
lute position schemes. If we break up the word into adjacent
letter bigrams and use shared bigrams as the basis of simi-
larity, we can see that both strings share the bigramsme, em,
mb, be, and er . Closed bigrams resemble associative chain-
ing models of serial recall, where items within a study list are
directly associated to each other (Lewandowsky&Murdock,
1989). Direct associations between items are also common to
address paired associate memory tasks and free recall (Criss
&Shiffrin, 2005;Gillund&Shiffrin, 1984;Lehman&Malm-
berg, 2013; Osth, A. F., & Dennis, 2014; Osth & Dennis,
2015; Raaijmakers & Shiffrin, 1981). A disadvantage of all
bigram schemes is that they do not have a natural way of cap-
turing the importance of the exterior letters. For this reason,
we augment the bigrams with representations of the begin-
ning and end of the word. That is, the word "member" would
also include _m and r_, where _ indicates the letter is an exte-
rior letter, with the first position indicating that it is the first
letter and the second position indicating that it’s the final let-
ter. This is consistent with previous bigram representations
(e.g., Hannagan & Grainger, 2012; Seidenberg & McClel-
land, 1989) and is also consistent with chaining models of
serial ordermemory that additionally include representations
of the start- and end-of-the-list (e.g., Lewandowsky & Mur-
dock, 1989; Solway, Murdock, & Kahana, 2012).

Amatchm on a bigram k between strings i and j is scored
as:

mk = G if k ∈ iκ ∪ jκ
(7)

otherwise mk = 0

G = α if k = 1; G = ω if k = w( j); otherwise G = 1

where the subscript κ refers to the set of bigrams in the
string. A complication with bigram coding that we found
is that a bigrammay be repeated in one word but not another.
That is, consider if the string "ababab" is compared against
the string "ab" – a similarity value of .50 can be returned
if each "ab" in the first string can be matched against the
bigram in the second. For this reason, we made it such that
each bigram can only match another bigram in a compari-
son string once. This was accomplished by removing each
matched bigram from the set of possible bigrams during the
comparison process1. Evidence for this assumption comes
from the fact that stringswithmatching repeated letters do not
show any priming advantage over strings with non-repeated
letters (Schooenbaert & Grainger, 2004).

The overall similarity M is calculated in the same man-
ner as the other schemes (according to Eq. 3) but with the
exception that the alignment length a refers to the number of
bigrams in the longest of the two strings.

Open bigrams

Open bigrams make allowance for adjacent letters that are
separated by other letters. To prevent an explosion of possi-
ble bigrams as word length increases, we follow Grainger
and van Heuven (2003) and only allow bigrams between
pairs of letters that have at most two letters between them.
To give an example, if we considered all bigrams that could
be constructed from the letter "a" in the word about, the
closed bigram representation would only include the bigram
"ab", while the open bigram representation would addition-
ally include "ao" and "au." Open bigrams can be considered
the relative position analog of the overlap model – just as
the overlap model could be considered a "noisy" slot code,
open bigrams could be considered a "noisy" bigram repre-
sentation. However, open bigrams differ from the overlap
model because the longer-range bigrams are conventionally
weighted the same as the bigrams formed from adjacent pairs
of letters. Open bigrams are employed in models of word
recognition such as the SERIOL model (Whitney, 2001) as
well as the OB1-Reader (Snell et al., 2018). In episodic
memory, open bigram representations strongly resemble
associations from models that employ remote associations,
where associations are formed between items that are more
than one item apart (Logan, 2021; Murdock, 1995; Solway
et al., 2012).

1 A reviewer suggested that the same approach could be implemented
by incrementing the denominator of the comparison process, which
would likely produce equivalent results.
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The match m on a bigram k is calculated according to
Eq. 7 except that the set of bigrams in each string is larger,
which likewise affects the alignment length a.

Levenshtein distance

We will be comparing each of the above representations
to string similarity based on Levenshstein distance (Leven-
shtein, 1966). Levenshtein distance is a measure of string
edit distance and refers to the minimum number of transfor-
mations (substitutions, insertions, or deletions) between any
two strings. For instance, there is a Levenshtein distance of
1 between "dog" and "dogs" – this is because only a sin-
gle operation (insertion of "s" into "dog" or removal of "s"
from "dogs") is required to transform one string into another.
Levenshtein distance has been used in various psychological
applications, includingquantificationof orthographic density
in the lexicon (Yarkoni et al., 2008), orthographic similarity
effects in recognition memory (Freeman et al., 2010; Zhou
et al., 2023), and measuring the difference between recalled
sequences and study lists (Logan, 2021).

We can convert the Levenshtein distance between two
strings Di j to similarity using the following equation:

si j = ai j − Di j

ai j
(8)

where the alignment length a refers to the number of letters
in the longer of the two strings.

While Levenshtein distance is an extremely useful mea-
sure for computing string similarity, it was not designed
as a psychological measure of orthographic similarity. For
instance, each of the transformations that it considers are all
equally weighted in the similarity calculation. In practice,
each possible transformation often exhibits different conse-
quences for perceived string similarity in masked priming
tasks (Davis & Bowers, 2006; Hannagan & Grainger, 2012).
While it would be possible to estimate different weights of
these transformations, the psychological representations not
only produce different weights and consequences for each
operation, but they also provide more principled explana-
tions for these phenomena that can be linked to associative
mechanisms.

Nearest neighbors

To illustrate the differences between the different ortho-
graphic representations, Table 1 shows the five nearest
neighbors – the words with the highest similarity values – to
three different words: ledge, sustain, and yourselves. Rather
than calculate the similarity of these words to the entire lex-
icon, we used the word set from Cortese et al. (2015) – one
of the datasets we fit – as a way to demonstrate similarity

to potential memory set items. This dataset contained words
that were between 3 and 10 letters long.

One should note that the similarities in each of these
schemes depend on the values of their parameters. We fixed
the values of α and � to 1 such that the start and end letters
exhibited the same degree of importance as the other let-
ters. If such parameters are increased, mismatches on these
letters become much more consequential, ensuring that the
nearest neighbors are muchmore likely to include words that
match on these letters. For the both-edges slot and overlap
models, we fixed the weight of the forward representation to
.75. For the overlap models, we fixed the parameters of the
exponential function to the best fitting values from Gomez
et al. (2008), namely r = 1.094 and d = 1.544. In our fits to
recognition memory data, we estimate the values of each of
these parameters.

For the first word – "ledge" – each of the representations
agree on the most similar word, which is "ledger." There is
likely very broad agreement among the representations when
two strings differ by an addition at the end of the word or a
single substitution. One exception is that the bigram models
predict lower values of similarity for this comparison. This
is because while the absolute position schemes result in only
a single letter difference between the two strings, the bigram
models result in the mismatch of at least two bigrams – the
"er" and "r_" bigrams.

Not all of the words have agreement among the near-
est neighbors, however. For instance, the word "brittle"
illustrates the difference between the absolute position and
relative position schemes. The relative position schemes
select the word "little" as their most similar word. The
absolute position schemes selected different words – the
slot-based models instead select "wrinkle", which is likely
because "little" is one letter shorter than "brittle", which off-
sets the alignment of their absolute positions. The overlap
model instead selects "brothel" while the both-edges overlap
model selects "bottle" as the most similar word.

Global similarity of orthographic
representations

Each of the discussed orthographic representation schemes
were used to predict performance on individual trials in
four different recognition memory datasets. As mentioned
previously, in recognition memory it is believed that recog-
nition operates by computation of the global similarity – the
similarity between the probe item and each of the learned
representations from the study list is computed and aggre-
gated together. The global similarity value is then subjected
to a decision process to produce an "old" or "new" decision.
While models such as REM and Minerva 2 produce their
similarities by randomly generating representations of each
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Table 1 Nearest neighbors to a
set of four words from each
orthographic representation

Rep. Neighbors

ledge

Slot ledger (.83), ladle (.6), wedgie (.5), redeem (.5), midget (.5)

Both-edges slot ledger (.62), ladle (.6), wedgie (.42), ladder (.42), venue (.4)

Overlap ledger (0.3), lever (0.26), level (0.26), leper (0.26), legend (0.26)

Both-edges overlap ledger (0.28), lever (0.24), level (0.24), leper (0.24), ladle (0.24)

Closed bigrams ledger (.71), ladle (.5), knowledge (.5), wedgie (.43), peddle (.43)

Open bigrams ledger (.71), legend (.5), ladle (.45), wedgie (.43), knowledge (.43)

Levenshtein ledger (.83), wedgie (.67), ladle (.6), mileage (.57), knowledge (.56)

sustain

Slot curtain (0.71), sultan (0.57), suction (0.57), mustard (0.57), disdain (0.57)

Both-edges slot curtain (0.71), suction (0.57), mustard (0.57), disdain (0.57), custard (0.57)

Overlap session (0.25), sultan (0.24), suction (0.24), suspend (0.22), sushi (0.22)

Both-edges overlap session (0.25), sultan (0.24), suction (0.24), station (0.23), suspend (0.21)

Closed bigrams sultan (0.5), status (0.5), station (0.5), retain (0.5), obtain (0.5)

Open bigrams station (0.59), satin (0.59), sultan (0.53), curtain (0.53), suction (0.47)

Levenshtein sultan (0.71), curtain (0.71), restrain (0.62), mountain (0.62), fountain (0.62)

brittle

Slot wrinkle (0.57), wrestle (0.57), whistle (0.57), shuttle (0.57), scuttle (0.57)

Both-edges slot wrinkle (0.57), wrestle (0.57), whistle (0.57), shuttle (0.57), scuttle (0.57)

Overlap brothel (0.26), bottle (0.26), battle (0.26), critter (0.25), bitter (0.25)

Both-edges overlap bottle (0.27), battle (0.27), critter (0.25), brothel (0.25), bitter (0.25)

Closed Bigrams little (0.62), bottle (0.62), battle (0.62), title (0.5), shuttle (0.5)

Open bigrams little (0.59), rattle (0.53), bottle (0.53), battle (0.53), title (0.47)

Levenshtein rattle (0.71), little (0.71), bottle (0.71), battle (0.71), throttle (0.62)

yourself

Slot counsel (0.62), journey (0.5), journal (0.5), gourmet (0.5), voucher (0.38)

Both-edges Slot counsel (0.47), journey (0.38), journal (0.38), gourmet (0.38), countess (0.38)

Overlap yogurt (0.17), counsel (0.17), yonder (0.16), yodel (0.15), surreal (0.15)

Both-edges overlap counsel (0.16), surreal (0.15), quarrel (0.15), yogurt (0.14), trousers (0.14)

Closed bigrams recourse (0.44), myself (0.44), itself (0.44), yogurt (0.33), yodel (0.33)

Open bigrams recourse (0.45), morsel (0.4), trousers (0.35), myself (0.35), itself (0.35)

Levenshtein morsel (0.62), counsel (0.62), yodel (0.5), myself (0.5), journey (0.5)

Notes: Rep. = representation
The similarity is contained in parentheses
The words were sampled from the word set in the experiments of Cortese et al. (2015)

list word, in this work the similarities are supplied by each
of the representational schemes. Specifically, we implement
each representation as its own global similarity model.

