
Vol:.(1234567890)

Psychonomic Bulletin & Review (2024) 31:176–186
https://doi.org/10.3758/s13423-023-02322-1

1 3

BRIEF REPORT

Sequence effects and speech processing: cognitive load 
for speaker‑switching within and across accents

Drew J. McLaughlin1,2  · Jackson S. Colvett1 · Julie M. Bugg1 · Kristin J. Van Engen1

Accepted: 8 June 2023 / Published online: 13 July 2023 
© The Author(s) 2023

Abstract
Prior work in speech processing indicates that listening tasks with multiple speakers (as opposed to a single speaker) result in slower 
and less accurate processing. Notably, the trial-to-trial cognitive demands of switching between speakers or switching between 
accents have yet to be examined. We used pupillometry, a physiological index of cognitive load, to examine the demands of process-
ing first (L1) and second (L2) language-accented speech when listening to sentences produced by the same speaker consecutively 
(no switch), a novel speaker of the same accent (within-accent switch), and a novel speaker with a different accent (across-accent 
switch). Inspired by research on sequential adjustments in cognitive control, we aimed to identify the cognitive demands of accom-
modating a novel speaker and accent by examining the trial-to-trial changes in pupil dilation during speech processing. Our results 
indicate that switching between speakers was more cognitively demanding than listening to the same speaker consecutively. Addi-
tionally, switching to a novel speaker with a different accent was more cognitively demanding than switching between speakers 
of the same accent. However, there was an asymmetry for across-accent switches, such that switching from an L1 to an L2 accent 
was more demanding than vice versa. Findings from the present study align with work examining multi-talker processing costs, 
and provide novel evidence that listeners dynamically adjust cognitive processing to accommodate speaker and accent variability. 
We discuss these novel findings in the context of an active control model and auditory streaming framework of speech processing.
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Introduction

Listeners often understand spoken language seemingly effort-
lessly. However, the process of mapping acoustic input onto 
their linguistic representations can be complicated by indi-
vidual speaker variability, such that detrimental effects are 
observed in task blocks with multiple speakers (changing 
from trial-to-trial) as compared to blocks with a single speaker 
(Choi et al., 2018; Choi & Perrachione, 2019; Heald & Nus-
baum, 2014; Martin et al., 1989; Mullennix et al., 1989). 
These multi-talker processing costs are often attributed to the 
active control required to achieve phonetic constancy across 
different talkers (Nusbaum & Magnuson, 1997; Magnuson & 

Nusbaum, 2007), or disruption of auditory streaming (Kapa-
dia & Perrachione, 2020; Mehraei et al., 2018). In the present 
study, we examine the costs associated with multi-talker as 
well as multi-accent processing using pupillometry, and use 
these costs to inform these two accounts of speech processing.

One account, the active control model, proposes that 
effects of speaker changes reflect the attentional load 
required to achieve phonetic constancy (Heald et al., 2016). 
Mechanistically, the load associated with speaker changes 
reflects engagement of a talker accommodation mechanism 
that maps each speaker’s idiosyncratic speech to the lis-
tener’s phonological space (see schematic representation 
by Magnuson, 2018). Similarly, exemplar (Johnson, 1997; 
Pierrehumbert, 2002) and nonanalytic episodes theories 
(Goldinger, 1998; Nygaard & Pisoni, 1998)1 propose that 
episodes in memory are activated by the incoming acoustic  * Drew J. McLaughlin 
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1 The key difference between exemplar theory and non-analytic epi-
sodes theory is that the former proposes that features are abstracted 
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signal during speech processing, improving efficiency. The 
better performance observed when there is no change in 
speaker is accounted for by weighting recent episodes more 
heavily.

A second account is an auditory streaming framework, in 
which speaker changes disrupt selective auditory attention 
(Shinn-Cunningham, 2008), incurring processing costs as a 
listener refocuses their attention from one auditory object 
(a speaker) to another (Kapadia & Perrachione, 2020; Meh-
rai et al., 2018). Further work suggests that an active con-
trol mechanism may support multi-talker speech process-
ing in addition to selective auditory attention (Choi et al., 
2022). Listener performance in multi-talker blocks steadily 
improved when words were preceded by up to 600 ms by the 
article “a” spoken by the speaker of the upcoming stimulus, 
consistent with a stimulus-driven reorientation of auditory 
attention. However, for intervals greater than 600 ms (exam-
ined parametrically up to 1,500 ms), no additional benefits 
were observed, and a baseline processing cost remained 
for multi-talker blocks at all intervals. These findings sug-
gest that two mechanisms are involved in accommodating 
speaker changes, and that the mechanisms proposed in the 
auditory streaming framework and the active control model 
may operate in parallel.

In the present study, we investigated whether the cogni-
tive demands for switching between speakers of the same 
accent differed from those for switching between speakers 
of different accents. A key question is whether a speaker’s 
familiarity (the familiarity of their accent, specifically) ben-
efits a listener in a multi-talker listening setting. Multiple 
theories support the hypothesis that more familiar speech 
ought to be afforded a benefit. Based on an exemplar model, 
for example, first (L1) language- accented speech ought to 
be more efficient for an L1 listener to accommodate than 
unfamiliar second (L2) language-accented speech, because 
it will be better represented in memory.

