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Abstract

The recently developed diffusion model for conflict tasks (DMC) Ulrich et al. (Cognitive Psychology, 78, 148—174, 2015)
provides a good account of data from all standard conflict tasks (e.g., Stroop, Simon, and flanker tasks) within a common
evidence accumulation framework. A central feature of DMC’s processing dynamics is that there is an initial phase of
rapid accumulation of distractor evidence that is then selectively withdrawn from the decision mechanism as processing
continues. We argue that this assumption is potentially troubling because it could be viewed as implying qualitative changes
in the representation of distractor information over the time course of processing. These changes suggest more than simple
inhibition or suppression of distractor information, as they involve evidence produced by distractor processing “changing
sign” over time. In this article, we (a) develop a revised DMC (RDMC) whose dynamics operate strictly within the limits
of inhibition/suppression (i.e., evidence strength can change monotonically, but cannot change sign); (b) demonstrate that
RDMC can predict the full range of delta plots observed in the literature (i.e., both positive-going and negative-going); and
(c) show that the model provides excellent fits to Simon and flanker data used to benchmark the original DMC at both the
individual and group level. Our model provides a novel account of processing differences across Simon and flanker tasks.
Specifically, that they differ in how distractor information is processed on congruent trials, rather than incongruent trials:
congruent trials in the Simon task show relatively slow attention shifting away from distractor information (i.e., location)
while complete and rapid attention shifting occurs in the flanker task. Our new model highlights the importance of considering
dynamic interactions between top-down goals and bottom-up stimulus effects in conflict processing.
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Daily life abounds with situations where cognitive control
is needed to act on one cue at the expense of acting differ-
ently based on another cue. An ad implores you to indulge
in a block of chocolate while the fitness app on your phone
reminds you that there is still time to go for arun today. Inves-
tigating how people process such conflicting information is
important for understanding goal-directed behavior, espe-
cially in rapid decision contexts where bottom-up stimulus
inputs interact with top-down goals on a highly compressed
timescale. For example, a driver approaching a green light
while seeing an emergency stop from the car in frontis a high-
stakes real-world example where cues are associated with
conflicting responses. The green light is strongly associated
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with continuing on driving, whereas the sudden stop from the
car in front demands immediate braking to avoid a collision.
When one of the cues has a processing advantage (e.g., due to
automaticity or otherwise being highly practiced), cognitive
control is required to rapidly shift processing resources and
respond appropriately, in line with top-down goals.

To explain how cognitive control mechanisms influence
conflict processing, theoretical models have posited dynamic
changes in the processing of different stimulus compo-
nents where these components are either congruent with
one another (predicting a common response; no conflict) or
incongruent (predicting different responses; conflict). Three
major models that have been used in modelling conflict tasks
are the shrinking spotlight model (SSP; White et al., 2011),
the dual-stage two-phase model (DSTP; Hiibner et al., 2010),
and the diffusion model for conflict tasks (DMC; Ulrich
et al., 2015). Although these models differ in their scope
(e.g., the SSP is a model of the flanker task in specific,
whereas DMC and DSTP are general models of conflict
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tasks) and the precise ways in which they explain data from
conflict tasks, they share the general assumption that con-
flict processing involves a dynamic transition from relatively
non-selective processing (where both task-relevant and task-
irrelevant stimulus components influence decision-making)
to more narrowly selective processing (where decision-
making is dominated by task-relevant stimulus components).
Of these three models, DMC arguably has the widest range
of applicability, as it can account for benchmark patterns of
data (discussed below) that the SSP and DSTP cannot.

In this article, we critically re-examine some of the
theoretical assumptions of DMC and argue that the pro-
cessing assumptions implemented in the original model
are potentially troubling because they can be interpreted
as implying qualitative and non-monotonic changes in the
psychological representation of stimulus information driv-
ing decision-making. These assumptions produce evidence
accumulation dynamics that are consistent with a rever-
sal in the distractor representation driving decision-making
without any associated change in the stimulus (e.g., the
same distractor representation initially supports response A,
but later supports response B). Although such changes are
sometimes explained in terms of inhibition (Tipper, 1985;
Kane et al., 1997), we argue that allowing the represen-
tational changes implied by DMC’s processing dynamics
goes beyond what inhibitory mechanisms are theoretically
capable of. In this article, we develop a new revised dif-
fusion model for conflict tasks (RDMC) that is based on
a non-inhibitory framework that enforces strictly mono-
tonic changes in stimulus representations over time (i.e.,
strengthening or weakening without any qualitative change
in representations). RDMC achieves this by using a cou-
pled activation function to dynamically control the relative
influence of task-relevant and -irrelevant information over
the course of an individual trial. Mechanistically, we inter-
pret the activation function as reflecting the deployment of
selective attention over task-relevant and task-irrelevant pro-
cessing channels. We proceed by first providing a brief review
of conflict tasks, summarizing key empirical benchmarks
that motivated the development of DMC. We then review
the theoretical assumptions underpinning DMC, highlight-
ing the processing dynamics entailed by these assumptions.
We then present a formal overview of our RDMC, show-
ing the model has excellent parameter recovery properties.
Finally, we show that RDMC provides excellent fits to the
same benchmark data used to evaluate the original DMC (i.e.,
so-called positive- and negative-going delta plots), providing
a novel account of the divergent characteristics of data from
Simon and flanker tasks. We further show through simula-
tions that the same processing dynamics that allow our model
to account for negative-going delta plots are also sufficient to
produce negative congruency effects conclude by discussing

@ Springer

future research directions that could provide further tests of
RDMC.

Review of conflict tasks

Three canonical tasks that have been used to study conflict
information processing are the Stroop, Simon, and flanker
tasks. In these tasks, participants make speeded responses
to a target while ignoring task-irrelevant distractor informa-
tion. Trials vary in terms of whether the target and distractor
information are associated with a common response (con-
gruent trials) or with different responses (incongruent trials).
Responses on congruent trials are generally faster than
responses on incongruent trials. For example, in the Stroop
task (MacLeod, 1991; Stroop, 1935), people are shown a
word presented in colored ink, and are required to name the
ink color (target information) while ignoring the word mean-
ing (distractor information). People tend to respond slower
and are more error-prone when presented with an incongru-
ent stimulus (e.g., RED displayed in blue ink) than with a
congruent stimulus (e.g., RED displayed in red ink). The
response time (RT) difference between congruent and incon-
gruent trials is known as the congruency effect. Simon and
Rudell (1967) later introduced the Simon task in which peo-
ple respond to the auditory presentation of the word “left”
or “right” (target information) by pressing a corresponding
button while ignoring “location” information (whether the
word was presented to the left or right ear; distractor infor-
mation). Lastly, in the classic flanker task by Eriksen and
Eriksen (1974), people respond to a target letter flanked by
distractor letters that are either the same as, or different from,
the target letter.!

The magnitude of the congruency effect is interpreted
as reflecting the time course of enacting cognitive con-
trol. Under some accounts, this involves shifting attentional
resources away from distractor information to focus on
the target. Under other accounts, distractor information is
actively suppressed by inhibitory mechanisms. The larger
the congruency effect, the longer it takes to adjust ongoing
processing dynamics (e.g., through inhibition or reallocation
of attentional resources). Theoretical treatments of cognitive
control are often based around two channels of informa-
tion processing, automatic and controlled (Schneider and
Shiffrin, 1977; Shiffrin and Schneider, 1977). Within this
framework, conflict processing is often explained in terms of
dynamically adjusting the pool of resources supporting target
information processing carried by the controlled channel vs.

! Instead of letters, arrow stimuli are implemented in many flanker
studies (White et al., 2011; Nieuwenhuis et al., 2006; Ridderinkhof
et al., 2021; Tillman and Wiens, 2011).
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distractor information processing carried by the automatic
channel. For example, the shrinking spotlight model (SSP)
proposed by White et al. (2011) combines the idea of visual
attention and cognitive control. The model narrows an atten-
tional spotlight to effectively prevent distractor information
from continuing to influence decision-making. The size of
the congruency effect is determined, in part, by how quickly
the attentional spotlight is narrowed, and consequently,
how rapidly attentional resources become concentrated on
the target. Alternatively, inhibition-based accounts envisage
inhibitory connections across processing channels with the
size of the congruency effect reflecting the time course of
inhibiting processing in the automatic channel.

Congruency effects are universal across conflict tasks
and are typically positive, reflecting slower average RTs for
incongruent trials.> In terms of automatic and controlled
processing, congruency effects describe whether automatic
processing facilitates or interferes with target processing. For
congruent trials, distractor information can potentially facili-
tate target processing since all stimuli are associated with the
same correct response. If target and distractor information
is pooled across automatic and controlled channels, RTs on
congruent trials should be faster. For incongruent trials, dis-
tractor processing creates interference because distractors are
associated with the opposite incorrect response to the target.
Pooling information across automatic and controlled chan-
nels in this case results in slower RTs as distractor evidence
negates target evidence.