The global similarity g for a probeword i can be computed
as follows:

gi = (
∑

j∈L j �=i

s pi j )/NL (9)

where L is the set of study list words, NL is the length of the
study list, and p is a freely estimated non-linearity parameter.
Similar to our previous investigation on semantic similar-
ity (Osth et al., 2020), we omitted the target item from the

global similarity computation. This is because in the major-
ity of the orthographic representations, the self-similarity is
always equal to 1. By omitting the self-similarity parameter,
the investigation is more directly focused on how the inter-
item similarity affects recognition memory decisions.

The non-linearity parameter pwas directly inspired by the
cubic transformation of similarities in the Minerva 2 model
(Hintzman, 1988), which has the effect of punishing low sim-
ilarity values before computing the global similarity. Because
similarity is bounded between 0 and 1, there are no sign
reversals for certain values of p (e.g., negative similarities
becoming positive when p is an even number). The conse-
quences of this transformation can be seen in Fig. 2. As the p
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Fig. 2 Similarity before (x-axis) and after (y-axis) the power transfor-
mation for four different values of p (1, 3, 5, and 9). See the text for
details

parameter is increased, lower values of similarity are pushed
to zero while higher values are more resistant, with similarity
values of 1.0 being completely unaffected by the transforma-
tion. This non-linearity is also analogous to the c parameter in
variants of the generalized context model (Nosofsky, 1986;
Nosofsky et al., 2011). A psychological interpretation of this
transformation is that it approximates auto-associative bind-
ings, which are essentially bindings of stimulus features to
each other – a mathematical analysis of the cubing process in
the Minerva 2 model found that it was identical to a mode-4
autoassociative tensor (Kelly et al., 2017).

Arndt and Hirshman (1998) demonstrated that the cub-
ing process in Minerva 2 was essential in capturing many
phenomena in the false memory literature. We will demon-
strate below that it was quite crucial in our fits to recognition
memory data with orthographic representations for two rea-
sons. First, highly similar lures exhibited much higher rates
of false recognition than lures of moderate or low similar-

ity to a much larger degree than a linear model predicted
(a model where p = 1). Second, we will demonstrate that
this parameter has the effect of reducing the similarity of the
majority of memory set items to zero, such that only a small
number of items that are similar to the probe contribute to the
global similarity. In other words, this parameter functions to
reduce the noise in the comparisons to the memory set.

Mapping global similarity to old-new
decisions: the linear ballistic accumulator
(LBA) model

Tomake contactwith experimental data, global similarity has
to bemapped to old-newdecisions.Manymodels accomplish
this by comparing theglobal similarity to a response criterion,
with responses above the criterion eliciting "old" responses
(e.g., Gillund&Shiffrin, 1984;Hintzman, 1988). However, it
is becoming increasingly common to use global similarity to
drive an evidence accumulation process of decision-making,
which is able to produce a decision but can additionally make
predictions about the latency with which decisions are made
(Cox&Shiffrin, 2017; Fox et al., 2020;Nosofsky et al., 2011;
Osth et al., 2018).

In this work, we followed the evidence accumulation
approach and used the linear ballistic accumulator (LBA)
model (Brown & Heathcote, 2008). In the LBA (depicted
in Fig. 3), each response alternative is associated with its
own accumulator, which race to produce a decision. Each
accumulator has a mean drift rate v, which determines the
average slope of the accumulator – higher drift rates produce
steeper slopes, and hence faster evidence accumulation. The
decision ends when an accumulator’s response threshold b
is reached, which not only produces the corresponding deci-
sion, but also the response time, which is the sum of the time
elapsed during evidence accumulation plus some additional
time t0 for non-decision processes, such as processing of the
stimulus and response execution.

Fig. 3 The linear ballistic
accumulator (LBA). See the text
for more details
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A defining feature of the LBA is that evidence accumu-
lation is both linear and noiseless. The stochastic aspects of
the model instead come from between-trial variability in the
model parameters. The starting point for evidence accumu-
lation is sampled from a uniform distribution with height A,
while the trial’s drift rate is sampled from a normal distribu-
tionwith standard deviation η 2. The between-trial variability
parameters additionally function to allow for the prediction of
fast errors under speed emphasis and slow errors under accu-
racy emphasis, similar to their roles in the diffusion decision
model (Ratcliff & McKoon, 2008).

The threshold parameter b is responsible for the speed–
accuracy tradeoff: increases in b slow decisions because the
accumulators have to travelmore distance to hit the threshold,
but the decisions are more accurate because there is more
time to overcome the noise in the starting point variation. In
addition, bias can be accommodated in themodel by allowing
different thresholds for each response option. In this work,
we estimate the B parameter, which is the distance from
the top of the starting point distribution to the threshold b
(b = A + B) and allow for bias by having two threshold
parameters Bold and Bnew.

In this work, we map the global similarity g for a probe
stimulus i in experimental condition m and old-new status
n of the probe stimulus (e.g., target or lure) mean drift rates
vold and vnew using the following equations:

vold,imn = V0 + Vmn + γmngim (10)

vnew,imn = V0 − (Vmn + γmngim) (11)

where V0 is a freely estimated shift parameter that helps
ensure that the drift rates are positive (e.g., van Ravenzwaaij
et al., 2020), V is a mean drift rate that can vary across exper-
imental conditions m or old-new status n, and γ is a scale
parameter that maps global similarity to drift rates. One can
see from Eqs. 10 and 11 that increases in global similarity g
serve to increase the mean drift rate vold and simultaneously
decrease the drift rate vnew, resulting in more frequent "old"
decisions that are faster. This parameterization mirrors the
changes in drift rates in the diffusion decision model, where
changing the strength of evidence for one response neces-
sarily decreases the strength of evidence for the other. To
insure identifiability we fixed the η parameter to 1 for lures
but freely estimated the parameter for target items (ηtarget), as
previous investigations have found evidence of greater drift
rate variability for target items (e.g., Osth et al., 2017; Starns
& Ratcliff, 2014).

2 We use the term η instead of the more popular notation s (Brown &
Heathcote, 2008) or sv (Osth et al., 2017) to avoid confusion with the
inter-item similarity term s above.

The purpose for including the V parameters is that in sev-
eral datasets, we fit manipulations that alter performance –
such as word frequency, depth of processing, and repetitions
– for which global orthographic similarity may be able to
partially explain but cannot provide a sufficient account of
the changes of performance on its own. By allowing the V
parameter to vary across conditions, it allows us to capture
changes in performance across these conditions while being
agnostic to the causes of these effects.

Essentially, Eqs. 10 and 11 can be considered regression
equations where the global similarity is mapped onto the
mean drift rates on a trial-by-trial basis. We allow the γ

parameter to vary across targets and lures because it allows
us tomeasure the extent to which global similarity may influ-
ence targets and lures in different ways. For instance, in
previous work using a similar approach with global semantic
similarity, Osth et al. (2020) found that global similarity sub-
stantially affected drift rates for lures while producing only
minimal effects on targets. While process models are unable
tomap global similarity to targets and lures in different ways,
they are often able to mimic the finding that inter-item sim-
ilarity has less of an effect on targets. One such example is
the REM model (Shiffrin & Steyvers, 1997), where the self-
similarity of a probe to its own representation in memory is
both large and highly skewed, allowing it to dominate the
global similarity computation such that the similarity of the
probe to other items inmemorywould not substantially affect
the resulting global similarity.

Themodel fit

Applying themodels to data

Each representational scheme – the slot code, the both-edges
slot code, the overlap model, the both-edges overlap model,
closed bigrams, open bigrams, and Levenshtein distances –
were all applied as separate global similarity LBA models
to each of the four datasets. Within each dataset, we fit the
models to each individual response and response time (RT)
using hierarchicalBayesianmethods (seeBoehmet al. 2018),
where parameters for individual participants and the group
are jointly estimated. This avoids averaging artifacts associ-
ated with fitting group data (e.g., Estes &Maddox, 2005) but
simultaneously allows for "pooling" information across indi-
viduals because each participant’s parameter estimates are
influenced by the group-level parameters. Parameters were
estimated using differential evolution Markov chain Monte
Carlo (DE-MCMC), which is advantageous for fitting mod-
els like the LBA due to the presence of strong correlations
between the parameters of the model (Turner et al., 2013).
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For each response, the likelihood of the response and RT
were computed according to the LBA’s likelihood function
using the estimated parameters, including themean drift rates
for the individual trial thatwere computed based on the global
similarity of the probe to each of the studied strings. Higher
likelihoods reflect closer correspondences between the data
and themodel’s predictions. In hierarchicalBayesianmodels,
the likelihood of a participant’s data under that participant’s
model parameters is multiplied by the likelihood of those
parameters under the group-level distribution. This is how
the "pooling" occurs – participant parameters that are closer
to the group level aremore likely, and the resulting parameter
estimates strike a balance between a good fit of the partic-
ipant parameters and the correspondence with the group.
Group-level distributions were either normal distributions
or truncated normal distributions to capture the effects of
boundaries, each with parameters μ and σ . Throughout the
article, we denote the group-level parameters using super-
scripts (e.g., Aμ refers to the groupmean of the A parameter).
Additional details on the prior distributions and the MCMC
sampling can be found in the Appendix.