The potential benefit of familiarity on multi-talker pro-
cessing costs has been investigated previously by Magnuson 
et al. (2021). Based on an active control model (Magnuson 
& Nusbaum, 2007), Magnuson et al. suggested that multi-
talker processing costs may be reduced for familiar speak-
ers because characteristics of their speech would be stored 
in memory. To test this hypothesis, Magnuson et al. exam-
ined the processing costs associated with speaker changes 
for familiar speakers (family members) versus unfamiliar 
speakers. The results of the study, however, did not reveal a 
familiarity benefit for multi-talker processing costs (although 
benefits were observed in talker identification and speech-in-
noise transcription tasks).

We test an extension of Magnuson et al.’s (2021) famili-
arity benefit hypothesis by examining multi-talker process-
ing costs for familiar and unfamiliar accents. We predicted 
that systematic and idiosyncratic deviations in how speech 

is produced by L2 speakers (as compared to L1 speakers) 
may exacerbate perceptual demands in a multi-talker set-
ting. In other words, accommodating the “phonetic distance” 
between L1 and L2 speakers’ productions may result in dif-
ferent processing costs than accommodating the “phonetic 
distance” between two L1 speakers’ productions, making 
it easier to observe a familiarity benefit. Notably, while 
processing costs for alternations between speakers can 
be accounted for by an active control or exemplar model, 
a familiarity benefit is not accounted for by the auditory 
streaming framework. Further, the auditory streaming frame-
work would not be able to account for a difference in multi-
talker processing costs for switching between speakers of 
different accents versus speakers of the same accent.

Pupillometry

Our examination of multi-talker processing costs takes a 
novel approach – using pupillometry to assess trial-to-trial 
changes in cognitive processing load. Pupillometry, the meas-
ure of pupil diameter over time, has been used across mul-
tiple domains as a physiological index of cognitive process-
ing load (Beatty, 1982). By tracking the “task-evoked” pupil 
response, one can compare the cognitive demands imposed 
by different tasks or experimental manipulations. In speech 
processing, cognitive pupillometry has been applied widely 
(for a review, see Van Engen & McLaughlin, 2018), dem-
onstrating a systematic relationship between the magnitude 
of the pupil response and intelligibility of noise-degraded 
(Zekveld et  al., 2010; Zekveld & Kramer, 2014) and 
L2-accented speech (Porretta & Tucker, 2019). For highly 
intelligible materials (e.g., sentences that are fully understood 
by the listener), pupillometry has been used to reveal that 
increasing signal degradation results in larger pupil response 
(Winn et al., 2015), as does an L2, as compared to an L1, 
accent (Brown et al., 2020; McLaughlin & Van Engen, 2020).

Multi-talker processing costs have also been examined 
with pupillometry (Lim et al., 2021). Using concurrent EEG 
and pupillometry, Lim and colleagues examined the costs 
associated with performing a delayed-recall digit span task 
for single versus mixed talker blocks. Interstimulus inter-
val (ISI) was manipulated such that digits were presented 
either 0 ms or 500 ms apart. The pupillometry data indicated 
a larger task-evoked response for the mixed-talker blocks 
compared to the single-talker blocks, but only for the short 
ISI. The EEG data indicated a P3a neural response associ-
ated with multi-talker blocks, a component that has been 
linked to attentional reorientation (Polich, 2007). Thus, the 
study demonstrated pupillometry’s sensitivity to multi-talker 
processing costs for L1-accented speech and indicated that 
alternating talkers may result in attentional reorientation that 
is cognitively demanding.
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Sequence effects

While analyzing the effect of trial N-1 on trial N is a some-
what novel approach to assessing the demands of speech pro-
cessing, it is common in other cognitive science literatures. 
For example, the congruency sequence effect (CSE; Gratton 
et al., 1992) refers to a reduction in the performance differ-
ence between congruent (e.g., RED in red-colored ink) and 
incongruent (e.g., RED in blue-colored ink) trials in conflict 
tasks such as Stroop when the previous trial is incongru-
ent as opposed to congruent (for reviews, see Duthoo et al., 
2014a; Egner, 2007). The CSE is interpreted as an adaptive 
adjustment of control based on the previous trial type, such 
that upregulating control when trial N-1 is incongruent leads 
to less susceptibility to conflict on trial N (Botvinick et al., 
2001; cf. Schmidt & Weissman, 2014). Sequence effects have 
been examined for multi-talker processing costs in work by 
Kapadia and Perrachione (2020). Using a speeded word-iden-
tification task, the authors demonstrated that the efficiency of 
word identification was reduced on trials in which a speaker 
switch was made, even when the switch was predictable.

Research questions and hypotheses

We investigated speaker sequence effects using pupillometry 
to assess three key research questions. First, is there a meas-
urable cost for switching between speakers? Second, does 
the magnitude of a switching cost depend on the “phonetic 
distance” between two speakers’ productions? That is, is 
switching between speakers with the same accent easier than 
switching between speakers with different accents? Finally, 
are all across-accent switches equally difficult? That is, will 
switching from an L1 accent to an L2 accent be equivalent 
to switching from an L2 accent to an L1 accent, or will the 
L1 accent be afforded a familiarity benefit?