Time dynamics of congruency effects

Notwithstanding the similarities between congruency effects
produced by different tasks at the level of mean RTs, there
are other more subtle patterns in congruency effects that dif-
fer reliably across conflict tasks (Pratte et al., 2010). When
conditioned on overall RT, there are pronounced differences
in the magnitude of congruency effects over time with effects
sometimes growing and sometimes shrinking over the course
of a trial. Congruency effects tend to increase with time
in flanker tasks, but tend to collapse over time in Simon
tasks. A major theoretical challenge has been to characterize
these different dynamic patterns of congruency effects. The
time-varying strength of congruency effects can be visual-
ized using so-called delta plots, which show RT differences
between congruent and incongruent stimuli at different points
in time (De Jong et al., 1994). Congruency effects often vary
across the RT distribution, so delta plots can be character-

2 Negative congruency effects are often found in Simon and cuing tasks
with variable stimulus-onset-asynchrony between the task-irrelevant
stimulus and subsequent target stimulus (Burle et al., 2005; Ellinghaus
and Miller, 2018) We discuss negative congruency effects in more detail
later in the article.

ized by their positive or negative slopes. Positive-going delta
plots are found consistently in flanker tasks while negative-
going delta plots are usually shown in Simon tasks (Pratte
et al., 2010; Ridderinkhof et al., 2005). Differences in delta
plots across conflict tasks have been important with respect
to theory, as they may reflect different mechanisms under-
lying conflict processing in different tasks (Burle et al.,
2014; Pratte, 2021; Ridderinkhof, 2002a,b). However, there
is a wide range of mechanisms that can produce positive-
and negative-going delta plots, and so formal modeling is
required to contrast different assumptions.

Delta plots also provide an additional means of quan-
titatively assessing the adequacy of theoretical models of
conflict effects. In addition to fitting congruency effect
data at the level of RT distributions for different tasks,
successful models must also be able to account for differ-
ences in the magnitudes of congruency effects over time.
Positive-going delta plots are commonly predicted by major
conflict diffusion models (e.g., DSTP; Hiibner et al., 2010,
SSP; White et al., 2011, DMC; Ulrich et al., 2015). Con-
versely, negative-going delta plots cannot be produced by
most conflict diffusion models including SSP and DSTP
(Servant et al., 2014). Indeed, Pratte et al. (2010) argued that
negative-going delta plots could not readily be accommo-
dated by standard evidence accumulation models. However,
Schwarz and Miller (2012) demonstrate that several mod-
els including standard diffusion models can account for both
positive- and negative-going delta plots under certain specific
assumptions.> It follows that formal modeling is required to
determine whether the assumptions of a given model allow
it to produce negative-going delta plots. Of the three major
models of conflict processing, only DMC has been shown to
model both positive- and negative-going delta plots (Ulrich
et al., 2015). The success of DMC has been attributed to
dynamic changes in the way distractor information is accu-
mulated over the course of a trial, producing symmetrical
facilitation and interference effects on congruent and incon-
gruent trials, respectively. An extension of DMC that allows
for asymmetrical facilitation and interference effects was
examined recently by Evans and Servant (2022). The pro-
cessing dynamics within the model are such that the time
course of evidence accumulation by distractor information
can produce both positive- and negative-going delta plots,

3 According to Schwarz and Miller (2012) and Miller and Schwarz
(2021), negative-going delta plots are predicted when the mean RT of
one condition, RTj, is smaller than the mean of the other condition,
RT>,, but the variance of RTj is greater than the variance of R7,. The
opposite assumptions hold for predicting positive-going delta plots. The
misordering of moments in the aggregate RT data is readily produced
within a mixture model framework comprising a fast process and a slow
process (e.g., automatic and controlled processing), and importantly,
can arise even when the means and variances of the pure component
processes are ordered such that the fast process has both a smaller mean
and variance than the slow process.
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making DMC an attractive model for studying processing
across a range of conflict tasks.

In addition to delta plots, accuracy rates across RT distri-
butions are also important benchmarks for evaluating mod-
els of conflict processing. Conditional accuracy functions
(CAFs) plot accuracy as a function of response speed for
congruent and incongruent trials (Heitz, 2014). Congruent
conditions tend to obtain higher and more consistent accuracy
levels across the entire RT distribution, while incongruent
conditions tend to have a higher error rate for fast responses,
and a comparable accuracy rate to congruent conditions for
slower responses (e.g., Ridderinkhof, 2002a; Stins et al.,
2007). The patterns of CAFs do not vary much across differ-
ent conflict tasks, and are accurately fitted by most models.

Past literature has highlighted the importance of RT dis-
tribution data, the corresponding delta plots, and the CAFs
(Pratte et al., 2010; Schwarz and Miller, 2012; Heitz, 2014).
These benchmarks are able to distinguish distinct RT patterns
in different conflict tasks and provide more detail than the
averaged RT or accuracy data for congruent vs. incongruent
trials. Any successful general model of conflict processing
must account for all of the benchmarks. At present, DMC is
the one existing model that has been shown to accommodate
these benchmarks in both Simon and flanker tasks (Ulrich
et al., 2015). We now review the formal properties of DMC.

Revisiting DMC

DMC is based on the idea of automaticity, which has been
influential in the cognitive control literature (Schneider and
Shiffrin, 1977; Shiffrin and Schneider, 1977). Within this
framework, stimuli are conceptualized as comprising both
task-relevant and task-irrelevant features. DMC assumes that
responses are driven by a combination of task-irrelevant and
task-relevant information accumulated by automatic and con-
trolled processing channels respectively, but the impact of
these two channels on decision-making varies over time. For
example, in the flanker task, the task-irrelevant information
of the flanker arrows is accumulated in the automatic channel
and the task-relevant information of the target arrow is accu-
mulated in the controlled channel. It follows that the auto-
matic process accumulates distractor information supporting
correct/incorrect responses on congruent/incongruent trials,
and the controlled process accumulates target information
that always supports a correct response. Information from
the two evidence channels is combined into a single evidence
total. A response is initiated once the combined evidence
reaches one of two response boundaries, corresponding with
the two response alternatives (e.g., a left- or right-pointing
target in the flanker task).

A core concept in DMC is the dynamic influence of evi-
dence accumulated by the automatic channel. Early on in
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processing, before attention can effectively filter out task-
irrelevant information (or inhibitory mechanisms suppress
automatic processing), evidence accumulation is dominated
by the automatic channel. Later in processing, when atten-
tion is focused more narrowly on task-relevant components
of the stimulus (or after automatic processing has been inhib-
ited), evidence accumulation is dominated by the controlled
channel. DMC models the time course of these processing
dynamics in terms of the expected amount of evidence accu-
mulated by the automatic channel through time, E[X,(¢)],
using a pulse function that rises to a maximum value before
decreasing back to a baseline of zero. Within DMC, the late
withdrawal of evidence previously accumulated by the auto-
matic channel is attributed to inhibition of the automatic
channel (Hommel, 1994; Lu and Proctor, 2001). Formally,
these dynamics are modeled using a rescaled gamma density
function,

te a=l |
(@ — l)f] W

E[X,(1)] = Ae™'/" [
with a fixed shape parameter @ > 1, a free scale parameter
7, and multiplied by a free scaling parameter A. Equation 1
describes the output of a diffusive evidence accumulation
process with time-varying drift rate v, (¢), obtained by tak-
ing the first derivative of E[ X, (#)] with respect to time, 7. As
with the standard diffusion model (Ratcliff, 1978; Ratcliff
and McKoon, 2008), drift rates in DMC reflect the quality of
information entering the decision process. The drift rate for
the automatic channel, v, (), represents the quality of distrac-
tor information present in the stimulus and available to the
decision mechanism at time ¢. The time-varying nature of the
automatic drift rate arises due to attentional filtering dynam-
ically restricting task-irrelevant information from entering
the decision process (or alternatively, from active inhibition
of the automatic channel). The top panel of Fig. 1 shows
the expected automatic evidence accumulation, E[ X, (¢)] for
three different values of t. The bottom panel of the figure
shows the corresponding automatic drift rates, v, ().

The dynamics of the controlled channel are simpler, as
evidence is expected to accumulate as a linear function of
time, E[X.(¢)] = v.t, yielding a constant controlled drift
rate equal to v.. Decisions in DMC are determined by the
combined evidence accumulated by the automatic and con-
trolled channels. As noted by Ulrich et al. (2015), evidence
accumulation can be modeled as a single combined Wiener
process

dX(t) =[ve(t) + ve]ldt +odW(t) (2
where o is the square root of the diffusion coefficient, and

W (t) is a white noise process (i.e., a sample from a Gaussian
distribution with mean O and variance 1). o is typically
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Fig.1 Expected automatic
evidence accumulation
trajectories (upper panel) and
their corresponding automatic
drift rates (lower panel) for
three different values of 7.
Larger values of t correspond to
slower dynamics in the
automatic channel. The scaling
parameter for the pulse function,

A, is fixed at 20 and the shape
parameter of the gamma
distribution « is fixed at 2.
Because the automatic drift rate
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fixed to an arbitrary constant, serving as a scaling param-
eter* (see Donkin et al. (2009), for critical discussion of this
assumption). Evidence accumulation for the combined pro-
cess begins at a starting point, z, and continues until the
process hits one of two absorbing boundaries, located at 0
and a, initiating the corresponding response. The automatic
process accumulates evidence toward the upper boundary
located at a (i.e., correct responses) on congruent condi-
tions, and toward the boundary located at O (i.e., incorrect
responses) on incongruent conditions. The controlled process
always accumulates evidence toward the correct response
boundary located at a.