Fitting thesemodels to datawas challenging andextremely
lengthy in some cases. Each trial required aggregating the
similarity of the probe to the NL items, where NL is the
number of items on the study list. With the overlap model,
the similarity between two words required calculating the
match value on the individual letters. For the overlap model,
thismeant that each participant required the calculation of the
number of observations O multiplied by NL list items multi-
plied by atmost the longest length of theword. For our largest
dataset, this meant that each participant required around 1.47
million calculations for the application of the overlap model,
and this was doubled for the both-edges overlap model.
Similarities to each item could not be pre-computed unless
the parameters governing the representations and the non-
linearity parameter p were fixed.

Each of the models varies in their number of parame-
ters and their resulting complexity. For instance, the forward
slot code can be considered a special case of the overlap
model where all of the standard deviation parameters are set
to zero, and also a special case of the both-edges slot code
with the weight entirely on the start-based representation.
Thus, the overlap model should inherently fit better than
the slot code model. We make comparisons between each
model using model selection techniques, which subtract a
measure of model complexity from each model’s measure
of goodness-of-fit. Specifically, we use the widely applica-
ble information criterion (WAIC:Watanabe, 2010). WAIC is
an approximation to leave-one-out cross validation. Because
WAIC is on a deviance scale, lower values are preferred. In
contrast to the deviance information criterion (DIC), WAIC
is considered to be a "fully Bayesian" information criterion
in the sense that its penalty term is determined by calculation

of the variability in the likelihood of each data point across all
of the parameters in the posterior distribution. In otherwords,
a more complex model has more "ways" it can fit the data
than a less complex model. WAIC has been recommended
over DIC (Gelman et al., 2014).

Datasets

We specifically employed recognition memory datasets with
lists composed of unrelated words that do not contain
any obvious similarity structure, similar to past approaches
exploring the consequences of semantic similarity in free
recall (Howard&Kahana, 2002;Morton& Polyn, 2016) and
recognition memory (Osth et al., 2020). While several stud-
ies have explored the consequences of studying categories of
orthographically similar words, the majority of these studies
have done so by constructing a set of words with only 1-2 let-
ters or phonemes difference from each other (e.g., Shiffrin et
al., 1995; Sommers & Lewis, 1999). We find lists composed
of highly similar items undesirable for two reasons. First,
when studying a list of highly similar words like "mate",
"late", "date", etc., it is possible that participants adopt dif-
ferent encoding or retrieval strategies, such as placing more
emphasis on encoding common features or evaluating test
items to determine whether they contain the common fea-
tures. Second, we have established in Table 1 that each of
the orthographic representations would likely agree that such
items are highly similar to each other. Instead, therewasmore
disagreement among the moderate similarity items, which
should be more prominent in lists of unrelated words.

A total of four datasets were included in our fits to data,
which are summarized in Table 2. The datasets vary consid-
erably in their list lengths (ranging from 40 to 150 words),
word lengths (3–11 letters), and experimental manipulations
(word frequency, speed–accuracy emphasis, numbers of pre-
sentations, and levels of processing). The differences in list
length among the datasets are consequential when one con-
siders that global similarity always involves an average of all
similarities in the word set. With longer lists, more similarity
values contribute to the global similarity calculation. Details
on exclusions from the data can be found in the Appendix.
The raw data can be found on our OSF repository (https://
osf.io/hyt67/).

Thedata fromCortese et al. (2015) are noteworthybecause
all participants in the sample were tested on the same set of
3000 words. The large number of participants (N = 119)
meant that there was a substantial number of observations
for each individual item. Because global similarity varies
on an item-by-item basis, it allows for us to test how each
representational scheme is able to account for the variability
in performance among the individual words.

For each of the datasets – with the exception of the Kiliç et
al. dataset – the parameters governing the orthographic rep-
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Table 2 Summary of the datasets fit by the model

Dataset NP O NL NW WL Manipulation

Rae et al. (2014) 47 757 40 1612 5.1 (4-7) SA emphasis, WF (LF/HF mixed)

Criss (2010, E2) 16 1412.9 50 1600 5.9 (4-11) Pres. (1x/5x), WF (LF/HF crosslist)

Kiliç et al. (2017, E1) 30 1736.8 150 2929 5.9 (4-8) DOP (deep/shallow)

Cortese et al. (2015) 119 2947.6 50 3000 6.2 (3-10) None

Notes: E = experiment, NP = number of participants, O = mean number of observations per participant, NL = study list length, NW = number of
words in the word set, WL = word length (mean, min-max). WF = word frequency, SA = speed–accuracy, Pres. = number of presentations, LF =
low frequency, HF = high frequency, DOP = depth of processing

resentations were all fixed across each of the conditions in
the experiment. We did, however, allow several parameters
within the LBA to vary across conditions. For the speed–
accuracy emphasis manipulation in the Rae et al. (2014)
dataset, we followed the original authors and allowed bound-
ary separation B, starting point variability A, nondecision
time t0 and drift rate V to vary across the conditions. For
the word frequency manipulation in the Criss and Rae et al.
datasets, the drift rate V varied across conditions for both
targets and lures. For the Criss dataset, drift rate V was
varied across the repetition conditions for both targets and
lures because it was a cross-list strengthmanipulation, which
resulted in reduced FAR in the lists with repeated items.
Indeed, the diffusion model analysis of Criss (2010) on the
same dataset confirmed that the reduced FAR were due to
changes in drift rates for the lure items. Each of these manip-
ulations, however, were not the focus of the present work. A
complete list of base LBA parameters common to all models
can be found in the Appendix.

Allowances for depth of processing

We made an exception on fixing the parameters governing
the orthographic representations for the data of Kiliç et al.
(2017), which used a depth of processing manipulation. In
each study list, participants were either instructed to engage
in shallow processing, which involved deciding whether an
"e" was in the letter string, or were instructed to engage
in deep processing, which involved deciding whether each
word had a pleasant meaning. Their studies found that the
deep processing task elicited better performance, including a
reduced false alarm rate (FAR). An unexpected finding from
this dataset was that hit and false alarm rateswere both higher
for probes containing the letter "e," a tendency that was espe-
cially pronounced in the shallow processing condition. These
results can be seen in Fig. 4, which also separately show the
results for high similarity lures (lures with a Levenshtein dis-
tance of 1 to one of the studied items) and lower similarity
lures (lures with a minimum Levenshtein distance of 2 or
higher to each of the studied items).

None of the representations could naturally capture this
finding, so we used a modified inter-item similarity s∗ to

take into account whether an "e" was present in both the
probe and the stored representation:

s∗
i j = (M + E)/(a + (1 − α) + (1 − ω) + ε) (12)

E = ε; if ’e’ ∈ i ∪ j; otherwise E = 0 (13)

where ε is the strength of the letter "e". One should note here
that the presence of the letter "e" in both strings increases the
string similarity regardless of the position of "e" in either of
the two strings. We used this approach because the shallow
processing condition only instructs the participant to find
an "e" in the word and does not specify that the participant
reports its position. Figure 4 shows the predictions of the
selectedmodel (see the next section for details), which reveal
that the model was able to capture the higher tendency to
respond "old" to items that contain the letter "e."

In addition, we found better performance of the mod-
els when other parameters relating to inter-item similarity
changed across conditions, namely the α,�, p, and γ param-
eters. For the overlap model, however, we fixed the d and r
parameters across conditions as allowing such parameters
to vary compromised identifiability and did not appreciably
improve the fit of the model.

Model selection

WAIC values for each model in each dataset can be seen in
Table 3. One can see that there is no clear winner across all
of the datasets – closed bigrams are preferred for the Criss
(2010) dataset while open bigrams are preferred for the Rae
et al. and Cortese et al. datasets. While this may seem as if
relative position representations should be preferred overall,
the Kiliç et al. dataset shows a preference for the overlap
model. While it is difficult to ascertain the causes of this
discrepancy, one possibility is that the encoding tasks that are
part of the depth-of-processing manipulation in the Kiliç et
al. dataset changed the way in which participants represented
the letter strings.

In addition, we would also like to mention that the data of
Cortese et al. are especially diagnostic due to the especially
large size of that dataset. Table 3 also reveals that the WAIC
scores between the selected model (open bigrams) and the
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Fig. 4 Group-averaged hit rates (HR), false alarm rates (FAR), mean RT to targets, and mean RT to lures, for probe items that both contain and
lack the letter "e". Depicted are both the data and the posterior predictives of the selected model. Error bars depict the 95% highest density interval
(HDI)

other models is very large. As we will later discuss, this
dataset was also noteworthy because several of the absolute
position models failed to capture the differences in the false
alarm rate between high and low similarity lures, which was
not a problem for the relative position models.

One clear consistency was that models based entirely
on Levenshtein distances were not preferred in any of
the datasets, suggesting that there are clear advantages
for considering psychological representations in capturing
orthographic similarity effects.

As we will discuss shortly, there are many difficulties in
adjudicating between the models that come from the nature
of the recognition memory paradigm – having NL items on
the study list means there are NL comparisons on any given
trial, so it can be unclear which words from the study list
contributed to a given response on a given trial. This is made
much simpler in a priming task, where it can be more safely
assumed that the most recently presented item had the largest
contribution to performance on a given trial.