We report two experiments that serve as an initial test 
of how the speaker and accent on the previous trial affect 
cognitive load on the current trial. We predicted that:

1. Cognitive load would be greater when switching speak-
ers than when repeating the same speaker.

2. Switching across accents would be more cognitively 
demanding than switching within an accent.

3. There would be an interaction, reflecting a familiarity 
benefit for L1 accent.

Experiment 1

In Experiment 1, we re-analyzed data from McLaughlin 
and Van Engen (2020) to examine the effects of switching 
between an L1 and an L2 speaker of English. Full methodo-
logical details can be found in the original paper.

Method

Pre-registration, materials, experiment, data, and analysis 
code for McLaughlin and Van Engen (2020) are available 
from https:// osf. io/ 7dajv/. The current re-analysis of this 
data was not pre-registered. Data and analysis code are avail-
able from https:// osf. io/ ajmqz.

Dataset description

The McLaughlin and Van Engen (2020) study recruited a 
sample of 52 young adult subjects (39 female and 13 male; 
Mage = 19.46 years, SD = 1.07 years) from the Washington 
University Psychology Participants Pool. All subjects were 
screened for normal hearing and were L1 speakers of Ameri-
can English with little exposure to Mandarin Chinese.

Subjects’ pupil response was tracked during presentation of 
sentence-length materials. Two speakers were presented during 
the session: an L1 American-accented speaker of English, and 
an L2 Mandarin Chinese-accented speaker of English. Sixty tri-
als were presented (30 per accent) in a randomized order. After 
each trial, subjects repeated the sentence aloud. Every three 
trials, using a scale of one to nine, subjects pressed a key to 
indicate how effortful it was to understand the previous speaker.

Subjects’ responses were scored for recognition accuracy. 
Any trials in which keywords were missed were excluded 
from the dataset. Data were pre-processed following standard 
pupillometry procedures: blinks were identified, expanded, 
and interpolated across; data were smoothed with a 10-Hz 
moving average window; data were baselined using the 500 
ms of data immediately preceding stimulus onset (i.e., base-
line values were subtracted from all values in the respective 
trial); and data were time-binned, reducing the sampling fre-
quency from 500 Hz to 50 Hz. Trials with more than 50% 
missing data were excluded from analyses.

Preparation of dataset for novel analyses

A switch condition was added to the dataset by comparing 
the current trial’s (N) accent condition against the previous 
trial’s (N-1) accent condition. If the two trials matched, they 
were labeled “no switch,” and if they did not match, they were 
labeled “switch.” Trial 1 data were removed (as there was no 
preceding context), as were any trials following an excluded 
trial (i.e., due to blinks or intelligibility). A total of 80 trials 
(approximately 2.7%) were removed from the original dataset 
in this process.

Growth curve analysis

Growth curve analysis (GCA) was implemented with 
the lme4 R package (Bates et al., 2014) to examine the 
data. GCA is a mixed-effects modeling approach similar 

https://osf.io/7dajv/
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to polynomial regression (Mirman, 2016). Orthogonal-
ized polynomial predictors (linear, quadratic, cubic, etc.) 
are incorporated into the fixed and random effects of the 
model, allowing for a non-linear time-course analysis. 
This approach is frequently used for analyzing pupillome-
try data because the curve of a task-evoked pupil response 
can be fit with a polynomial basis (i.e., is often similar 
to a cubic shape). In GCA, fixed effects of conditions 
determine whether there are differences in overall mag-
nitude between levels (i.e., shifting the curve vertically), 
and interactions between these fixed effects and the fixed 
effects of the polynomial parameters determine whether 
the shape of the pupil response differs by condition (i.e., 
does the rate of increase in pupil size differ by condition?). 
The random effect structure of all models included random 
intercepts for subjects and items and random slopes of 
the linear, quadratic, and cubic polynomials nested within 
subjects and items.

Results

Table 1 summarizes all log-likelihood model comparisons 
from the growth curve analysis. The linear, quadratic, and 
cubic polynomials all significantly improved fit (all ps < .001).

The fixed effects of accent (reference level: L1 accent) 
and switch (reference level: no switch) were both dummy-
coded. Accent had a significant effect on the intercept (β 
= 41.97, p < .001) and linear time terms (β = 329.00, p < 
.001), indicating a condition-wise difference in the overall 
peak of the pupillometry functions as well as in the rate of 
pupil size increase, respectively. Switch had a significant 
effect on the intercept (β = 9.70, p < .001) and quadratic 
terms (β = -0.48, p < .001). The direction of the accent 
estimate indicated that the L2 accent condition elicited rela-
tively larger pupil response than the L1 accent condition, 

and the direction of the switch estimate indicated a larger 
pupil response for switches as compared to repeats. Nota-
bly, the interaction between accent and switch also signifi-
cantly improved model fit (p < .001), indicating that the 
effect of switching speakers was larger for the L2 accent 
condition (Fig. 1; dashed lines vs. solid lines). Switching 
from the L1 to the L2 speaker (line labeled “L2 Accent, 
Switch”) was costlier than repeating the same L2 speaker 
(“L2 Accent, No Switch”), and costlier than switching 
from an L2 to an L1 speaker (“L1 Accent, Switch”). Post 
hoc tests were conducted to examine the effect of switch 
separately in datasets containing only L1 versus L2 trials. 
Results confirmed that the effect of switch was significant 
in both the L2 dataset (β = 24.51, p < .001) and the L1 
dataset (β = 12.85, p < .001).