The dynamics of the automatic channel in DMC allow
a continuous transition between predicting positive- and
negative-going delta plots. Slopes of the delta plots produced
by the model are determined by the magnitude of the scale
parameter 7 in Eq. 1 with negative-going delta plots asso-
ciated with smaller values of t (Ulrich et al., 2015). This
suggests that negative-going delta plots arise when automatic
channel activation has a fast time course, characterized by a
strong initial response that is rapidly reduced back to zero.
Delta plots produced by the model at the same three values of

4 Ulrich et al. (2015) estimated the value of o freely from their data.
Usually, o is fixed to either 0.1 or 1 by convention. This is because
parameters in the diffusion model are identified at aratio scale, changing
the value of o by multiplying it by a constant means that all other
parameters in the model that govern the evidence accumulation process
can be scaled by the same constant to achieve the same predictions.
Exclusions to this include non-decision time parameters, and in our
model, the parameters that control the initial activation of the automatic
channel and the two attention shift rates.

700 800 900 1000

7 from Fig. 1 are shown in Fig. 2. Higher values of t are asso-
ciated with steeper positive-going delta plots. When t = 30,
the delta plot produced by the model is negative-going.

A distinct advantage of DMC over other models is its abil-
ity to qualitatively account for both positive- and negative-
going delta plots (Servant et al., 2014). Importantly, several
studies demonstrate that DMC also successfully provides
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Fig.2 Delta functions produced by DMC based on the dynamics illus-
trated in Fig. 1. The functions express the response time difference for
the 0.1, 0.3, 0.5, 0.7, and 0.9 distribution quantiles for correct responses
on congruent versus incongruent trials. The slope of the delta functions
differ according to the values of 7. The controlled drift v is fixed at 0.7,
the boundary separation a is fixed at 100, and the diffusion coefficient is
fixed at 3. Finally, the non-decision time is given by a bounded uniform
distribution with a mean 310 and a range 80
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good quantitative fits to joint accuracy and RT distribution
data from both Simon and flanker tasks, including cases
involving negative-going delta plots (Ellinghaus et al., 2018;
Hiibner and Tobel, 2019; Servant et al., 2016; Ulrich et al.,
2015). Moreover, DMC has been implemented in the Simon
task with electrophysiological measurement supporting the
early development of processing in the automatic channel
(Servant et al., 2016).

Critique of DMC

In this article, we critically revisit DMC’s assumptions about
evidence accumulation in the automatic channel. We argue
that the model’s assumptions lead to potentially troubling
implications for how distractor information is represented
over the course of a trial. In particular, the use of a pulse
function to describe the cumulative output of the auto-
matic channel (i.e., total evidence accumulated through time)
enforces an evidence accumulation process involving rapid
initial accrual of evidence based on distractor processing
followed by the gradual withdrawal of that evidence from
the decision process.”> While the theoretical intent of the
pulse function is to describe the short-lived dominance of
the automatic channel over the decision process, in prac-
tice, the function implies changes in both the sign and the
strength of the representations that drive evidence accumula-
tion based on the automatic processing channel in the absence
of any changes in the stimulus. That is, DMC’s pulse function
decouples encoded properties of the stimulus from model
parameters that govern the evidence accumulation process
(i.e., drift rates). Given the central role of the pulse function
in accounting for the variety of delta plots found empirically
(Ulrich et al., 2015), it is important to consider whether the
same patterns of results can be explained by different pro-
cessing assumptions that enforce consistent representation of
fixed stimulus properties. Our main theoretical contribution
in this article is to show that an alternative implementation
of the automatic and controlled processing framework that
underpins DMC successfully accounts for key benchmark
effects—including negative-going delta plots—in a way that
avoids unexplored and potentially problematic theoretical
implications introduced by the pulse function (Eq. 1).

In DMC, the drift rate describing evidence accumulation
in the automatic channel is time-varying, reflecting dynamic

5 These dynamics are sometimes interpreted as arising from inhibition
of automatic processing. We note that this interpretation rests on the
assumption that inhibition not only prevents further accumulation of
evidence through automatic processing, but also retroactively removes
previously accumulated evidence from the decision mechanism. We
fully agree with the idea that inhibition can halt subsequent processing,
but are doubtful of views that inhibition can reverse or undo the effects
of previously completed processing.
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changes in the availability of task-irrelevant information to
the decision mechanism described by Eq.2. This view of
automatic drift rates in DMC aligns with the conventional
interpretation of drift rates in the standard diffusion model,
as summarizing the quality of stimulus information (Ratcliff
and McKoon, 2008). Identifying drift rates with quality of
evidence provided by the stimulus accords with the multi-
tude of previous studies that have found drift rates to vary
systematically as a function of the signal-to-noise ratio of
the stimulus (e.g., in dot motion tasks; Ratcliff and McKoon,
2008;Palmer et al., 2005). Drift rates are also sensitive to
manipulations that affect the ease with which stimuli with
maximally different features are perceived (e.g., contrast
manipulations with orthogonal stimuli; Sewell and Smith
2012; Smith et al. 2010, 2004). Moreover, stimulus-specific
drift rates that track associative relationships of varying
strength can be learned through trial-by-trial feedback (e.g.,
Fontanesi et al. 2019; Mileti¢ et al. 2021; Pedersen et al.
2017; Sewell et al. 2019; Sewell and Stallman 2020). To the
extent that the encoded properties of a stimulus remain con-
sistent,® during processing, we argue that dynamic changes
in drift rates must be limited to varying only in strength
(i.e., allowing quantitative changes in the magnitude of the
drift rate, but not qualitative changes in the sign of the drift
rate).

Formally, the decoupling of fixed stimulus properties from
automatic drift rates can be observed by noting that the
derivative of the function describing the expected value of
cumulative evidence over time yields the time-dependent
drift rate of the process that generated the evidence. The
form of the pulse function is such that the initial steep rise
in cumulative evidence entails a positive-valued drift rate
on a congruent trial. The pulse function then reaches an
inflection point, after which there is a withdrawal of previ-
ously accumulated evidence as the function returns to zero.
The latter dynamics entail a sign change in the drift rate
before and after the inflection point. Eventually, the drift rate
for the automatic processing channel stabilizes at zero as
decision-making becomes governed exclusively by informa-
tion carried by the controlled processing channel.

One way to potentially reconcile DMC’s pulse function
with theory is to assume that the mechanism responsible
for the pulse is evidence leakage (as in Usher and McClel-
land (2001)) or spontaneous decay of information from the
automatic channel (Hommel, 1994; Lu and Proctor, 2001).
There are arguments that militate against this stance, as sup-
port for leakage assumptions is mixed. Ratcliff and Smith

By consistent we mean that the encoded stimulus representation
accords with a single response alternative during processing. Quali-
tative changes in drift rates are necessary in situations where stimulus
information supports different response alternatives at different points
in time (e.g., Holmes et al. 2016).
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(2004) found that in fits to behavioral data, leakage esti-
mates typically converged to 0 (resulting in similar behavior
to the standard Wiener diffusion model). Other studies using
time-varying stimuli similarly found no support for leak-
age (Evans et al., 2017). A later study involving a more
comprehensive set of model comparisons found some sup-
port for leakage operating on a timescale of 200-250 ms
(Trueblood et al., 2021), though we note that the timescale
seems at odds with the rapid time course required to produce
negative-going delta plots (e.g., corresponding to T = 30 in
Figs. 1 and 2). Moreover, reversal of the sign of the automatic
drift rate requires rapid onset of leakage that greatly outpaces
the rate of evidence accumulation for the automatic process.
Under this view, the effect of leakage would also appear to
be asymmetrical, affecting the controlled process to a much
lesser extent. Overall, interpreting the dynamics of the pulse
function in terms of evidence leakage seems not especially
viable.

If, alternatively, the pulse function is interpreted as an
after-the-fact withdrawal of evidence from the decision
mechanism that is driven by inhibition, we argue that this
interpretation is mechanistically fraught. To our minds, in
regard to conflict tasks, the purpose of inhibition is to
suppress or prevent ongoing processing of non-target infor-
mation. Logically, such a mechanism suffices to change the
drift rate of the automatic process from a non-zero value
to zero, reflecting the cessation of further processing. To
explain the sign-change entailed by DMC’s pulse function,
inhibition must go further and unring the bell of previously
accumulated distractor information, by selectively accumu-
lating “counter-evidence” that is contrary to the properties of
the distractor stimuli’ (See Fig. 3 for an example of a sin-
gle flanker trial). It is the necessity of reversing the outcome
of previous processing—rather than simply halting contin-
uing processing—that is entailed by DMC’s pulse function
that motivates us to establish whether it is possible to pro-
vide a general account of conflict data (and especially for
negative-going delta plots) through some other processing
assumptions. Further, we ask to what extent DMC’s past suc-
cesses rely on the later withdrawal or negation of previously
accumulated evidence. We are not aware of any mechanism
other than selective inhibition that would enable such sophis-
ticated tracking of evidence samples through time. If it is
possible to account for the range of benchmark data that sup-
ported DMC using a simpler set of processing assumptions
(i.e., avoiding the withdrawal of distractor evidence and the
capacity for inhibition to reverse—rather than simply halt—