In the coming sections, we will first give an example of
the similarity values from each of the different representa-
tions. Subsequently, we will focus on the selected model for
each of the datasets and focus on the relevant themes and
predictions from the models. In the next section, we will dis-
cuss parameter estimates and predictions that suggest that
global similarity of the orthographic representations gener-

ally exerts a large influence on lures but does not substantially
affect target items. After that, we will discuss the non-linear
effect of similarity, with similarity effects being largest for
high similarity items.

Global similarity examples

Figure 5 shows an illustration of an example trial from each
of the models from the Rae et al. dataset. Each of the words
are words from the study list and the word at the top ("least")
is the probe word for a particular trial. The horizontal bars
represent the similarity from each of the underlying repre-
sentations – the left and right columns show the similarity
before and after the non-linear transformation of similarity
using the estimated value of the power parameter p from the
fits to data.

Two trends are evident in the figure. First, the non-linearity
reduces similarities and ensures that only items that range
from moderate to high similarity "survive" the non-linear
transformation. Essentially, this reduces the memory set to
a smaller number of "effective" items. Second, there is gen-
erally agreement among the two classes of representations
– the absolute position models (slots, both edges, overlap,
and both-edges overlap models) produce comparable simi-
larity values, as do the relative position models (closed and

Table 3 � WAIC values for
each model variant in each
dataset

Criss Rae Cortese Kiliç
Model � WAIC P � WAIC P � WAIC P � WAIC P

Slot 101 21 32 23 508 13 136 24

Both edges 110 22 27 24 426 14 94 25

Overlap 79 23 33 25 828 15 0 26

Both-edges overlap 101 26 45 28 854 18 13 29

Closed bigrams 0 21 1 23 120 13 135 24

Open bigrams 74 21 0 23 0 13 137 24

Levenshtein 55 19 17 21 982 11 257 20
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Fig. 5 Illustration of global
similarity from each of the
representations from a trial in
the Rae et al. dataset. The word
at the top is the probe word, the
words on the left are the study
list words, and the horizontal
bars are the similarities between
the list words and the probe
word before (left) and after
(right) the non-linear
transformation
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open bigrams).While the absolute and relative positionmod-
els agree on some words, there are some words that they
critically disagree on. For instance, the word "east" is on
the study list – one can see that both the closed and open
bigram models continue to describe it as a similar item after
the non-linear transformation. The absolute position mod-
els instead all describe this as an item with essentially zero
similarity, which is likely due to the fact that the omission
of the first letter caused a misalignment between the studied
word and the probe word that heavily penalized the resulting
similarity.

We found this example trial by converting the similarities
to z-scores and finding example trials that maximally dis-
criminated between the models. In each of the models that
favored relative position models, we found a number of simi-
lar trials where there were one or more list words where there
wasmisalignment between those words and the probewords,
such as the addition of a prefix.

Global orthographic similarity affects lures more
than targets: parameter estimates andmodel fits

Both the parameter estimates and the model predictions sug-
gest that global orthographic similarity affects lures to amuch
greater extent than targets. Figure 6 shows the group mean μ

estimates of the scale parameter γ , which governs the direc-
tion and extent to which global similarity enters the drift
rate for an individual trial. An important caveat about the γ

parameter is its tradeoff with the power parameter p – as p

increases, the inter-item similarities s decrease, which can be
compensated by an increase in the scale parameter γ . For this
reason, the γ parameter is not comparable across datasets or
models, as there is no guarantee that p will be equated across
them. However, γ is directly comparable across targets and
lures because p is held constant across these item classes.

Figure 6 reveals that γ is higher for lures than targets for
virtually every dataset and model. The one exception is the
shallow processing condition of the Kiliç et al. dataset, is a
condition where participants were instructed to response to a
prompt about the letters in each of the words from the study
list. However, the same was not true for the deep processing
condition from the same dataset, which involves an orienting
task that was not focused on orthography. For each of the
other datasets, γ was close to zero for targets, implying that
global similarity has no influence at all on the resulting hit
rates or the accompanying latencies for target items.

The model predictions reveal a similar pattern. For each
of the winning models in each dataset, we calculated the
global similarity g for each trial across the entire posterior
distribution. Subsequently, we averaged the global similarity
values across the posterior distribution. We then divided the
global similarity into a number of equal area bins where the
number of bins depended on the size of the dataset. We used
six bins for the Criss and Rae et al. datasets, eight bins for
the comparably larger Cortese et al. dataset, and four bins
for the shallow and deep processing conditions of the Kiliç
et al. dataset. Within each of the bins, we computed the hit
and false alarm rates along with the .1, .5, and .9 quantiles
of the response time (RT) distribution for correct and error

Fig. 6 Group mean μ estimates
of the scale parameter γ for
each model and dataset
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responses, which are the 10th, 50th, and 90th percentiles of
the RT distribution, respectively. These summary statistics
were computed for both the data and the model’s predictions.

These results can be seen in Fig. 7, which reflects the
patterns seen in Fig. 6. We focused on the selected model
for each dataset in part because space precludes depiction
of all of the models, but also because each of the models
were surprisingly similar in their predictions here. This is
not to suggest that the models cannot be distinguished – as
we discussed previously, their predictions differ substantially
for some words. In the majority of the datasets, increases
in global similarity – which are reflected in the higher bin
numbers – result in substantial increases in the false alarm
rate (FAR) along with slowing of the correct responses to
lure items. The FAR increase from the lowest to the highest
similarity bin is often .10 or higher. For context, this result
parallels the FAR difference reported in the orthographic-
phonemic condition of Shiffrin et al. (1995)’s Experiment
1, where they found an FAR of .096 for categories of two
items and an FAR of .207 for categories of nine items (dif-
ference of .10). The present results indicate that even lists of
unrelated words can show substantial orthographic similarity
effects that can be comparable to those from category length
designs. The slowing of theRTs ismost pronounced for the .9
quantile – the slowest RTs –whereas the fastest RTs (.1 quan-
tile) and the median (.5 quantile) are relatively unaffected.
This is broadly consistent withmanipulations that selectively
influence the drift rate (Ratcliff & McKoon, 2008) and also
with our previous investigation focused on global semantic
similarity (Osth et al., 2020).

It should also be mentioned that the FAR plots show some
evidence of the non-linear similarity function that is due to
the influence of the p parameter. Recall that increases in the
power parameter p make it such that high similarity items
tend to dominate the global similarity computation, mean-
ing that there is relatively little difference between low and
moderate similarity items but a comparably larger difference
between high andmoderate similarity items. This can be seen
in the FARs for the Criss and Cortese et al. datasets, where
the increase in FAR for the highest global similarity bin is
larger than the other bins. We will return to evidence for
non-linearity in the next sub-section.

Target items, in contrast, show little effect – the hit rates
(HR) are fairly constant across each of the global similarity
bins and there are minimal effects on target RTs. The one
exception is the shallow processing condition of Kiliç et al.,
which shows a very large increase in the HR with increases
in global similarity – a difference of .20 between the smallest
and largest global similarity bin. However, the same result
was not found in the deep processing condition, where there
was little effect of global similarity on the HR and only a
small effect of global similarity on the FAR. These results
are consistent with the idea that depth of processing changes

the nature of the underlying word representations. We will
be returning to this issue later in the article when semantic
representations are incorporated into the models.

Figure 7 also reveals that thewinningmodels are providing
an excellent fit to the data. A caveat is that there is somewhat
of a circularity problem in evaluating the goodness of fit in
this way – we have used the representations from the model
to group the data, meaning that the differences between the
bins that can be seen do depend on the model under consid-
eration. This does not guarantee a perfect fit, however. One
area where the models are often missing is that the RTs often
change to a somewhat greater degree than themodels predict.
In the coming sub-section, we remedy the circularity prob-
lem by comparing the model’s predictions to an independent
standard of similarity.

Global similarity exerting a larger influence on lures than
targets is broadly consistent with a number of existing global
matching models. In global matching models, the memory
signal for lures is composed entirely of the global similar-
ity, whereas for targets, it consists of the global similarity
between the probe and the other list items and is addition-
ally composed of the self-match, or the similarity between
the probe and its own representation in memory. If the self-
match is significantly larger than the inter-item similarity,
then increases in the number of similar items will not exert a
large influence on target items. In the REM model (Shiffrin
& Steyvers, 1997) this occurs because the self-match dis-
tribution is extremely skewed. In the generalized context
model (GCM: Nosofsky, 1991a) and the Minerva 2 (Hintz-
man, 1988) model, the non-linear similarity functions punish
low similarity items. Since the self-match has high similarity
by definition, the self-match dominates the global similarity
for targets.

Figure 7 also reveals that the FAR are overpredicted in
each of the datasets. A reviewer inquired as to whether
this was a consequence of the orthographic representations
exhibiting similarities to the probe items that are slightly
excessive, or whether this was a consequence of the LBA
architecture itself. In the SupplementaryMaterials, we report
on fits to data of a simple LBA model with no orthographic
representations. This model overpredicted the FAR to a sim-
ilar degree, implying that this is a consequence of the LBA
architecture itself.