Discussion

The results of Experiment 1 suggest that switching between 
speakers of different accents is more cognitively demanding 
than listening to the same speaker consecutively. Addition-
ally, there is an asymmetry in the switch costs, where switch-
ing from an L1 to an L2 accent is particularly costly. While 
these results provide initial evidence of dynamic trial-to-trial 
processing adjustments to speakers and accents and a famili-
arity benefit, they are limited by the design of McLaughlin 
and Van Engen (2020).

Table 1  Log-likelihood model comparisons for growth curve analysis 
of Experiment 1

Effect χ2 Df p

Linear polynomial 12609 1 < .001 ***
Quadratic polynomial 4790.60 1 < .001 ***
Cubic polynomial 74.37 1 < .001 ***
Accent (Levels: L1 Accent, L2 Accent) 10.57 1 .001 **
Switch (Levels: No Switch, Switch) 303.43 1 < .001 ***
Accent × Switch 72.94 1 < .001 ***
Accent × Linear polynomial 16.54 1 < .001 ***
Accent × Quadratic polynomial 0.11 1 .74
Accent × Cubic polynomial 1.48 1 .22
Switch × Linear polynomial 0.27 1 .60
Switch × Quadratic polynomial 13.78 1 < .001 ***
Switch × Cubic polynomial 0 1 > .99

0

100

200

300

400

0 1000 2000 3000

Time (ms)

P
up

il 
di

am
et

er
 (

E
ye

Li
nk

 A
U

)

0

100

200

300

400

0 1000 2000 3000

Time (ms)

P
up

il 
di

am
et

er
 (

E
ye

Li
nk

 A
U

)

Fig. 1  The Experiment 1 interaction between accent and switch is 
shown with model fits (lines) and raw data means (points). Y-axis 
shows pupil diameter in EyeLink AU (Arbitrary Units), where zero 
is the baseline calculated to align data across trials. X-axis shows 
time in milliseconds, beginning at trial start (zero). The dashed ver-
tical line indicates the average offset time for all stimuli. The gray 
box indicates the window of the data used in analyses. Note that the 
accent conditions listed are from the current trial; thus, “L1 Accent, 
Switch” indicates a switch from L2 to L1 accent, and “L2 Accent, 
Switch” indicates a switch from L1 to L2 accent
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Experiment 2

In Experiment 2, we aimed to replicate and extend Experi-
ment 1 with three key changes. First, we eliminated the 
subjective effort ratings, which were not relevant to the cur-
rent aims.2 Second, we increased the number of speakers 
in Experiment 2 (two L1, two L2), allowing us to compare 
switch costs within and across accents. Third, rather than 
randomizing speakers, we designed our blocks with an equal 
number of trials with no switches, within-accent switches, 
and across-accent switches.

Our predictions are consistent with Experiment 1: 
Speaker switches should be more difficult than speaker rep-
etitions, across-accent switches should be more difficult than 
within-accent switches, and an asymmetry should emerge 
such that switching from an L1 to an L2 accent is more 
demanding than switching from an L2 to an L1 accent.

Method

Pre-registration, materials, experiment, data, and analysis 
code are all available from https:// osf. io/ ajmqz. The recruit-
ment plan and protocol for this experiment was approved by 
the Washington University in St. Louis Institutional Review 
Board.

Participants

Sixty-three young adult participants (46 female, 17 male; 
Mage = 19.68 years, SD = 1.10 years) were recruited from 
the Washington University Psychology Participants Pool. 
Recruitment for the study began before the COVID-19 
pandemic, with approximately half of the subjects (n = 28) 
participating in 2020 (before campus closure), and the other 
half (n = 35) participating in 2021. Details regarding how 
procedures were changed to meet COVID-19 safety stand-
ards are discussed below. We report an exploratory analysis 
comparing data collected before and after campus shut down 
in the Online Supplemental Materials (OSM).

Recruiting subjects in the spring of 2021 proved more 
difficult, so we made two alterations to our pre-registered 
plans for recruitment and exclusions. First, we began offer-
ing cash payment as an additional option in place of course 
credit. Most subjects (n = 51) were compensated with course 
credit, and a small subset opted for a US$10 cash payment 
(n = 12). Additionally, in order to retain more subjects, we 
decided to only remove subjects with more than 20% of trials 

lost due to blinking (not 20% of trials lost due to blinking 
and incorrect responses combined).