7 Alternatively, this could be achieved if inhibition prevents the auto-
matic channel from accumulating evidence for only one of the two
response alternatives.

ongoing evidence accumulation dynamics), we believe it is
preferable to do so.®

The revised diffusion model for conflict tasks
(RDMCQ)

We propose a revised DMC (RDMC) based on the orig-
inal DMC model framework of automatic and controlled
processing (i.e., short-lived automatic processing alongside
sustained controlled processing). Our framework enforces
consistency in the way task-irrelevant information is repre-
sented over the course of processing by relying on dynamic
normalization of the strength of automatic channel activation
over time (Sewell et al., 2014; Smith and Sewell, 2013; Smith
et al., 2015). We show that RDMC successfully fits RT dis-
tribution data from both flanker and Simon tasks, naturally
generating their corresponding positive- and negative-going
delta plots without requiring inhibition or changes in how
distractor information is represented over time. That is, we
show that conflict data can be explained without requiring a
mechanism that can reverse the sign of evidence previously
accumulated by the automatic channel. We fit the model to the
aggregated Simon and flanker data from Ulrich et al. (2015),
showing our revised model produces visually comparable
fits to the data than the original DMC. We present RDMC
as a non-inhibitory account of conflict tasks that has the
potential to be tested against alternative inhibition accounts
directly. We therefore show that negative-going delta plots
in particular can be explained within a purely feed-forward
modeling framework and that late withdrawal of previously
accumulated evidence is not needed to explain the variety of
delta plots that are observed in the literature.

In RDMC, we assume that the output of automatic and
controlled channels cannot be altered once it has entered
the decision process (i.e., initial evidence generated by the

8 A reviewer noted that negative congruency effects (i.e., RTs that are
faster on incongruent than congruent trials) in masked priming tasks
with relatively long stimulus onset asynchrony (SOA) between target
and distractors (Burle et al., 2005; Eimer and Schlaghecken, 1998) can
be interpreted as strong evidence for inhibition and the withdrawal of
previously accumulated distractor evidence. However, the timescales
associated with trials in these tasks require caution in interpretation,
as it is likely that distractor information has been fully identified and
processed before presentation of the target. With long SOAs, it is
unclear whether a trial reflects a single, extended decision episode, or
if it comprises multiple decision episodes. The dynamics associated
with these cases are quite different, and so what the negative con-
gruency effect arising from these studies implicates mechanistically
is ambiguous (e.g., inhibition of early evidence accumulated within a
single decision-making episode vs. inhibition of one response alterna-
tive across successive decision-making episodes). Further research is
required to understand the mechanistic relationship between inhibition
and evidence accumulation dynamics along with factors that determine
the beginning and end of different decision-making episodes.
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Fig.3 Representation of flanker >
arrows implied by
time-dependent changes in
automatic drift rate in DMC. If
drift rates are viewed as
reflecting encoded properties of

the stimulus, it is difficult to = >SS >
reconcile how fixed stimulus ~=
properties give rise to ﬁ /
representations that vary && \
qualitatively over time. A key > > > ~ S
point of contention is that the { .
sign change of the automatic ——
drift rate would seem to imply a ’
reversal of the information umet
encoded by distractor stimuli
> > >
=\
> >>
0—=[]> —
~— -

Dynamic Attention Weights:
Top-Down Goals x
Bottom-Up Conflict

Base Drift Rates:
Discriminability x
Salience

Capacity Limitation
on Attention

Fig.4 RDMC model components and interaction dynamics. Base drift
rates d. and d, represent the properties of target and distractor stimuli,
respectively. We assume base drift rates depend on the relative salience
of target and distractor stimulus elements. The influence of target and
distractor information on decision-making is dynamically modulated
in RDMC via time-dependent attention weights that reflect the interac-
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Combined Evidence Accumulation Described by
Combined Drift Rate Function

Channel-Specific
Evidence Accumulation

tion of top-down goals with bottom-up characteristics of the stimulus
display. Mathematically, the channel-specific activation is the product
of the time-dependent attention weight and base drift rate. As in the
original DMC, evidence accumulation is driven by the combined drift
rate that is based on automatic and controlled channel activation



Psychonomic Bulletin & Review (2024) 31:1-31

automatic channel cannot be withdrawn later in processing).
Consequently, evidence outputted by the automatic channel
persists, but becomes relatively less influential over time in
the face of continuing evidence output produced by the con-
trolled channel (see Fig. 4 for the architecture of RDMC).
To model the flow of information outputted by the two chan-
nels over time, we allow the drift rates for both automatic
and controlled processes to vary over time, using a normal-
ized weighting function that jointly determines the activation
levels of the two channels. Specifically, we model changes
in automatic channel activation weight using an exponential
decay function,

wa () = Age ™M )

and set controlled channel activation to

we(t) =1 —wq(t) 4)
In Eqgs.3 and 4, the initial activation level of the auto-
matic channel (i.e., at + = 0) is given by Ag, which is

bounded within the interval [0,1].9 The value of Ag reflects
the observer’s initial distribution of processing resources
across automatic and controlled channels. The rate at which
attentional resources are diverted from the automatic channel
to the controlled channel is given by k. Based on both empir-
ical precedent (Craft and Simon, 1970; Eriksen and Eriksen,
1974; Simon and Small, 1969) and recent modeling work
by Evans and Servant (2022), we allow the attention shift
parameter, k, to differ for congruent and incongruent trials,
reflecting potential differences in facilitation and interfer-
ence effects observed in Simon and flanker tasks. We denote
the attention shift parameter on congruent trials as k. and on
incongruent trials as k;. The potential for asymmetric facilita-
tion and interference—or asymmetrical enacting of cognitive
control more broadly—follows logically from the demands
of conflict tasks. Responding correctly to incongruent trials
requires filtering out distractor information. By contrast, dis-
tractor filtering is not necessary on congruent trials, though
people may continue to do so owing to larger strategic consid-
erations. We argue that differences in the speed of attention
shifting reflect task-dependent differences in the way top-
down goals interact with bottom-up stimulus information.
The coupled functions in Eqs.3 and 4 describe dynamic
changes in the way attention is allocated across the two
processing channels, reflecting the operation of cognitive
control. Kinder et al. (2022) used mouse tracking to provide
recent evidence supporting continuous attentional selec-
tion in the flanker task, consistent with our assumption of

9 Technically, A could take on any value between [0, 1], but we think
values closer to 0 would only arise in quite unusual circumstances. For
example, if a central target stimulus were to be shown prior to flanker
stimuli in a flanker task. In such a case, it might not be unreasonable
to assume that automatic channel activation could be completely shut
down from the beginning of the trial, resulting in Ag = 0.

smooth continuous changes in channel activation. The atten-
tion dynamics illustrate the interplay between top-down and
bottom-up factors, as exemplified by Folk and Remington’s
(1998) work on attention capture. At the task level, there is a
constant top-down goal of identifying the target. At the trial
level, there is bottom-up information about the congruency
of stimulus elements that is variable across trials. The top-
down goal always provides impetus to shift attention onto
the target. Bottom-up congruency information determines the
urgency with which the shift must occur in order to achieve
the goal. Shifting attention is necessary on incongruent tri-
als and must occur rapidly to minimize the chance of an
error. On congruent trials, however, target identification can
be achieved regardless of how quickly attention is focused
on the target (Luo and Proctor, 2016; Moore et al., 2021).
Our assumption is that congruency modulates the speed with
which attention is shifted in pursuit of the top-down goal of
identifying the target. We consider trial congruency as a high-
order emergent feature of the stimulus configuration that is
based on the homogeneity of stimulus elements (e.g., as in
flanker tasks) or the conceptual alignment of elements (e.g.,
as in Stroop and Simon tasks). Importantly, assessments of
congruency are independent of identification of the target or
distractor elements, and so the detection of conflicting ele-
ments or alignment does not rest on knowledge of the target.
Mechanistically, we envisage a conflict detection mechanism
that monitors activation levels of nodes that code for different
stimulus properties (e.g., Yeung et al., 2004). Conflict detec-
tion occurs when multiple nodes are activated above some
threshold to filter background activation levels. Critically,
the mechanism requires no awareness of the properties the
nodes code for, just their activation levels. The influence of
this bottom-up conflict signal on attention shifting depends
on the strength of the conflict signal relative to the activa-
tion strength of a top-down goal representation.'” Following
the framework of Botvinick et al. (2004), conflict detection