Lure similarity: the importance of non-linearity
and exterior letters

Non-linear similarity functions enable the models to
capture the difference in FAR between high and low
similarity lures

In the previous sub-section, we depicted the model fits using
the global similarity predictions from each of the models.
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Fig. 7 Group-averaged hit rates (HR: first column), false alarm rates
(FAR: second column), correct RTs (third column), and error RTs
(fourth column) for each of the global similarity bins (ranked from

lowest to highest) from the data (black) and the winning models (red)
of each dataset. RTs are summarized using the .1, .5, and .9 quantile.
Error bars depict the 95% highest density interval (HDI)
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To assess how well the models are performing in a way that
circumvents the circularity problem, we used an independent
standard from each of the selectedmodels and classified each
of the lures by their maximum similarity to the study list
items. Specifically, we calculated the Levenshtein distance
between the probe word and each of the studied words and
selected the lowest distance as our measure of lure similar-
ity. We defined words with Levenshtein distances of 1 (e.g.,
"dog" vs. "dogs"), 2 (e.g., "cargo" vs. "large"), 3 (e.g., "noo-
dle" vs "nude"), or 4 or greater (e.g., "spider" vs. "shoe")
as high, medium, low, and very low similarity, respectively.
An alternative measure to the Levenshtein distance is the
Damerau distance, which treats transpositions between adja-
cent letters as a single transformation (e.g., "trail" vs. "trial")
while this would count as a distance of 2 according to the
Levenshtein metric. However, we discovered in the process
of analyzing these datasets that transposition pairs of words
are quite rare in language and did not occur in any of our
datasets, so there were no differences between the Leven-
shtein and Damerau distances.

In addition, as we previously mentioned, studies inves-
tigating priming effects in the lexical decision task have
found evidence for the importance of the exterior letters
of the words. To our knowledge, it has not been investi-
gated in recognition memory as to whether exterior letters
are more critical in orthographically similar lures. For this
reason, in the high similarity lures, we investigated whether
the missing letter was a start letter, an interior letter, or an
end letter. Because high similarity lures were relatively rare
in our datasets (ranging between 1 and 3% of all trials), the
results are somewhat noisy for this comparison, but consis-
tent enough across datasets to reveal a pattern.

For moderate and low similarity lures, we also investi-
gated how the number of similar items on the list affects
performance. That is, for each of these lure types, we looked
at whether there were one (1x) or two (2x) items on the list
with the same Levenshtein distance. We were unable to sep-
arate the data in this fashion for high similarity lures because
of their rarity, and because the number of trials where there
were two high similarity items on the study list was close to
zero in many of our datasets.

Group-averaged false alarm rates (FAR) and median RT
to lures from the winning models and the data for the lure
categories described above can be seen in Fig. 8. Median
RTs were depicted instead of the complete distribution as
there were too few observations for high similarity lures. To
illustrate the importance of non-linearity in capturing these
trends, we additionally fit the same models to data with a
linear similarity function (p = 1) – thesemodels are depicted
in blue. Note that we only fit linear versions of the winning
models from Table 3 because fitting all of the models would
result in a very large number of additional models. A model

selection between the non-linear and linear models can be
seen in Table 4,where it can be seen that the nonlinearmodels
are selected decisively despite a larger number of parameters
in three of the four datasets, with the exception of the Kiliç
et al. dataset where the advantage of the nonlinear model is
relatively small.

What is apparent from Fig. 8 is the non-linear relationship
between Levenshtein distance and the FAR – FAR are in
some cases dramatically higher for high similarity (HS) than
medium similarity (MS) lures, but the difference between
medium similarity and low similarity (LS) is small, and the
difference between low similarity and very low similarity
lures (VLS) is barely noticeable. What is also interesting is
that the difference between one and two medium similarity
lures is fairly small – this difference is much smaller than the
difference between medium and high similarity lures. While
the models with non-linear similarity functions are able to
capture these trends, the p = 1 models with linear similarity
functions are unable to capture the large difference in FAR
between high and medium similarity lures in three of the
four datasets. An exception is the Kiliç et al. dataset, where
the difference between the linear and non-linear models is
quite small, which explainswhy the linearmodelwas favored
slightly in the model selection.

Several of the models made very similar predictions for
each of the datasets. One exception was for the Levenshtein
model, which generally accounted for the data well but was
unable to capture the differences between the high similarity
(HS) lure types given that the model does not differentially
weight transformations based on letter position. However, as
it turns out, the Cortese et al. (2015) dataset revealed very
different predictions for the absolute and relative position
models. Specifically, all of the absolute positionmodels were
unable to capture the larger FAR for the HS lures, while both
the closed and open bigram models were able to capture this
difference. Figures comparing these models can be seen in
the Supplementary Materials.

Estimates of the group mean μ of the p parameter for
each model and dataset can be seen in Fig. 9. One can see
that the estimates differ considerably across both datasets
and models. For the Criss and Rae et al. datasets, the esti-
mates hover around 3.0, which is the nonlinearity parameter
in theMinerva 2 model (Hintzman, 1988). For the Kiliç et al.
dataset, the overlap model – which was the selected model
– was close to linear (p = 1) in the deep processing con-
dition, which may explain why its predictions were similar
to the linear model. The overlap models and the both-edges
slot code model all received estimates of p that were close
to 1 in the Cortese et al. dataset, which may explain why
the models were unable to capture the differences between
high and low similarity lures depicted in the Supplementary
Materials.
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Fig. 8 Group-averaged false
alarm rates (FAR, left column)
and median RTs (right column)
to the lure types of varying
degrees of similarity. The high
similarity (HS) lures are
sub-divided based on which
letter in the word was missing
(start = initial letter, middle =
interior letter, end = terminal
letter). Error bars depict the
95% highest density interval
(HDI). Note: HS = high
similarity, MS = medium
similarity, LS = low similarity,
VLS = very low similarity, 1x =
one matching item on the study
list, 2x = two matching items on
the study list

The importance of the initial letter

Another trend in Fig. 8 is the importance of the initial let-
ter in each word. In the Criss and Cortese et al. datasets in
particular, there were lower FAR to high similarity lures that
lacked the initial letter than to lures that lacked an interior or
end letter. This tendency was present in the Rae et al. dataset,
although it was somewhat noisier. The effect was not notice-
able in theKiliç et al. dataset, but interpretation of this dataset
is complicated by the fact that the encoding tasks in the depth
of processing manipulation may have guided attention away
from the exterior letters during the study phase.

A surprising result was that high similarity lures that mis-
matched the final letter exhibited larger FAR in some cases.
This tendency was most pronounced in the Criss dataset but
was also a small trend in the Cortese et al. dataset and the
shallow processing condition of the Kiliç et al. dataset. Both
trends are corroborated by an analysis of the parameter esti-
mates of the strengths of the exterior letters. Figure 10 shows
estimates of the posterior distribution of the group mean of
the start letter strength αμ as well as the end letter strength
�μ for each of themodels. The dashed lines in the figure indi-
cate the strength of the interior letters (1). For each model
class, it is clear that the start letter is represented with more

Table 4 � WAIC values for the
models with a nonlinearity
similarity function (p free) and
the models with a linear
similarity function (p = 1)

Criss Rae Cortese Kiliç
Model � WAIC P � WAIC P � WAIC P � WAIC P

p Free 0 21 0 23 0 13 0 26
p = 1 145 20 51 22 371 12 2 24

See the text for details
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Fig. 9 Group mean μ estimates
of the nonlinearity parameter p
for each model and dataset

strength than the end letter in almost every dataset, suggest-
ing a within-word primacy effect but not a recency effect.

A surprising result was that therewere several caseswhere
the end letter was represented with less strength than the
middle letters, namely for the Criss, Rae et al., and Kiliç et al.
datasets. There was some disagreement between the models
in the estimates of �μ that is likely due to the differences in
the way the end letter was treated. In bigram models, lower
similarity is produced anytime there is a difference in the end
letter between the probe and studied strings. The absolute

position models are complicated by the fact that differences
in word length between the probe and studied strings can
result in mis-alignment of the exterior letters.

Integration of semantic representations

Up to this point, we have established that orthographic repre-
sentations can be quite consequential in determiningmemory
performance. Specifically, false alarm rates (FAR) increase to

Fig. 10 Group mean μ

estimates of the initial letter
strength α and terminal letter
strength � for each model and
dataset. Error bars indicate the
95% highest density interval
(HDI)
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a large extent with the increase in the global similarity of
orthographic representations and FAR are much higher to
highly similar orthographic lures than to medium or low
similarity lures, even though the datasets were constructed
from lists of unrelated words without any obvious categori-
cal structure. While such results are contrary to the idea that
long-term memory primarily consists of semantic represen-
tations (e.g., Baddeley, 1966), the obvious question remains
– how consequential are orthographic representations com-
pared to semantic representations?

To address this question, we constructed new global sim-
ilarity models that additionally incorporate the similarity of
semantic representations. We constructed our semantic sim-
ilarity measures from representations from the word2vec
model (Mikolov et al., 2013), a neural networkmodel ofword
embeddings. Word2vec has had success in outperforming
other models of semantic representations in capturing prim-
ing data in the lexical decision task (Mandera et al., 2017)
and additionally has been successful in capturing false mem-
ory phenomena in the Deese-Roediger-McDermott (DRM)
paradigm (Gatti et al., 2022). We used the pre-trained vec-
tors from the FastText library (Grave et al., 2018) that were
trained on a complete Wikipedia corpus using word infor-
mation only. We defined the semantic similarity c between a
probe i and a studied item j as:

ci j = max(cosinei j , 0) (14)

where the cosine indicates the cosine of the angle between
the two vectors. The cosine similarity metric is similar to the
dot product, but is normalized for vector length and bounded
on a [-1,1] interval.We truncated the cosine values at zero for
two reasons. First, a cosine value of zero occurs when vec-
tors are orthogonal to each other, which indicates maximum
dissimilarity, making values below zero hard to interpret.
Second, applying the power transformation to similarities
reduces those values even further – by truncating the similar-
ity values to zero, the power transformation can only reduce
values to zero.

The global similarity g for a probe i is now:

gi =
∑

j∈L, j �=i

(wos
p
i j + (1 − wo)c

p∗
i j )/NL (15)

where wo is the weight of orthographic information and p∗
is the power parameter for semantic similarities. The weight
parameter wo is analogous to selective attention weights in
the generalized context model (Nosofsky, 1986; Nosofsky
et al., 2011; Osth et al., 2023) and reflects the fact that par-
ticipants may prioritize one dimension over the other in their
encoding of the items during either the learning or the test
phases. We applied a separate power parameter for seman-
tic similarity as the two types of similarity may occur on
different scales.