After replacing subjects who were excluded due to exper-
iment or equipment malfunction (11 subjects) and blinking-
related data loss (two subjects), we met our target sample 
size of 50 participants (38 female, 12 male; Mage = 19.62 
years, SD = 1.09 years). The sample size for Experiment 2 
was selected based on sufficient power to detect effects in 
Experiment 1. All subjects were L1 speakers of English with 
normal hearing, normal (or corrected-to-normal) vision, and 
minimal exposure to Mandarin Chinese.

Materials

Stimuli for Experiment 2 included recordings of two L1 
American-English speakers and two Mandarin Chinese-
accented speakers of English reading sentences with four 
keywords each (from the same sentence set as McLaugh-
lin & Van Engen, 2020; Van Engen et al., 2012).3 All of 
the speakers were female. Neither of the speakers from 
McLaughlin and Van Engen (2020) were included. The two 
L2 speakers were selected from a set of three speakers (all 
L1 speakers of Mandarin) after an online transcription pilot. 
The design of the pilot was multi-talker, with files from the 
three talkers intermixed randomly. Approximately ten sub-
jects provided a response for each item. Fifty-one sentences 
were presented to each subject, with no targets repeating. 
Multiple iterations of the pilot were conducted in order to 
collect data for 153 sentences. L2 Speaker 1 was found to be 
93% intelligible in quiet (SD = 9%) and L2 Speaker 2 was 
found to be 94% intelligible in quiet (SD = 8%).

When examining the time-course of listening effort with 
pupillometry, it is important to match speaking rate across 
conditions (McLaughlin & Van Engen, 2020). Thus, the 
L2 speakers were instructed to read naturally while the L1 
speakers were instructed to read slightly slower than natu-
ral. The set of recordings included 153 target sentences per 
speaker with pilot data, and when selecting target sentences 
for the present experiment (which required 104 targets), we 
matched the average lengths of target files across speakers 
(2,860 ms). We also aimed to select the sentences with the 
highest intelligibility across the two L2 speakers.4

2 The analysis in Experiment 1 assumed that any interference of this 
measure (which was acquired every three trials) with the sequence 
effects data was equally spread across conditions. By removing this 
feature entirely from Experiment 2, we were able to confirm this 
assumption and remove a potential source of noise from the task.

3 While we chose Mandarin as the non-native accent in the current 
study, it is important to note that non-native accents are not homog-
enous. The effects observed in the present study using American Eng-
lish and Mandarin may not be representative of all accents. It remains 
an open question whether similar patterns will be observed for across-
accent switching between different native and non-native accents.
4 It should be noted that we could not examine sequence effects in 
task performance (e.g., response time (RT) or accuracy) because the 
present paradigm requires high levels of intelligibility for all speak-
ers. These kinds of sequential adjustments remain an intriguing ave-
nue for future research.

https://osf.io/ajmqz
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Procedure

Participants entered the lab and confirmed that they were L1 
English speakers, did not have extensive exposure to Man-
darin-accented speech (e.g., living with a Mandarin speaker, 
studying Mandarin), had normal hearing, and had normal 
or corrected-to-normal vision. For pre-COVID participants, 
the experimenter brought them to a testing room and began 
the instructions. For the COVID protocol, participants were 
instructed to enter the testing room and instructions were 
delivered via video call. The trial procedure was adapted 
from McLaughlin and Van Engen (2020).

Participants wore circumaural headphones and rested 
their chins on a head-mount that was 90 cm away from 
a 53.5 cm × 30 cm computer screen. All equipment was 
positioned following EyeLink specifications. A nine-point 
calibration and validation procedure was conducted for all 
subjects before they began the task.

During the task, participants were instructed to fixate 
on a cross located in the center of the screen. When the 
cross was red, participants were instructed to reduce blink-
ing as much as was comfortable and to attend to the audi-
tory stimulus. When the cross was blue, participants were 
instructed to blink freely. Each trial began with a baseline 
period of 3,000 ms of silence and a red cross. Next, with 
the red cross still present, the stimulus played followed by a 
delay period of 3,000 ms. At this point, the color of the cross 
turned to blue, indicating that subjects could blink freely. 
Participants were instructed to repeat what they heard aloud. 
For pre-COVID participants, responses were recorded with 
an audio recorder. For COVID participants, responses were 
recorded as part of the ongoing video call. Finally, partici-
pants pressed the spacebar to move to the next trial, and a 
3,000-ms silent delay period with a blue fixation cross was 
presented. This delay allowed the pupil response to recover 
between trials.

Participants began with four practice trials, one per 
speaker. These practice trials followed the same trial proce-
dure as the experimental task. Next, subjects completed the 
four 25-trial experimental blocks. Each block began with a 
start trial, which was not included in our analyses because 
it was neither a repeat nor a switch trial. Each of the four 
speakers was the start trial in one of the four blocks. Of the 
remaining 24 trials per block, each of the four speakers was 
presented six times. The order of trials was unpredictable 
from the participant’s perspective, but was pseudorandom 
so that the lists contained the same number (eight each) of 
the key transition types: no switch, within-accent switch, and 
across-accent switch. For no switch transitions, the speaker 
from trial N-1 spoke on trial N (i.e., the current trial). For 
within-accent switches, the speaker on trial N-1 had the 
same accent as the speaker on trial N, but was a different 
speaker. Lastly, for across-accent switches, the speaker on 

trial N-1 was a different speaker with a different accent. 
Additionally, for each of the three main conditions, we con-
sidered the accent of the speaker on trial N. We compared, 
for example, an across-accent switch from L1 to L2 with an 
across-accent switch from L2 to L1. Between each block, 
there was a self-timed break. Subjects were instructed not 
to leave their chair or remove their head from the chinrest 
during these breaks.