10 Conceptions of attention in visuospatial tasks like the flanker are
very naturally characterized as a spatiotemporal distribution of process-
ing resources, sometimes characterized as a “zoom lens” (e.g., Eriksen
and St. James 1986) to build on Posner et al.’s (1980) original spot-
light metaphor, and exemplified in conflict processing theories by the
shrinking spotlight model (White et al., 2011). For other conflict tasks,
like the Simon and Stroop, a more generalized conception of attention
is required. Rather than thinking of attention in purely spatiotemporal
terms, we follow the example from the category learning literature, and
conceptualize attention as a distribution of processing resource dedi-
cated to processing information across different stimulus dimensions
(e.g., Nosofsky, 1986). Under this view, based on Shepard’s (1980)
classic work applying multidimensional scaling to characterize psy-
chological representations, stimuli can be encoded based on a number
of attribute dimensions, and processing resources can be distributed
unevenly across those dimensions based on their task relevance (or
salience). Stimuli in the visual version of the Simon task can be repre-
sented along two dimensions: an orientation dimension (corresponding
to the target property) and a location dimension (an irrelevant distractor
property). Traditional Stroop stimuli can similarly be encoded along
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is a specific role of anterior cingulate cortex (ACC) that
should occur before the process of conflict resolution which
is mostly implemented in the dorsolateral prefrontal cortex
(DLPEC; Miller and Cohen, 2001; Carter and van Veen,
2007). Botvinick et al.’s 2004 idea can be adapted to general
conflict detection and resolution such as Stroop, flanker, and
Simon tasks.!! Indirect support for the notion of rapid conflict
detection comes from several sources. In visual perception
and texture segmentation, global features are known to take
precedence over local features (Navon, 1977; for a review,
see Hegdé, 2008). Visual pattern recognition has been shown
to be highly efficient (Bergen and Julesz, 1983), occurring
within 100 ms, and has classically been relied upon to explain
highly efficient visual search (Treisman and Gelade, 1980).
While these pattern recognition results are perhaps most rele-
vant to the flanker task, other examples of congruency-related
factors affecting processing may be more relevant to the
Simon and Stroop tasks. For example, the McGurk effect
arguably demonstrates rapid congruency-related influences
on perceptual processing (McGurk and Macdonald, 1976).
More generally, conceptual priming effects on lower-level
perceptual processing show how the match between a con-
ceptual representation and stimulus information can rapidly
modulate ongoing processing (e.g., Lupyan and Ward 2013;
Oliva and Torralba 2007). Further evidence from Ariga and
Yokosawa (2008) suggests that congruency detection can
also be evaluated at a more abstract level of representation in
which a distractor shares an abstract semantic level of rep-
resentation with a target. We therefore argue that the idea of
conflict detection also applies at the level of response conflict
arising in Simon tasks and at the level of semantic mean-
ing in Stroop tasks, not only at perceptual in flanker tasks.
More generally, conflict detection can occur in an absence
of attention/awareness (Xiang et al., 2013; Nuiten et al.,
2021), and its rapid time course is supported by ERP evidence
(Larson et al., 2014 for review, Katamata et al., 2018, Ghin
etal.,2022, Coderre et al., 2011). To summarize, Eqs. 3 and 4
characterize the time course of attention shifting in a way that
captures the dynamic interplay between top-down task goals
and bottom-up stimulus factors, providing an account of how

dimensions capturing the (irrelevant) lexical properties of the stimulus
and the (relevant) chromatic properties. In either case, attention shifting
in our model assumes that processing resources initially allocated to the
irrelevant dimension (e.g., due to bottom-up attentional capture) can be
redirected to the relevant stimulus dimension. Our model instantiates
the idea that attention mechanisms are responsible for allocating a lim-
ited pool of processing resources to restrict processing of task-irrelevant
information and boost processing of task-relevant information.

11 ACC is sensitive to many forms of conflict. Regarding response con-
flict detection in Simon tasks, ACC has been highly sensitive to response
conflict level (Bunge et al., 2002; van Veen et al., 2001; Weissman et al.,
2003) and also it is strongly related to premotor, supplementary motor,
and primary motor areas (Picard and Strick, 1996; Paus, 2001).
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these factors drive adaptive shifts in attention as a function
of trial type.

Notwithstanding debate in the literature regarding how
automatic and controlled channels interact (see Moors and
De Houwer (2006) for a review on automaticity, and Cohen
(2017) for areview on cognitive control), identifying changes
in channel activation specified by Eqgs. 3 and 4 with shifts in
attentional resources provides a level of mechanistic speci-
fication that goes beyond the pulse function used in DMC.
In particular, it is unclear whether automatic processing is
affected by the increasing influence of the controlled chan-
nel (Hommel, 1993, 1994), or if it is actively suppressed
(Ridderinkhof, 2002a). As discussed above, DMC’s pulse
function is agnostic to mechanism—it describes the outcome
of a change in processing without requiring specification of
the underlying causal mechanism—and so the withdrawal of
evidence outputted by the automatic channel can be inter-
preted as leakage (or passive decay), active suppression, or
both (White et al., 2018). By contrast, in RDMC, atten-
tional resources are actively shifted away from the automatic
channel on incongruent trials with higher priority than on
congruent trials, in line with the requirements of the task
and the observer’s goal to respond accurately, modulated by
the level of conflict among stimulus elements. Allowing for
differences in attentional shifts across congruent and incon-
gruent trials, when k. # k;, further underscores that shifting
attention in RDMC is not a passive non-strategic process,
but an outcome of the interaction of top-down goals with
bottom-up congruency levels of the stimulus. The realloca-
tion of processing resources requires no passive leakage of
evidence, is inconsistent with notions of passively decay-
ing channel activation, occurs without active suppression of
the automatic channel, and does not involve the withdrawal
of previously accumulated evidence. Instead, the speed with
which goal-aligned shifts of attention are initiated depends
on the presence of a bottom-up conflict signal that determines
the urgency of enacting a shift.

More specifically, exogenous attention (e.g., the capture of
attention by flanker arrows) and endogenous attention (e.g.,
responding to the target arrow) are the two different mecha-
nisms instantiating the concepts of automatic and controlled
channels in RDMC, respectively. We adopt an executive net-
work perspective proposed by Botvinick et al. (2004) who
extended the idea of focal attention to conflict resolution.
They argue that the focal attention system is strongly related
to executive control as the system can also produce top-down
regulation in medial frontal cortex and anterior cingulate,
which are often implicated in conflict resolution and conflict
monitoring (Botvinick et al., 2001). Those two brain regions
are activated on conflict trials in Stroop, Simon, and flanker
tasks, hence conflict in these tasks share a common neu-
rophysiological locus (Carter and van Veen, 2007). Further
imaging evidence supports the occurrence of attention allo-
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cation in conflict tasks by suggesting that the dorsal anterior
cingulate cortex is involved in attention allocation toward
task-relevant stimuli, thus, limiting attention to distractors
(Picard and Strick, 1996).

The output of the automatic and controlled channels is
determined by the product of the relevant channel activation
weight and a fixed channel-specific base drift rate parameter
for automatic and controlled channels, d, and d., respec-
tively. Note that the sign of the automatic base drift rate, d,,
is dependent on congruency condition, and is always positive
on congruent trials and negative on incongruent trials. The
controlled base drift rate, d., by contrast, is always positive.
The channel-specific base drift rates describe the maximum
levels of stimulus quality provided by task-irrelevant and
task-relevant components of the stimulus (i.e., they index
latent discriminability when attention is focused exclusively
on either target or distractor information). We allow for
d, # d. to incorporate effects of the relative salience of
target and distractor information into the model. For exam-
ple, the greater number of distractor arrows in the flanker
task may be especially potent in capturing attention, such
that d, > d.. By incorporating the effects of discriminabil-
ity and salience into a single value reflecting base drift
rates, we implicitly combine these factors in our notation.
A more complete expansion of factors influencing base drift
rates would separate latent discriminability from salience for
both targets and distractors, setting d, = d. and allowing
for independent estimation of salience multipliers for each
term. In the current treatment, we avoid overcomplicating
the notation with this information, but acknowledge that it
may be desirable to separate salience from base drift rate
under some circumstances. Theoretically, the base drift rate
parameters capture our assumption that the encoded stimu-
lus quality for different components of the stimulus should
remain unchanged if the stimulus is fixed over the course
of a trial. What can change dynamically is the degree to
which information about each stimulus component enters
the decision process, and this is determined by the channel
activation weighting functions, w, () and w,(¢). Following
the same assumption as DMC, we assume that information
from automatic and controlled channels are summed into a
single combined evidence channel. In our model, the time-
varying drift rate of the combined evidence channel is given
by v(t) = wy(t)d; + w.(t)d.. Evidence accumulation in
our model is therefore described by a Wiener process with
drift rate v(t), dX(t) = v(t)dt + odW(t), which can be
expanded to match Eq.2 with the exception that both auto-
matic and controlled drift rates are time-dependent. Table 1
summarizes the parameters of RDMC.

Inimplementing RDMC, we follow the same conventional
assumptions of the standard diffusion decision model (DDM)
with regards to parameters not directly related to the behav-
ior of the two processing channels (see Ratcliff 2013 for

Table 1 Model parameters

Symbol Parameter

Ao Initial activation level of the automatic channel
ke Attention shift rate for congruent trials

ki Attention shift rate for incongruent trials

d, Base drift rate for the automatic channel

d, Base drift rate for the controlled channel

a Boundary separation

T, Mean of non-decision time

St Range of non-decision time

details about some of these parameters). We set the square
root of the diffusion coefficient, o, to 0.1. Non-decision time
is assumed to be a uniform distribution with mean, 7,, and
range, s;.'> We depart from conventional DDM assumptions
in the current presentation of RDMC by omitting between-
trial variability in both drift rates and start-point. In the
standard DDM, these parameters are responsible for control-
ling the relative speed of correct versus error responses. Drift
variability produces errors slower than correct responses
(Ratcliff, 1978). Start-point variability produces errors that
are faster than correct responses (Ratcliff and Rouder, 1998).
In the domain of typical conflict tasks, errors tend to be rare
(e.g., < 5% of total trials), and so for simplicity (and ease
of parameter estimation), we do not include these parame-
ters in our model. Of course, should the model be applied to
a task where error rates are relatively higher and the order-
ing of correct and error RTs is a diagnostic feature of the
data, expanding the model by incorporating these additional
sources of parameter variability may be necessary.