For each dataset, we used the selected orthographic rep-
resentation from Table 3, namely the closed bigrams for the
Criss dataset, the open bigrams for the Cortese et al. and
Rae et al. datasets, and the overlap model for the Kiliç et al.
dataset. The models were applied to data in the same manner
as the models earlier in the article. For the Kiliç et al. dataset,
we allowed parameters corresponding to semantic encoding
to vary with the depth of processing conditions, namely the
wo and p∗ parameters.

Orthographic similarity is as consequential
as semantic similarity

To understand the relative influences of orthographic and
semantic similarity, for each probe word, we separately cal-
culated the global similarity of the semantic and orthographic
representations in isolation. For each type of global similar-
ity, we then divided the trials into a number of equal area
bins, specifically three bins for each dataset with the excep-
tion of the Cortese et al. dataset, where we used four bins
due to the comparably larger size of the dataset. For each
global similarity bin, we then calculated the group-averaged
hit rate, false alarm rate, and RT quantiles for correct and
error responses – these results can be seen in Fig. 11.

What is apparent from the figure is that for the three
datasets that lack a depth of processing manipulation (the
Criss, Rae et al., andCortese et al. datasets), there is a striking
resemblance in the false alarm rates (FAR) for both ortho-
graphic and semantic similarity – there are sizeable increases
in the FAR that are nearly equivalent in magnitude. They are
also accompanied by slowing of the response times (RTs)
that is most pronounced for the slowest RTs (the .9 quan-
tile). The key difference between the effects of orthographic
and semantic similarity appear to rest in the hit rates (HR) –
HRs decrease with increasing semantic similarity for these
datasets, while they appear to be relatively constant with
increasing orthographic similarity. However, it is also impor-
tant to note that semantic similarity is confounded with word
frequency (Osth et al., 2020), and thus it is very likely that the
higher semantic similarity bins contain a higher proportion
of words of higher natural language frequency, which often
exhibit lower hit rates (Glanzer & Adams, 1985).

Results for the Kiliç et al. dataset depend on the depth
of processing condition. The shallow processing condition
shows a larger effect of orthographic than semantic similar-
ity, in which the increase in the HR and FAR is larger for
increasing orthographic similarity than semantic similarity.
The deep processing condition shows the opposite for the
FAR in that the increase in the FAR is larger for semanti-
cally similar items than for orthographically similar items,
although the trend is weaker overall. This may be due to the
fact that FAR are reduced in the deep processing condition
relative to the shallow processing condition. In addition, the
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Fig. 11 Group-averaged hit rates (HR: first column), false alarm rates
(FAR: second column), correct RTs (third column), and error RTs
(fourth column) for each of the orthographic and semantic global sim-
ilarity bins (ranked from lowest to highest) from the data (black) and

the winning models (red) of each dataset. RTs are summarized using
the .1, .5, and .9 quantile. Error bars depict the 95% highest density
interval (HDI)

hit rate did not noticeably change with increases in either
similarity type.

These results are also reflected in the estimates of the
weight on orthographic similarities wo. Figure 12 shows
estimates of the groupmeanw

μ
o for each dataset. High uncer-

tainty was observed in both the Criss dataset and the shallow
processing condition of the Kiliç et al. dataset which was

due to a high degree of variability across participants – this
was confirmed in analyses of individual participant param-
eters and group-level standard deviation parameters in the
Supplementary Materials. What is noteworthy otherwise is
that only one case indicates a dominance of semantic simi-
larity, namely the deep processing condition of the Kiliç et
al. dataset. Otherwise, each dataset indicates that the weight

123



Psychonomic Bulletin & Review

Fig. 12 Group mean μ estimates of the weight on orthographic simi-
larity wo for each dataset. Error bars indicate the 95% highest density
interval (HDI)

of orthographic similarity is comparable to that of semantic
similarity, and in at least one case (the data of Rae et al.)
shows a dominance of orthographic similarity.

The fact that the different depth of processing conditions
changes the emphasis on orthographic versus semantic sim-
ilarity is consistent with previous findings that participants’
false recognition of different lure types depends on the nature
of the encoding task. Specifically, it has generally been found
that false recognition of semantic lures is higher when an
encoding task emphasizes semantic processing while false
recognition of perceptually similar lures is prevalent when
the encoding task emphasizes the processing of the percep-
tual characteristics of the words (Chan et al., 2005; Elias &
Perfetti, 1973; Jacoby, 1973).

An important caveat on the estimates of w
μ
o in Fig. 12 is

that theywill critically depend on the ability of each represen-
tation to capture the data. A deficiency in one representation
will naturally produce a stronger weight on the other repre-
sentation, as the deficient representation will not be able to
capturemuch variation across items.We have tried to remedy
this problem by only using the best of the tested orthographic
representations present in Fig. 3. While we did not perform
model selection, word2vec is considered the state-of-the-art
semantic representation and has outperformed many other
models such as latent semantic analysis (Mandera et al.,
2017).

Capturing performance for individual items

One of the unique advantages of supplying representations
for individual items in a global similarity framework is the
ability to make predictions for individual items in an exper-
iment. As mentioned previously, a unique strength of the
Cortese et al. (2015) dataset is that performance for individ-
ual items can be assessed, mainly because there was a large
number of participants and each participant was tested on
the same set of items. The underlying logic is that items that
are more similar to other items in the memory set are more
likely to receive higher hit and false alarm rates than items
that are dissimilar to other items. While this dataset random-

ized items across study lists such that each word is likely to
be accompanied by different words on each study list, words
that are more similar to other items in the larger set of words
are more likely to be accompanied by similar items on each
study list.

For this dataset, we used the combined orthographic and
semantic global similarity model and generated the posterior
predictive hit rate, false alarm rate, andmedian RT for targets
and lures, and contrasted these with the data. These results
can be seen in Fig. 13, where the black lines indicate the 95%
highest density interval (HDI) of the model predictions, and
the r2 estimates were calculated from the mean of the poste-
rior predictive distribution using Spearman’s correlation’. At
first glance, the r2 estimates are not encouraging. However,
there are two important considerations. First, the uncertainty
in the predictions is visibly very large, which imposes limita-
tions on the maximum r2 value that can be obtained. This is
in part due to the fact that with close to 120 participants, each
item received roughly 60 target and lure trials each, which
is not extensive. In addition, the model predictions for each
item vary across participants depending on the accompany-
ing words on each presented study list.

Second, we would like to note that the r2 estimate for the
FAR (r2 = .209) is higher than the r2 estimate from the orig-
inal authors’ multiple regression with six predictors on the
same dataset. Specifically, Cortese et al. (2015) regressed age
of acquisition, word frequency, imageability, word length,
along with both orthographic and phonological density mea-
sures and obtained an r2 of .147. Our model, in contrast,
exceeded the performance of their model in predicting FAR
with a single global similarity measure that is comprised of
orthographic and semantic representations. This is impres-
sive when one considers that our model is constrained not
just by the variability across the items, but also the variabil-
ity across participants and the simultaneous constraint of the
RTs.

Nonetheless, the Cortese et al. (2015) regression model
considerably outperforms our model in its predictions for hit
rates, where it received a performance of r2 = .350. Not only
does our model perform considerably worse than this, but
Fig. 13 reveals that the predictions for hit rates are consider-
ably narrower in range than the data.

Why does this occur? Table 5 shows the tenwordswith the
highest hit and false alarm rates from both the data and the
model. Inspection of the words with the highest HR words in
the data reveal that many of these words may be of particular
interest to undergraduate students, which partly explains the
deflections of the model from the data.

However, a more critical theoretical limitation of the
present work is that our modeling omitted self-similarity in
predictions for target items, such that the global similarity
measure is purely comprised of inter-item similarities. This
implies that target items that the only factor that makes a
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Fig. 13 Scatterplots depicting
the hit and false alarm rates
along with the mean RT for
targets and lures for the 3000
words from the Cortese et al.
dataset. The red dots indicate the
mean of the posterior predictive
distribution while the black lines
indicate the 95% highest density
interval (HDI) of the posterior
predictive distribution. See the
text for details

target item receive a high hit rate is its dissimilarity to other
items in the memory set. Consequently, the model’s predic-
tions for a given item’s hit rate is perfectly correlated with its
predicted false alarm rate. The data instead show a very weak
negative correlation (r = −.046, p = .011), indicating that
some variable other than inter-item similarity is contributing
to variation in the hit rates.

While a natural recourse would be to include the self-
similarity measure, it is important to note that for both

Table 5 The tenwordswith the highest hit rate (HR) and false alarm rate
(FAR) from Cortese et al. (2015) dataset along with the predictions of
the global similaritymodel that contains both orthographic and semantic
representations. See the text for details

HR FAR
Rank Data Model Data Model

1 brothel abbot converse complete

2 orgy kazoo convey create

3 whoopee vigil banquet protect

4 buckle yahoo convert restrain

5 voodoo jaguar decent certain

6 condom ruckus success nature

7 virgin gallows content sterile

8 humbug voodoo descent retain

9 paisley syrup rapid relate

10 limbo gangrene defense desire

the orthographic representation (open bigrams) and for
the semantic similarity measure (vector cosine) the self-
similarity always has the same value – one. Because this
measure does not vary across trials, it will not meaningfully
assist in capturing the variation in the hit rates. In the General
discussion, we note other sources of variability that could be
included to improve the fit of the model.

General discussion

The present work aimed to explore the global similarity pre-
dictions with orthographic representations. Specifically, we
explored a range of different representations from the psy-
cholinguistics literature, including models where words are
represented in terms of the absolute positions of the letters
– slot codes and overlap models – along with models where
the words are represented in terms of the relative positions
of the letters – bigram and open bigram models.