After completing the four experiment blocks, partici-
pants completed language and demographic questionnaires. 
Finally, participants were debriefed on the task. The entire 
procedure took approximately 45 min.

Data preparation

Repetitions of the target sentences were scored to determine 
whether subjects correctly understood the speaker. Each 
sentence had four keywords (e.g., the gray mouse ate the 
cheese). Any trial in which any keyword was misidentified 
or missing was excluded from analyses. Differences in plu-
rality and verb tense (specifically differences in use of -ed 
morpheme) were allowed. In the L2 accent condition, 7.7% 
of trials were removed for being < 100% intelligible (or in 
some cases, due to poor recording quality that prevented 
response scoring). In the L1 accent condition, only 1.2% of 
trials were lost.

For the pupil data, pre-processing was completed using 
the R package gazeR (Geller, et al., 2020). Subjects with 
more than 20% data loss due to blinking were excluded 
(two subjects). Periods of missing data due to blinks were 
next identified and extended 100 ms prior and 200 ms fol-
lowing. This process removes extraneous values that occur 
when the eyelid is partially obscuring the pupil. For these 
extended blink windows, linear interpolation was used to 
fill in the missing data. A five-point moving average then 
smoothed the data. The median pupil diameter during the 
500 ms immediately preceding stimulus onset was used as 
the baselining value for each trial. Subtractive baselining 
was used (Reilly et al., 2019). As a final step, the data were 
time-binned, reducing the sampling frequency from 500 Hz 
to 50 Hz.

Analysis window selection

Time window selection for growth curve analysis can 
increase researcher degrees of freedom during the analysis 
process (Peelle & Van Engen, 2021). To avoid biasing our 
analyses, we selected our analysis window without viewing 
its influence on the effects of interest. The only data viewed 
prior to window selection was a single plotted curve summa-
rizing the mean of all trial and subject data (i.e., to confirm 
a polynomial analysis was appropriate). Due to the delay of 
the pupil response, which is typically 200–300 ms, we opted 
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to begin our analysis window at 300 ms after target onset. 
The end of the analysis window was based on the average 
offset time of the stimuli (2,860 ms).

Results

The random-effect structure matched that of Experiment 1.5 
Table 2 summarizes all log-likelihood model comparisons 
from the growth curve analysis of the full dataset. The linear, 
quadratic, and cubic polynomials all significantly improved 
fit (all ps < .001). Given the complex shape of the pupil 
response, we also tested whether a quartic polynomial would 
improve fit. It did not (χ2(1) = 0.02, p = .88), and thus was 
not retained in subsequent models.

First, we examined the dummy-coded main effects of 
accent (reference level: L1) and switch (reference level: no 
switch). Accent had a significant effect on the intercept (β = 
42.17, p < .001), linear term (β = 441.89, p < .001), quad-
ratic term (β = 54.78, p < .001), and cubic term (β = -45.67, 
p < .001). These effects indicate a condition-wise difference 
in the overall peak, rate, and shape of the pupil response. As 
in Experiment 1, pupil response was larger for L2-accented 
compared to L1-accented speech (Fig. 2). The contrast of 
the no switch and within-accent switch conditions revealed 
a significant effect on the intercept (β = 9.44, p < .001), 
linear term (β = -48.07, p < .001), and quadratic terms (β = 

-34.57, p = .002), whereas the contrast of the no switch and 
across-accent switch conditions revealed a significant effect 
on the intercept (β = 8.20, p < .001) and quadratic terms (β 
= -41.47, p < .001) only (although the effect on the cubic 
polynomial was also marginal: β = 20.65, p = .06). Alto-
gether, these outcomes indicate a larger pupil response for 
switching speakers within and across accent as compared to 
listening to the same speaker consecutively. As visualized in 
Fig. 3, the shape of the model fit indicates a larger early rise 
of the pupil response for the switching conditions; however, 
the shape of the pupil response within- and across-accent 
switches diverges near sentence-offset.

Adding the interaction between accent and switch signifi-
cantly improved model fit (χ2(2) = 109.34, p < .001), but 
model estimates indicated that there was no difference in the 
cognitive demands for the within-accent switch condition (as 
compared to the no switch condition) for L1 and L2 accents 
(β = -1.99, p = .31). Rather, this interaction appears to be 
driven by across-accent switching, for which pupil response 
is greater when switching from L1 to L2 accent (β = 16.32, 
p < .001; blue line of right panel of Fig. 4).