The activation dynamics reviewed above lead to clear
differences in the way distractor information influences
decision-making in RDMC compared to the original DMC.
Perhaps most importantly, the channel activation functions
mean that evidence that is initially accumulated through the
automatic channel persists through time rather than being
eventually withdrawn from the decision mechanism. Criti-
cally, RDMC still predicts that the relative influence of this
information diminishes over time because evidence from the
controlled channel continues to accumulate over the course of
atrial. Due to exponential decay of automatic channel activa-
tion, the rate at which evidence is outputted by the automatic
channel decreases over time. If automatic channel activation

12 The variability of the non-decision time s, is required in the current
model to blunt the leading edge of the predicted RT distributions to
better match observed data. Empirical Simon and flanker data exhibit
a similar gradual onset of RTs RN2 (Ulrich et al., 2015). The same
rationale motivated the introduction of non-decision time variability in
the standard diffusion model (Ratcliff and Tuerlinckx, 2002). Without
non-decision time variability, the model predicts a sharper onset of
responding than is observed empirically.
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reaches zero, the automatic channel ceases to output any new
evidence to the decision mechanism. In this way, RDMC pre-
serves the theoretical principle of a transition from automatic
to controlled processing in conflict tasks.

Relating RDMC to other conflict models, we note that it
shares some similarities with SSP, which assumes k. = k;
and d, = d. in terms of the parameters of RDMC. That is,
SSP assumes the same perceptual inputs of target and flanker
stimulus'? and the same attention shrinking rate regardless
of congruent and incongruent conditions. The mechanism
of attention shrinking is conceptually similar to the idea of
how attentional resources are withdrawn from the flankers
and allocated to the target in RDMC, albeit expressed in
spatial terms. The main difference between the two models
is in the way changes in the spotlight (i.e., the distribution
of attentional resources) are triggered by conflict. In SSP,
attention always narrows in on the target, reflecting the top-
down influence of task demands (i.e., identifying the target).
In RDMC, the speed with which the “spotlight” is adjusted
is modulated by the presence of bottom-up conflict, such that
attention can shift more slowly on congruent trials.

In the next sections we show that RDMC achieves several
key benchmarks including (1) the capacity to produce both
positive- and negative-going delta plots, (2) strong parame-
ter recovery properties, and (3) excellent fits to Ulrich et al.’s
(2015) joint choice and RT distribution data from both Simon
and flanker tasks. These results demonstrate not just the
viability of RDMC as a new general model of conflict pro-
cessing, but also highlight how withdrawal of previously
encoded evidence is not necessary for explaining negative-
going delta plots.

Parameter recovery

We now examine the parameter recovery properties of
RDMC to assess the reliability with which its key parameters
are estimated. We constructed synthetic data sets by sam-
pling data-generating parameter values from ranges intended
to resemble plausible values that might be found in fits to
conflict data sets. Each individual parameter was randomly
sampled from its own uniform distribution with an appropri-
ate parameter range sufficient for generating both positive-
and negative-going delta plots (see Table 2).

We use the common chi-square method for fitting the dif-
fusion model to data (Ratcliff and Tuerlinckx, 2002; White
et al., 2018). In our applications, the model is simultane-
ously fitted to correct RT distribution data constrained by the
error rate for each congruency condition. For each condi-

13 White et al. (2011) allows different perceptual inputs of distractor
stimuli (e.g., outer flankers and inner flankers) and target stimulus in
their original model description. In that case, d, may not be equivalent
to d. with respect to the parameters of RDMC.
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tion, the correct RT distribution data are sorted into six RT
bins (formed by the.1,.3,.5,.7,.9 distribution quantiles). Error
responses are assigned to one RT bin only since the error rate
of conflict tasks is quite low (typically < 10%), and our goal is
to explore RDMC'’s parameter recovery properties under sim-
ilar conditions to how the model might be applied to actual
data sets. The expected frequency E in each RT bin is given
by E = Zile P; N; where P; is the proportion of responses

and N; is the number of observations in each i RT bin. The
(0—E)?
E

chi-square goodness-of-fit is the sum of over the six
correct response bins and one error response bin, where O
stands for the observed frequency. Best-fitting parameter esti-
mates are obtained by minimizing the chi-square value via
the SIMPLEX routine (Nelder and Mead, 1965).

We simulated 40 data sets for three different numbers of
observations per congruency condition (N=200, 500, 1000)
to test how well parameters were recovered, given trial
numbers similar to those found in some empirical studies
(N=200). For fitting each synthetic data set, we randomly
selected 10 starting points within £10% of the generat-
ing parameter value to avoid local minima. The best-fitting
parameter set was used to compare generating versus recov-
ered parameter values. We quantify the quality of parameter
recovery via the correlation (r) between the generating and
recovered parameter values. Stronger correlations indicate
better recovery results, and we use the same criteria as White
et al. (2018) to assess the quality of parameter recovery:
S5 < r < .75 is considered fair, .75 < r < .9 is good,
and r > .9 is excellent.

Figure 5 illustrates the correlation between the recovered
parameters versus the generating parameters of RDMC as a
function of N. In general, all model parameters show excel-
lent recovery even at N > 200. The lone exception was
near-excellent parameter recovery for the initial automatic
channel activation parameter Ag, at N > 1000, r = 0.87.

Simulations of delta plots

A key challenge for theories of conflict processing is account-
ing for changes in the magnitude of congruency effects as
a function of overall processing time (Pratte et al., 2010).
Any general theory of conflict processing must be able to
account for situations where the congruency effect increases
over time as well those where the congruency effect dimin-
ishes over time. These different patterns are often observed
in flanker and Simon tasks, respectively, producing positive-
and negative-going delta plots. The following simulation
exercise demonstrates how RDMC’s parameters affect the
dynamics of conflict processing and, in turn, the slopes of
delta plots. We show how the model can produce a range
of delta plots by modulating the activation dynamics of pro-
cessing in the automatic and controlled channels. We present
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Table2 Ranges of parameter .

values used in the parameter Ao ke ki da de “ Tor 5t
recovery study 0.6—0.9 0-80 20-80 0.3-0.7 0.4-0.8 0.07-0.15 300-370 70

the results of three simulations that vary channel activa-
tion dynamics via the k. parameter to manipulate the rate
at which attention shifts away from the automatic channel on
congruent trials. (See Table 3). For each parameter set, we
simulated 4000 congruent and incongruent trials to approxi-
mate asymptotic model predictions from which we construct
delta plots. Across the three parameter sets, the value of k.
is varied to illustrate the role attentional shift dynamics have
in determining the shape of the delta plot produced by the
model.

Figure 6 illustrates the simulation results of slow atten-
tion shifting on congruent trials (i.e., data generated using
the parameter set in the top row of Table 3). In this simula-
tion, channel activation dynamics differ dramatically across
different trial types, as attention shifts rapidly on incongru-

Table 3 Data-generating parameters to illustrate the relationship
between the k. parameter and the resulting delta plot predicted by the
model

Figure
Parameters
Ao ke ki dy de a Ter
6 0.8 2 30 0.4 0.6 0.094 300
7 0.8 10 30 0.4 0.6 0.094 300
8 0.8 20 30 0.4 0.6 0.094 300

For these simulations, non-decision time variability, s; = 0

ent trials (top right panel) but relatively slowly on congruent
trials (top left panel). The resulting slow decay of automatic
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Fig. 5 Parameter recovery for RDMC based on 40 simulated data sets. Each subplot shows the recovered parameter value plotted against the
original data-generating parameter value. The correlation between the recovered and the original parameter values is used to quantify recovery,

which is generally excellent
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channel activation indicates an extended period of decision
time where the information across both channels accumulates
towards a common decision on congruent trials, as seen in the
middle left panel of Fig. 6. Similarly, the fast attention shift
reflects the time course of active interference produced by
the distractor stimulus on incongruent trials. This early evi-
dence works against responses being generated too quickly,
as evidence accumulated by the automatic and controlled
channels negate one another when combined. Once atten-
tion has shifted away from the automatic channel, evidence
accumulation becomes dominated by the controlled channel
(middle right panel of Fig. 6). Under these circumstances,
RDMC produces a negative-going delta plot.

Figures 7 and 8 show the simulation results of the moderate
and rapid attention shifts on congruent trials (i.e., data gener-
ated using the parameter sets in the middle and bottom rows
of Table 3, respectively). In these simulations, attentional
reallocation on congruent trials proceeds at a moderate rate
(Fig. 7) and a fast rate (Fig. 8). As the attention shift becomes
faster, there is less facilitation produced by the distractor
stimulus. This means that the controlled channel comes to
dominate the decision process more quickly, enabling a more
consistent overall rate of evidence accumulation (see mid-
dle left panels of Figs. 7 and 8). In both of these cases,
RDMC produces positive delta plots. The slopes of the delta
plots depend on the rate of the attention shift. The faster the
shift (i.e., the magnitude of k.), the steeper positive slopes
of the delta plots become (cf. the top left panel of Figs. 7
and 8).