Each representationwas explored as a separate global sim-
ilarity model that determines drift rates for individual trials
in a linear ballistic accumulator (LBA: Brown & Heathcote,
2008) framework. Themodelswerefit to four different recog-
nition memory datasets where the study lists were comprised
of unrelated words. While a single representation was not
favored consistently across all of the datasets, three of the
datasets preferred relative position models while one of the
datasets (Kiliç et al., 2017) preferred a model where letters
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are represented in terms of the absolute position. A key dif-
ference with this dataset is that words were encoded with
two different encoding tasks – a shallow processing task
where participants had to identify whether an "e" was present
in the word or a deep processing task where participants
had to rate the pleasantness of a word. It is possible that
these encoding tasks may have changed the way participants
represented letter order. In fact, the results demonstrated
that word representations in the shallow processing task
represented the letter "e" more strongly and several of
the parameters governing the orthographic representations
changed across the two conditions. Nonetheless, the dataset
of Cortese et al. (2015) – which was the largest dataset – was
very diagnostic of the different models and only the rela-
tive position models were able to provide a good account
of these data (see the Supplementary Materials for more
information).

For each dataset, the preferred global similarity model
demonstrated that the false alarm rate (FAR) increased to a
fairly sizeable extent with increases in the global similarity
of the orthographic representations. When semantic repre-
sentations were included in the model, increases in global
orthographic similarity produced comparable effects on the
FAR as increases in global semantic similarity. Parameter
estimates of the weight of each representation produced a
similar interpretation – orthographic representations often
yielded weights that were comparable to those of semantic
representations and in some cases even exceeded them.These
results are contrary to the claims that long-term memory is
comprised mainly of a semantic code (Baddeley, 1966).

Another result of the modeling is that parameter estimates
revealed a clear importance of the initial letter in determin-
ing similarity between letter strings. This was additionally
reflected in the data, where it was found that high similar-
ity lures that did not contain the start letter exhibited lower
false alarm rates compared to lures that did not contain an
interior or terminal letter, which can be considered a within-
word primacy effect. To our knowledge, there have been no
studies investigating this question in the recognition memory
literature, despite a fair number of studies investigating the
relative importance of exterior and interior letters in the read-
ing literature (Grainger & Jacobs, 1993; Jordan et al., 2003;
Scaltritti et al., 2018;Whitney, 2001). One crucial difference
in our results is that we did not find any special importance
of the terminal letter, with some datasets showing weaker
importance of the terminal letter compared to interior letters.
While most studies in the reading literature have similarly
found a special importance of the terminal letter, some stud-
ies have only found advantages for the initial letter (Whitney,
2001).

Adjudicating between the orthographic
representations

Asmentioned above, the model selection in the present work
did not clearly adjudicate between each of the orthographic
representations. This begs the question – which additional
constraints can be imposed that can better select between
them? One possibility would be to test lure words that are
transpositions of studied words. Transposition strings can be
constructed by swapping adjacent letter pairs, such as the dif-
ference between "trial" and "trail." In the psycholinguistics
literature, a major constraint on orthographic representations
is that transposition strings are more effective primes than
non-transposed strings that are either one or two letters dif-
ferent from the target word (Andrews, 1996; Perea&Lupker,
2003a, b), implying that pairs of transposition strings are
more similar to each other than the other pair types.

The transposition effect imposed strong constraints on
several of the models we considered here. For instance, the
slot codemodel cannot produce transposition effects because
the swap results in the two letters being out of alignment
with each other ("trail" and "trial" have 3/5 matches with
each other), which predicts that transposition strings should
be just as effective as any other prime that is two letters
apart from the target word. A similar problem arises with
closed bigrams, wherein the transposition results in the loss
of two bigrammatches. Transposition advantages can instead
be captured by both the overlap and open bigrammodels. The
overlap model captures the effect because the uncertainty in
the representation of letter position means that even if let-
ters are out of alignment, they can still partially match the
target word. The open bigram model can capture the effect
because the long-range bigrams are still preserved across the
transposition prime and the target string.

A promising approach to testing between the represen-
tations would be to evaluate whether transposition lures
produce higher false alarm rates than lures that are one or
two letters different from a target word. We were not able
to test for this possibility in the present work because none
of the datasets contained pairs of words that were transpo-
sitions of each other. In work conducted after the work in
the present manuscript, we ran experiments testing for this
possibility in recognition memory by explicitly controlling
lure similarity and indeed confirmed that transposition lures
exhibit higher false alarm rates than lures that are one or two
letters different from a target word (Zhang & Osth, submit-
ted). While both the overlap and open bigram models were
capable of addressing the effect, only the open bigrammodel
was able to capture the size of the effect. Subsequent analy-
ses revealed that the estimated uncertainty parameters in the
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overlap model were too small to predict large transposition
effects.

Implications for episodic memorymodels

An increasingly popular trend in models of episodic memory
is to incorporate realistic semantic representations to capture
similarity effects or false memory intrusions (Johns et al.,
2012;Kimball et al., 2007;Morton&Polyn, 2016;Osth et al.,
2020;Polyn et al., 2009;Reid&Jamieson, 2023).Thepresent
work demonstrates that such models could similarly benefit
from the inclusion of orthographic representations. As men-
tioned previously,when orthographic or phonemic categories
are constructed in the Deese-Roediger-McDermott (DRM)
paradigm (Roediger & McDermott, 1995), very high false
alarm rates are found to the critical lure that are found that are
often comparable in magnitude to the effects seen in seman-
tic DRM studies (Chang & Brainerd, 2021; Coane et al.,
2021; Sommers & Lewis, 1999; Watson et al., 2003). While
several of these models have been able to address seman-
tic DRM effects, orthographic representations may enable
such models to simultaneously address perceptually-driven
DRM effects. The only model we are aware of that includes
orthographic representations is the REM model presented
by Steyvers (2000), which uses a slot code representation.
However, the present work demonstrated that the slot code
was outperformed by other representations in virtually every
dataset, suggesting that other models may benefit from the
inclusion of bigram or open bigram representations.

Several of these models, however, implement word repre-
sentations using vectors and represent the similarity between
vectors using dot products or cosines between the vectors,
whereas the present work has instead used a feature match-
ing scheme. How then could the orthographic and semantic
representations be integrated together? Previous work has
demonstrated that it is possible to construct vector represen-
tations of each of the orthographic representations in this
manuscript (Cox et al., 2011; Hannagan & Grainger, 2012).
For instance, Cox et al. (2011) were able to construct ortho-
graphic representations using holographic representations,
similar to those from BEAGLE (Jones & Mewhort, 2007)
and the TODAMmodel (Murdock, 1982). Specifically, each
letter was represented as a vector with a finite number of
elements where each element was sampled from a normal
distribution. Bigram representations can be constructed by
binding letter representations together using circular convo-
lution, which is how the TODAMmodel represents bindings
between words or items on a study list (Lewandowsky &
Murdock, 1989; Murdock, 1982). Slot codes were con-
structed by binding letters to vectors corresponding to the
position of the letter in the word. While Cox et al. (2011)
did not implement a holographic vector implementation of
the overlap model, an analog of the model could be con-

structed by representing each word in every position and
weighting each of the letters using a Gaussian function. In a
memory model, such orthographic vectors can be integrated
with semantic vectors either by concatenating the two vec-
tors together into a single large vector, or alternatively vector
dimensionality could be preserved by binding the two vectors
together using circular convolution.

Improving the ability to capture individual items

In addition to capturing more general orthographic and
similarity effects above, another advantage of incorporat-
ing stimulus-specific representations into global similarity
models is that it enables the models to make predictions
about individual items. Existing approaches to understanding
word memorability have focused on exploring how varia-
tions in the properties of the words themselves, such as word
frequency, animacy, neighborhood size, and aspects of the
semantic representations relate to variations in word mem-
orability (Aka et al., 2023; Cortese et al., 2010, 2015; Cox
et al., 2018; Madan, 2021). While these properties have been
able to account for significant proportions of variation in
the memorability of the items, there is a sense in which
approaches like this "kick the can further down the road"
because it invites further questions – why are these proper-
ties able to explain memorability across stimuli? Without a
formal theory, there may not be clear answers to these ques-
tions.

An advantage of the global similarity framework is that
it provides clear answers to these questions. An item will be
memorable to the extent to which it matches its own rep-
resentation (if it is a target item) and the other items in the
memory set. Global similarity models have enjoyed a great
deal of success in explaining variations in itemmemorability
with simple, low-dimensional nonword stimuli (e.g., Busey
&Tunnicliff, 1999; Nosofsky, 1991b; Nosofsky et al., 2011).
When we applied our model to the Cortese et al. (2015) data,
however, while we achieved a modest ability to capture vari-
ations in the false alarm rate, the model’s account of the
item variation in hit rates was lacking. A possible limitation
there is that our global similarity measures considered only
the inter-item similarity. While we could incorporate self-
similarity, the majority of our representations and similarity
metrics would produce self-similarity values of one that do
not vary across items.

Nosofsky and Meagher (2022) noted a similar problem
in their modeling of item variation in recognition memory
for naturalistic images of rocks, in which their global simi-
larity model, namely the generalized context model (GCM),
achieved a reasonable r2 for the false alarm rates but was
almost completely unable to capture any variation in the hit
rates. Their model similarly assumed that all self-similarities
have amatch value of one. However, theywere able to greatly
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improve the model’s ability to capture the hit rates when
the self-similarity was augmented with distinctive features
from a feature rating study. Specifically, they incorporated
a hybrid similarity model, where similarity was driven by
continuous measures – an exponential transformation of dis-
tance between items in a multidimensional space – along
with discrete features derived from the feature rating study
(Knapp et al., 2006; Nosfosky & Zaki, 2003). The combina-
tion of these features not only allowed the self-similarities to
exceed one, but they varied across items as a function of the
number of features rated for each stimulus.