To examine the cognitive demands for within- versus 
across-accent switching, we reordered the levels of switch to 
make the within-accent switch condition the reference level 
of the factor.6 When examining a model without interactions, 
model estimates indicated that pupil response was greater 

Table 2  Log-likelihood model comparisons for growth curve analysis 
of Experiment 2

*Effect not retained in subsequent models

Effect χ2 Df p

Linear polynomial 3074.30 1 < .001 ***
Quadratic polynomial 1147.70 1 < .001 ***
Cubic polynomial 112.64 1 < .001 ***
Quartic polynomial* 0.02 1 .88
Accent (Levels: L1 Accent, L2 Accent) 2877.50 1 < .001 ***
Switch (Levels: No Switch, Within-

accent Switch, Across-accent Switch)
272.91 1 < .001 ***

Accent × Linear polynomial 2467.20 1 < .001 ***
Accent × Quadratic polynomial 37.99 1 < .001 ***
Accent × Cubic polynomial 26.41 1 < .001 ***
Switch × Linear polynomial 28.96 2 < .001 ***
Switch × Quadratic polynomial 16.40 2 < .001 ***
Switch × Cubic polynomial 3.82 2 .15
Accent × Switch 109.34 2 < .001 ***

Fig. 2  The effect of accent on the size of the pupil in Experiment 2 is 
shown with model fits and raw data points. The y-axis shows pupil 
diameter in EyeLink AU (Arbitrary Units), where zero is the baseline 
calculated to align data across trials. The x-axis shows time in mil-
liseconds, beginning at trial start (zero). The dashed vertical line indi-
cates the average offset time for all stimuli. The gray box indicates the 
window of the data used in analyses

5 As the fixed effects in the model grew more complex, it became 
more difficult for models to converge and we had to simplify the 
random effect structure by removing the polynomial random slopes 
nested with items.

6 Note that changing the reference level does not alter model fit. The 
only change to the model is the estimates, allowing us to directly 
compare additional conditions of interest.
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for switching speakers across-accent than within-accent 
(β = 7.69, p < .001; Fig. 3). Additionally, when examin-
ing a model with all of the fixed effects including interac-
tions, model estimates from the accent by switch interaction 
indicated that the difference in pupil response between the 
across-accent and within-accent conditions was larger for 
the L2 than the L1 accent condition (β = 18.31, p < .001; 
Fig. 4).

We also pre-registered follow-up analyses to separately 
examine switch costs for the L1 and L2 accent conditions. 
For the L1 accent condition, log-likelihood model com-
parisons indicated that switch improved model fit (χ2(2) 

= 58.09, p < .001). Model estimates indicated that pupil 
response for switching both within- (β = 8.70, p < .001) and 
across-accent (β = 8.65, p < .001) was greater than pupil 
response for not switching, but there was no difference in 
pupil response for within- and across-accent switching (β = 
-0.04, p = .97; Fig. 4).

Finally, we completed this process again for the L2 accent 
data. Switch also improved model fit (χ2(2) = 388.17, p < 
.001), and model estimates indicated that all levels differed 
from each other (ps < .001).

Discussion

The results of Experiment 2 replicate and extend the findings 
of Experiment 1. As predicted, trials with speaker switches 
were more difficult than those with repetitions, across-accent 
switches were more difficult than within-accent switches, 
and an asymmetry emerged – switching from an L1 to an 
L2 accent was more demanding than switching from an L2 
to an L1 accent.

General discussion

Using pupillometry as an online measure of cognitive effort, 
we present novel evidence that switching between speak-
ers universally increases demand. Additionally, switching 
speakers across accents increases demand more than switch-
ing speakers within an accent. This effect differed based on 
the accent of the current trial’s speaker, such that switching 
from an L1 to an L2 speaker was more costly than switching 
between two L2 speakers whereas switching from an L2 to 
an L1 speaker was no more costly than switching between 
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Fig. 3  The effect of switch on the size of the pupil in Experiment 2 is 
shown with model fits and raw data points. The y-axis shows pupil 
diameter in EyeLink AU (Arbitrary Units), where zero is the baseline 
calculated to align data across trials. The x-axis shows time in mil-
liseconds, beginning at trial start (zero). The dashed vertical line indi-
cates the average offset time for all stimuli. The gray box indicates the 
window of the data used in analyses
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Fig. 4  The interaction between the effects of accent and switch in 
Experiment 2  is captured in two panels, with the labels indicating 
the accent of the current trial. Note that the across-accent switch line 
(blue) in the left panel indicates a switch from L2 to L1 accent, and 
this line in the right panel indicates a switch from L1 to L2 accent. For 
both panels, the y-axis shows pupil diameter in EyeLink AU (Arbi-

trary Units), where zero is the baseline calculated to align data across 
trials. The x-axis shows time in milliseconds, beginning at trial start 
(zero). The dashed vertical line indicates the average offset time for all 
stimuli. The gray box indicates the window of the data used in analy-
ses. For an enlarged version these same growth curve model fits with 
standard errors, please see Online Supplemental Material Figs. 2 and 3
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two L1 speakers. These results reveal that listeners make 
dynamic and cognitively effortful adjustments trial-to-trial 
in response to different speakers.