To explore the conditions under which RDMC predicts
negative-going delta plots in more detail, we created a grid
of parameter values for both k. and the difference in atten-
tion shift rate across congruent and incongruent trials (i.e.,
k; — k) and evaluated the slope of the resulting delta plot (see
Fig. 9). The results of this exercise show that negative-going
delta plots are predicted under conditions where (1) k. takes
on a relatively small value, and (2) there is a large differ-
ence between k. and k;. Suppose k. is small and difference
between k. and k; is also small, that would imply %; is rela-
tively small. In this case, on incongruent trials, there would
be more fast errors along with slower correct responses due
to the small k; (i.e., the influence of distractor information
would persist for longer due to the slower attention shift rate).
This would induce a large RT gap between congruent and
incongruent CDFs. Therefore, the parameterization predicts
a positive-going delta plot instead of a negative-going one.

Modeling data with RDMC

Having demonstrated the strong parameter recovery proper-
ties of RDMC along with the model’s theoretical capacity
to produce the range of delta plots that are observed in dif-
ferent conflict tasks, we now examine how well the model
fits data from both Simon and flanker tasks. To facilitate
comparability with the original DMC, we fit our RDMC to
the group-averaged data from Ulrich et al. (2015). We also
investigated fits to individual participant data from Ulrich
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Fig.9 Delta plots produced by exploring a grid of parameter values for k. and the difference between k. and k; (i.e., denoted as ky;s7). Each dot
in each subplot represents the RT quantiles arranged from the fastest to the slowest (i.e., 0-20 %, 20-40%, 40—-60%, 60-80%, and 80—100%)
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et al. (2015). The data from the Ulrich et al.’s (2015) study
comprise both Simon and flanker task data that show clear
differences in delta plots: negative-going for the Simon and
positive-going for the flanker. While we focus on fitting the
joint accuracy and RT distribution data for parameter esti-
mation, we evaluate model performance by considering fits
to these primary data in addition to other secondary features
of the data that are emergent properties of the primary data.
These include delta plots for the Simon and flanker tasks as
well as the CAFs associated with each task. Because the lat-
ter two features of the data were not explicitly factored into
parameter estimation, they serve as out-of-sample general-
ization tests. !4

Ulrich et al. (2015) recruited 18 participants in total (two
were omitted from the data analysis due to high error rates).
Each participant completed the Simon and flanker tasks in
a single experimental session, comprising eight blocks of
56 trials each, including 2 practice blocks. The Simon and
flanker tasks were alternated across successive blocks (i.e.,
participants did not perform the same task across consecutive
blocks.). Trial blocks were counterbalanced such that half of
the participants started with the Simon task, and the other half
started with the flanker task. Participants received feedback
at the end of each trial, where the response was shorter than
150 ms (i.e., too fast), or longer than 1500 ms (i.e., too slow),
or incorrect.

Data from the 16 participants—ignoring the two with high
error rates—were used to compute group-averaged data via
quantile averaging of the correct RT distribution data. Unlike
Ulrich et al. (2015), we omit the two blocks of practice tri-
als from the group-averaged and individual data. In all other
respects, we follow Ulrich et al.’s treatment of the data and
exclude trials with RTs shorter than 200 ms or longer than
1200 ms. We used the same chi-square approach for fitting
the model to the Ulrich et al. (2015) data as we did for the
parameter recovery study. We focused only on fitting the
joint choice-RT distribution data for parameter estimation
purposes. We then examined how well the model repro-
duces both delta plots and CAFs as an incidental byproduct
of addressing these primary data. Because predictions from
RDMC must be produced by simulation, we approximated
asymptotic predictions from the model by simulating 8000
trials per condition to compare against data.

Figure 10 shows the predictions of RDMC against the
group-averaged data from Ulrich et al. (2015). Data and fits
for the Simon task are shown in the left panel, the corre-
sponding information for the flanker task are shown in the

14 Ulrich et al. (2015) fitted both RT distribution and CAF data simul-
taneously, incorporating an arbitrary scaling of accuracy units to RT to
do so. Our fitting approach obviates the need for a conversion factor to
address choice and RT.

right panel. Fits to the individual data are of comparable
quality as the fit to the group-averaged data, and are shown
in the Appendix. Notably, for the Simon data, several indi-
viduals show a negative congruency effect, where congruent
RTs are slower than incongruent RTs. RDMC successfully
captures these patterns in the individual data. We revisit
the issue of negative congruency effects in the Discussion,
where we report additional simulation results exploring their
relationship with negative-going delta plots. The model pro-
vides an excellent fit to the primary choice-RT distribution
data for both the Simon and flanker tasks. Table 4 shows
the estimated parameters for the Simon and flanker task. As
can be seen in Fig. 10, the predicted CDF of each congru-
ency condition follows almost every pattern of the observed
CDF. Importantly, the model shows close fits to changes in
the difference in congruent and incongruent RTs over time:
decreasing in the Simon task and increasing in the flanker
task. The fact that the model closely captures these distinct
features of the primary data from the Simon and flanker tasks
is suggestive of its capacity to accurately predict the differ-
ences in delta plots observed across tasks. Figure 11 confirms
this expectation, showing that the relevant delta plots are
also captured by RDMC despite the model not being fitted
directly to this secondary feature of the data. In particular,
RDMC correctly generates a negative-going delta plot in the
Simon task and a positive-going delta plot in flanker task.
Although the accuracy rates across conflict tasks are gener-
ally very high (i.e., > 90%), distinct patterns of accuracy
as a function of binned RT are observed on congruent and
incongruent trials of Simon and flanker tasks (Ulrich et al.,
2015; Heitz, 2014). Figure 12 reveals the experimental and
the model-predicted CAFs for the Simon and flanker tasks.
In both tasks, accuracy is unconditionally high on congru-
ent trials. On incongruent trials, however, accuracy rates are
markedly lower when RTs are fast, and errors become far
less frequent as processing time increases. Notwithstanding
the differences in the time courses of the congruency effects
captured by the model (as shown in the delta plots of Fig. 11),
RDMC successfully accounts for the similar CAFs generated
across tasks. Importantly, this secondary feature of the data
did not directly inform parameter estimation, and so, like
the delta plots predicted by RDMC, the CAF predictions can
be considered as out-of-sample data that constitute a strong
validation test.

Best-fitting parameters estimates for both the group-
averaged data as well as the average of the parameter
estimates across individuals for the two tasks are shown
in Table 4. Examination of the model parameters provides
some insight into how the model accounts for performance
in conflict tasks. The parameter estimates for the individ-
ual fits generally follow the patterns of the group-averaged
estimated parameters. Indeed, the individual parameter esti-
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Fig.10 Observed and predicted CDFs of RT in Simon (left panel) and flanker (right panel) task. Each plot depicts congruent (green) and incongruent
(purple) RTs separately

Table 4 Parameter estimates for the group-level and individual RDMC fits to Ulrich et al.’s (2015) Simon and flanker data

Task Type Data Type Parameters
Ag ke ki dq de a Ter St X2
Simon task Group 0.840 0.542 25.654 0.347 0.477 0.089 279.666 103.512 8.565
Flanker task Group 0.789 42.477 93.039 0.822 0.373 0.081 312.476 94.832 11.716
Simon task Individual 0.853 3.945 29.382 0.372 0.521 0.092 284.166 84.517 16.72
Flanker task Individual 0.799 40.265 93.772 0.773 0.406 0.086 311.823 99.168 12.78
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Fig. 11 Empirical and predicted delta plots of Simon (left panel) and flanker task (right panel). The open plotting symbols connected by the dashed
line represent the empirical.1,.3,.5,.7,.9 quantiles of the RT data. RDMC'’s predictions are shown as open symbols connected by the solid line
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Fig. 12 Empirical and predicted CAFs covering five equal-sized RT
bins (i.e., 0-20%, 20-40%, 40-60%, 60-80%, 80-100%). Simon and
flanker data are shown on the left and right panel, respectively, as open

mates averaged across individuals are highly similar to the
estimates based on fitting the group average, consistent with
previous demonstrations fitting the standard diffusion model
by Ratcliff et al. (2004, 2006). For both tasks, the ini-
tial activation value for the automatic channel is high (i.e.,
Ag > 0.75), consistent with the idea that the task-irrelevant
information—Ilocation for the Simon and peripheral stimuli
in the flanker—dominates early processing. The high initial
weight Ag can be interpreted as reflecting the strong salience
of the distractor information and its capacity for producing
attention capture. Regardless of task, on incongruent trials,
automatic channel activation rapidly decreases as attentional
resources are reallocated from the automatic channel to the
controlled channel. The allocation functions differ for con-
gruent trials in a task-specific way: whereas attention is
diverted away from task-irrelevant information for the flanker
task (presumably controlled by a focusing of the attentional
spotlight, as envisioned in the SSP model; White etal., 2011),
reallocation of resources is relatively slower in the Simon
task. These differences highlight how the top-down strategic
aspect of cognitive control interacts with bottom-up stimulus
information. To avoid errors, attention must be reallocated to
filter out task-irrelevant information on incongruent trials,
but on congruent trials, this reallocation is not necessary to
achieve accurate performance. Consequently, attention shifts
in congruent conditions are less urgent to initiate. The more
urgent attention shifts in the flanker task likely arise from
the high salience of the distractor information, reflected in
d, > d. for the flanker, which differ from the Simon, where
d, < d.. We conjecture that the highly salient distractor

40-60
RT bins (%)

0-20 20-40 60-80 80-100

plotting symbols connected by the dashed line. RDMC’s predictions
are shown by the solid line. Each plot depicts congruent (green) and
incongruent (purple) RT separately

elements in the flanker provide a stronger bottom-up con-
flict signal that engages the attention shift mechanism more
strongly than the conflict signal produced by location in the
Simon.