While a similar approach could in principle be applied
here, there is a question as to what features would be consid-
ered distinctive features in individual words. One potentially
fruitful avenuewould be to consider the rarity of orthographic
features in natural language. In the present work, all ortho-
graphic features – whether they were letters in position or
bigram matches – were equally weighted in the similarity
calculation.

However, in recognition memory, there is evidence that
rare features may be more consequential than common fea-
tures. Specifically, Malmberg et al. (2002) manipulated word
frequency and letter frequency in a 2x2 design and found that
words with rare letters exhibited slightly higher hit rates and
considerably lower false alarm rates than words with com-
mon letters. Thus, it is possible that words with higher hit
rates contain features that are weighted more heavily due
to their rarity in language. Nonetheless, future work on let-
ter frequency effects is required to ascertain whether they
are required to be incorporated into orthographic representa-
tions. Another possible interpretation of the Malmberg et al.
(2002) results is that words with rare letters exhibited fewer
false alarm rates simply because such words were less likely
to overlap with other words on the study list, and may not
reflect different weights of the letters per se.

Another finding that suggests that feature weight should
vary across items comes from Mewhort and Johns (2005).
In their experiments, rejections advantages were found for
words containing letters exterior letters that were not present
on the study list even if the other exterior letter matched
multiple items on the study list. Specifically, they compared
lures containing one exterior letter that was not present on the
study list (the extralist feature) along with another exterior
letter that matched two items (2:0 lures) to words where both
exterior letters matched one study list item (1:1 lures). 2:0
lures exhibited lower FAR and faster RTs, suggesting that
the extralist feature wasmore consequential than the strongly
matching feature.

The extralist feature effect is similar to the feature fre-
quency effect in that it suggests that features should be
differentially weighted. However, where the two effects are
critically different is that the feature frequency effect sug-
gests a sensitivity to the long-running frequencies in language

whereas the extralist feature effect suggests a sensitivity to
the letters that were present on a specific and recent episode
(the study list). Recently, Osth et al. (2023) accounted for
the extralist feature effect using a model where attention to
the features or stimulus values is inversely proportional to
how well represented they were on the study list. Although
they only accounted for visual non-word stimuli, such an
account could potentially apply to orthographic representa-
tions as well, which may improve a global similarity model’s
ability to capture variation in false alarm rates across items.
However, to our knowledge, there has yet to be a unifying
explanation of the extralist feature effect and the feature fre-
quency effect.

A further limitation is that we have assumed in the present
work that only the study list items contribute to the global
similarity computation. In other words, only item-noise con-
tributes to performance. In practice, items from previous lists
or pre-experimental contexts can additionally contribute to
performance, such as prior occurrences of the cue – referred
to as context-noise (Anderson & Bower, 1972; Dennis &
Humphreys, 2001; Reder et al., 2000), – or prior occurrences
of items that mismatch the cue – referred to as background
noise (Murdock & Kahana, 1993). Each source of interfer-
ence can in principle be integrated into a single model (e.g.,
Fox et al., 2020; Fox & Osth, in press; Osth & Dennis, 2015;
Osth et al., 2018; Yim, Osth, Sloutsky, & Dennis, 2022).
However, a challenge when incorporating realistic stimulus
representations is assessing the participant’s history of each
word prior to the experiment. One promising avenue is to
quantify participant’s experiences with words using e-mails
or their digital language histories (Yim et al., 2020), which
would enable item-by-item estimates of pre-experimental
interference. This could also serve to partly account for the
word frequency effect in a manner that is independent of
semantic similarity.

Open practices statement

The data andmodel code for all of thework in thismanuscript
is available in our OSF repository (https://osf.io/hyt67/.).
None of the modeling was preregistered.

Appendix

Additional details of the fitting procedure

LBA parameterizations for each dataset

Criss (2010) Experiment 2 Since strength was manipu-
lated across lists, the B parameter was allowed to vary
across the strength conditions, resulting in four B param-
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eters (Bold,strong, Bold,weak, Bnew,strong Bnew,weak.) The drift
rate V was allowed to vary across word frequency (low fre-
quency, or LF and high frequency, or HF words), targets and
lures, and list strength conditions, resulting in a total of 8
V0 parameters. Only a single value of A, t0, ηtarget, and V0
were estimated. In total, there were 16 base LBA parameters
common to all models.

Rae et al. (2014) Following Rae et al. (2014) and other sub-
sequent investigations (e.g., Osth et al. 2017), we allowed
several parameters to vary across the speed–accuracy empha-
sis conditions, including A, t0, and V . Drift rate was
additionally allowed to vary across word frequency (LF and
HF words), resulting in a total of 8 V parameters. Only a
single value of ηtarget and V0 were estimated. In total, there
were 18 base LBA parameters common to all models.

Cortese et al. (2015) Thresholds varied across old and new
decisions (Bold and Bnew) and drift rate V varied across tar-
gets and lures (Vtarget and Vlure). Only a single value of t0, A,
V0, and ηtarget were estimated. In total, there were eight base
LBA parameters common to all models.

Kilic et al. (2017) Since depth of processing wasmanipulated
across lists, the B parameter was allowed to vary across the
depth of processing conditions, resulting in four B parame-
ters (Bold,strong, Bold,weak, Bnew,strong Bnew,weak). The drift rate
V was allowed to vary across both the depth of processing
conditions and targets and lures, resulting in four parameters
(Vold,strong, Vold,weak, Vnew,strong, and Vnew,weak). Only a single
value of A, V0, and ηtarget were estimated. In total, there were
12 base LBA parameters common to all models.

Data exclusions

For each dataset,we removed trialswith response times (RTs)
thatwere either very fast or slow, as these are likely to indicate
guessing or random responding. For both the Rae et al. and
the Criss datasets, we removed trials with RTs shorter than .2
s and slower than 2.5 s, resulting in the exclusion of less than
1% of the data. For the Cortese et al. dataset, we removed
trials with RTs shorter than .2 s and slower than 4 s, which
resulted in the exclusion of 2.5% of the data. In addition, one
participant (#124) was excluded from the data as the datafile
indicated that some of the study list lengths did not match
the prescribed list lengths.

For the Kiliç et al. dataset, three participants were
excluded for poor performance or a high proportion of
fast RTs. One participant (#1) was excluded for exhibiting
chance-level performance (d ′ = −.001). Two participants
(#27 and #33)were excluded for exhibiting for a high propor-
tion of fast guessing – 63.3% and 30% of RTswere below .3 s
and both participants exhibited close to chance-level perfor-

mance (d ′~.1). After these exclusions, trials with RTs faster
than .3 s or slower than 3 s were excluded - this resulted in
the exclusion of 3% of the data.

Prior distributions onmodel parameters

Many of the individual parameters are sampled from group-
level distributions with a defined mean μ and standard
deviation σ . Some of the parameters which have a lower
bound of zero were sampled on a log scale to improve sam-
pling.

t0 ∼ Normal(0,inf)(t
μ
0 , tσ0 )

A ∼ Normal(0,inf)(A
μ, Aσ )

B ∼ Normal(0,inf)(B
μ, Bσ )

V0 ∼ Normal(0,inf)(V
μ
0 , V σ

0 )

Vtarget ∼ Normal(0,inf)(V
μ
target, V

σ
target)

Vlure ∼ Normal(0,inf)(V
μ
lure, V

σ
lure)

ηtarget ∼ Normal(0,inf)(η
μ
target, η

σ
lure)

γ ∼ Normal(γ μ, γ σ )

log(α) ∼ Normal(log(α)μ, log(α))σ )

log(ω) ∼ Normal(log(ω)μ, log(ω))σ )

log(p) ∼ Normal(log(p)μ, log(p)σ )

log(r) ∼ Normal(log(r)μ, log(r)σ )

log(d) ∼ Normal(log(d)μ, log(d)σ )

w ∼ Normal(0,1)(w
μ,wσ )

We used only weakly informative prior distributions on
the group-level parameters to impose minimal constraint on
their resulting values:

tμ0 ∼ Normal(0,inf)(.5, .5)

Aμ, Bμ, Vtarget ∼ Normal(0,inf)(2, 2)

Vμ
lure ∼ Normal(0,inf)(−2, 2)

Vμ
0 ∼ Normal(0,inf)(3.5, 3.5)

η
μ
target ∼ Normal(0,inf)(1, 1)

γ μ ∼ Normal(0, 100)

wμ ∼ Normal(0,1)(.5, .5)

log(α)μ, log(ω)μ, log(p)μ, log(d)μ, log(r)μ

∼ Normal(0, 5)

tσ0 , Aσ , Bσ , V σ , V σ
0 , ησ

target ∼ Gamma(1, 1)

log(α)σ , log(ω)σ , log(p)σ , log(r)σ , log(d)σ , log(ε)σ , wσ

∼ Gamma(1, 1)

γ σ ∼ Gamma(.01, .01)
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Details of MCMC parameter estimation

All sampling was conducted using differential evolution
Markov chainMonte Carlo (DE-MCMC) techniques (Turner
et al., 2013) using Python code written by the first author.
For each model, the number of chains was set equal to three
times the number of parameters. Each model used a migra-
tion phase that occurred every 20 iterations but only between
the first 3500 and 5500 iterations. After 20,000 burn-in iter-
ations, one in every ten samples was collected until 1000
samples per chain were collected (10,000 total post burn-in
iterations).

A model was considered converged if its Gelman–Rubin
(G-R) diagnostic was below 1.2 for all participant and group-
level parameters. This criterion was satisfied for all models,
with the G-R statistic close to 1.0 in many cases. Some
models did not converge on some datasets after the win-
dow specified above – these models were re-run using the
parameter values from their final iterations – 5000 burn-in
iterations were discarded, and then the models were run for
an additional 10,000 iterations using the thinning described
above.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.3758/s13423-023-02402-
2.
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