The within-accent switch costs observed in the pre-
sent study can be accounted for by both an active control 
model and an auditory streaming framework. However, the 
increased demands associated with across-accent switches 
compared to within-accent switches cannot be accounted for 
by an auditory streaming framework alone.7 A key aspect 
of the auditory streaming framework is that disruption of 
auditory attention should be consistent across all speaker 
switches, regardless of accent. To accommodate our find-
ings within the auditory streaming framework, we would 
need to assume that two mechanisms (e.g., selective auditory 
attention and talker normalization) operate in parallel for 
multi-talker listening conditions (consistent with Choi et al., 
2022). The within-accent switch costs in the present study 
may reflect the disruption of auditory attention, while the 
across-accent switch costs may reflect the active engagement 
of a talker normalization mechanism.

The asymmetry in across-accent switch costs indicates 
that a familiarity benefit is afforded to L1-accented 
speech. Talker normalization, exemplar, and non-analytic 
episodic theories all predict that familiar input should 
pose lesser processing costs for the listener. In line with 
these frameworks, our data suggest that switching from 
an L2- to an L1-accented speaker was no more difficult 
than switching from one L1-accented speaker to the 
other. Thus, a stable speaker-switching cost occurs, but 
no additional cost occurs for making the relatively larger 
shift in “phonetic distance” between the two speakers of 
different accents. In contrast, switching from an L1- to 
an L2-accented speaker is more cognitively demanding 
than switching between two L2-accented speakers. As 
no familiarity benefit is afforded, the processing costs 
associated with switching to an unfamiliar L2 accent are 
much greater.

A related but distinct way to conceptualize these trial-
by-trial adjustments is based on differences in the upreg-
ulation of cognitive control8 (cf. Botvinick et al., 2001). 
Here, one can ask whether the sequential adjustments are 

proactive (i.e., the accent on trial N-1 heightens control that 
is actively maintained and influences trial N) or reactive 
(i.e., the heightening of control might residually carry over 
to the next trial, with such carry over anticipated to decay 
at longer intervals; e.g., Scherbaum et al., 2012). CSEs have 
been interpreted as reactive because they are diminished 
or eliminated for “long” ISIs between 2,250 and 5,000 
ms (Egner et al., 2010; but see Duthoo et al., 2014b). The 
sequence effects in the present study were observed using 
much longer ISIs (10–20 s), favoring a proactive account. 
However, one should also consider a distinct reactive mech-
anism that persists across long delays and intervening tri-
als. Participants might associate a stimulus feature (e.g., 
accent) on trial N-1 with the degree of control used on that 
trial (e.g., L2 = high control), and the associated degree of 
control might be reactivated when encountering the accent 
on trial N (i.e., a CSE learning account; Freund & Nozari, 
2018). A key avenue for future research will be systemati-
cally examining how the sequential adjustments that occur 
for multi-talker and multi-accent speech processing are 
affected by runs of the same speaker on previous trials and 
extend over longer ISIs and across subsequent trials (e.g., 
trial N+1, trial N+2, etc.).

One of the limitations of the present work is the limited 
number of talkers and accents included in the experimental 
design (two each). Although we provide some positive evi-
dence of a familiarity benefit, we did not parametrically vary 
accent familiarity (e.g., familiar vs. unfamiliar L2 accent). 
Further work with additional speakers and accent varieties 
of varying familiarities will be needed to determine the gen-
eralizability of these findings.

Conclusion

The challenge listeners face when mapping acoustic input 
onto linguistic representations can be complicated by both 
speaker and accent variability. In the present study, we used 
pupillometry to track cognitive processing load for trial-
to-trial switches between speakers of the same or different 
accents. Our results indicated a universal cost for switch-
ing between speakers, and an asymmetry in the costs for 
switching between different accents. Switching from an L1 
speaker to an L2 speaker was more cognitively demand-
ing than switching between two L2 speakers, while the 
reverse (switching from an L2 to an L1 speaker) was no 
different than switching between two L1 speakers. These 
sequence effects observed for speech processing align with 
work examining multi-talker processing costs, and provide 
novel evidence that a familiarity benefit may be afforded to 
L1-accented speech in a multi-accent listening setting. Alto-
gether, these findings align with an active control model, 

7 There is some evidence that may indicate that disruption of audi-
tory streaming is less binary in nature (see Stilp & Theodore, 2020).
8 In the CSE literature, researchers have distinguished accounts 
based on bottom-up associative mechanisms (e.g., benefit is observed 
for consecutive incongruent trials because stimulus and/or response 
features repeat; e.g., Mayr et  al., 2001) from control mechanisms 
(i.e., benefit is observed because the conflict-triggered heightening of 
attention toward the goal-relevant dimension on N-1 benefits trial N; 
e.g., Botvinick et al., 2001). Given the current study’s use of unique 
sentences and responses on each trial, an account based on bottom-
up associative mechanisms appears unlikely. Rather, a control-based 
account is more plausible.
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but may also support the conclusion that two mechanisms 
(an auditory streaming and talker normalization mechanism) 
work in parallel to support speech processing in multi-talker 
and multi-accent settings.
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