Regarding the simulation exercise reported earlier, the
slopes of delta plots were determined by how quickly atten-
tional resources were reallocated on congruent trials (i.e.,
differences in the k. parameter). The fits to the Ulrich et al.
(2015) data provide further support of these simulation results,
showing how k. determines the slope of the predicted delta
plot. Figures 13 and 14 illustrate the activation dynamics pre-
dicted by RDMC for congruent and incongruent trials for the
Simon and flanker tasks, respectively. They are presented in
the same way as in the earlier simulation exercise. Much
like the simulated delta plots presented above, we see that
RDMC, when fitted to Simon data featuring a negative-going
delta plot, assumes channel activation dynamics that differ
considerably across congruent and incongruent conditions.
For congruent trials, there is relatively slow reallocation
of processing resources across channels. For incongruent
trials, there is rapid reallocation of resources away from
the automatic channel and onto the controlled channel (see
Fig. 13). Figure 14 shows that for the flanker data, distrac-
tor information stops accumulating at a very early stage
of decision processing on both congruent and incongruent
trials, reflecting unconditional distractor filtering. Overall,
RDMC’s account of empirical positive- and negative-going
delta plots aligns with the results of our simulation exercise:
negative-going delta plots arise when distractor information
is not rapidly filtered out on congruent trials.
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Fig. 13 Channel activation
dynamics predicted by RDMC
for the Simon task. The top two
panels show the predicted
activation dynamics for
congruent (/eft) and incongruent
(right) conditions. The bottom
two panels depict the model
prediction of the expected
evidence output of the automatic
and controlled channels in
congruent (/eft) and incongruent
(right) conditions

Fig. 14 Channel activation
dynamics predicted by RDMC
for the flanker task. Plotting
details are the same as Fig. 13
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Discussion

The present study aimed to develop and test a new model of
conflict data, RDMC, that implements different processing
assumptions from the original DMC proposed by Ulrich et al.
(2015). We examined the parameter recovery properties of
RDMC and fitted the model to benchmark Simon and flanker
data from Ulrich et al. (2015). We have shown that the new
model, which enforces consistent representation of distractor
information during processing, successfully accounts for all
of the key benchmark data used to support the original DMC.
Importantly, the processing assumptions of RDMC—being
tied to the dynamics of attention reallocation—are mecha-
nistically more clearly-defined than those underpinning the
original DMC, while also simplifying, or removing ambi-
guity about, the relationship between fixed properties of the
stimulus and the cognitive representation of those stimulus
elements during processing. In adopting these assumptions,
we are able to account for a broad range of conflict effect data
within a framework where evidence is never withdrawn from
a decision mechanism, inhibited, or leaked away. We show
that negative-going delta plots can be produced in a theoret-
ically defensible way, by purely feed-forward assumptions
about processing. Once evidence is accrued by either the
automatic or controlled channel, it persists until a response
is made. Further, we showed that RDMC exhibited excellent
parameter recovery with realistic experimental trial counts
(N=200). The results of model fitting have shown that RDMC
is able to account for the quantile RT data of the Simon
and flanker tasks, incidentally predicting their delta plots
(positive-going for the flanker task and negative-going for
the Simon task) and CAFs.

RDMC closely fits the Simon and flanker data of Ulrich
et al. (2015) in terms of the RT distributions, the corre-
sponding delta plots, and the CAFs. The Simon data (i.e.,
negative-going delta plots) are incidentally predicted when
distractor information is slowly filtered via gradual decay
of automatic channel activation on congruent trials, but
rapidly filtered on incongruent trials (i.e., when automatic
channel activation decays rapidly). Referring to the flanker
data, distractor information rapidly ceases to accumulate in
both congruent and incongruent conditions, reflecting rapid
shifts of attention for both trial types which is compatible
with Servant and Logan (2019), suggesting similar atten-
tion focusing dynamics on congruent and incongruent trials.
The speed of attention focusing is influenced by the inter-
action of top-down and bottom-up factors. Without a strong
bottom-up conflict signal (i.e., congruent trials) driving rapid
attention shifts, the activation of the top-down goal repre-
sentation alone provides the impetus to shift attention (Folk
and Remington, 1998). A question raised by our modeling
analysis concerns across-task differences in the strength of
the bottom-up conflict signal relative to the top-down goal

influence of identifying the target. For the flanker task, the
influence of the top-down goal may be amplified by the spa-
tial arrangement of the flanking stimuli (i.e., resolving the
details of the target may require focused attention; Stras-
burger, 2005). In contrast, for the Simon task, where the
target is presented in isolation, such precise attentional focus
may be unnecessary, or less vital, for achieving the goal of
target identification. The simulation exercise and the model-
fitting results suggest that the slopes of the delta plots are
modulated by how long distractor processing remains active
on congruent trials. Our modeling result also highlights that
variation in delta plots may be understood in terms of how dis-
tractor information is processed on congruent trials instead
of incongruent trials. RDMC allows for cognitive control
dynamics—when and whether there is an attention shift
that reallocates processing resources away from distractor
information—to differ with regards to task and trial type,
which allows for more fine-grained measurement of task per-
formance (see also Evans & Servant, 2022).

In specifying attention shifting as the primary mecha-
nism in RDMC, our model introduces different processing
assumptions than the original DMC. Although this results in
a comparable number of model parameters (i.e., both mod-
els used eight freely estimated parameters to fit the data of
Ulrich et al., 2015, however, Ulrich et al. estimated the dif-
fusion coefficient in a way that produces no effect on the
resulting model predictions, rendering the effective num-
ber of free parameters in their original fits equal to seven;
see Donkin et al., 2009, for discussion of the parameter
scaling properties of sequential sampling models), there are
potential concerns that the assumptions in RDMC might
afford additional and unwarranted flexibility. To this con-
cern, we respond that DMC is a mechanism-agnostic model,
and is therefore conceptually more flexible, as the parameters
governing the pulse function are fairly open to mechanistic
interpretation. If DMC is shown to account for a particular
data set, there is uncertainty about the theoretical mechanism
that is implicated by the model’s success. We note that DMC
was deliberately designed in this way to accommodate multi-
ple (potentially competing) processing architectures. While
this kind of conceptual flexibility has clear advantages—it
identifies broad classes of theoretical frameworks or mech-
anisms that have the capacity to explain specific patterns of
data—the downside of being unable to support specific pro-
cessing mechanisms strongly limits theoretical inferences.
RDMC'’s commitment to an attention shifting mechanism is
conceptually more constraining. Not only must the model
explain how specific processing components interact with
one another, but it must also show that these interactions are
sufficient to reproduce key patterns in data. This increases
the scope for falsification in that a failure of the model
directly implicates a failure of an attention shifting account
of data. We view this as a strength of our model, as it
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allows for detailed investigation of the viability of a class of
processing assumptions for explaining a variety of conflict
effects.

Factors determining delta plots

Our investigation of RDMC also raises an intriguing ques-
tion about whether we can control the shapes of delta plots
by manipulating task design. Our model predicts a gradual
slope change in delta plots by varying congruent activa-
tion dynamics controlled by the k. parameter. Hiibner and
Tobel (2019) show that negative-going delta plots—though
not as steep as those found in Simon tasks—can be observed
in a flanker task by varying the stimulus-onset asynchrony
of flankers and the central target (i.e., when flankers are
presented before the target). Instead of a general argument
of stronger “inhibition” transitioning from a positive- to a
negative-going delta plot predicted by Ridderinkhof (2002a,
2002b) and the original DMC, our model proposes a new
idea that attentional resources remain allocated to process-
ing flankers on congruent trials or are withdrawn more slowly
due to a weaker bottom-up conflict signal. More work is
needed to explain why cognitive control is not always enacted
on congruent trials. Effort and motivation could be associ-
ated with the allocation of control and willingness to pay
the (cognitive) cost of enacting control (Kurzban et al.,
2013; Botvinick and Braver, 2015). The idea can be tested
by manipulating rewards/costs of correct/error responses or
imposing a time-pressured conflict task. For instance, par-
ticipants should be better able to filter out congruent and
incongruent distractors when they receive rewards for doing
so compared to those who are not rewarded. Some support
for this idea has been provided by Padmala and Pessoa (2011)
and Etzel et al. (2016), who employed a Stroop-like task to
control incentives. Under these circumstances, we predict
that attentional resources will be more likely to be reallo-
cated from the automatic channel to the controlled channel
in a reward-based Simon task. This leads to the expecta-
tion that a positive-going delta plot will be obtained if the
incentive manipulation encourages unconditional shifts of
attention, as found in our modeling results for the flanker
task.

Asymmetrical facilitation and interference

Since the asymmetry of resource allocation on congruent and
incongruent trials is essential for predicting the Simon data
or any other conflict tasks with negative-going delta plots,
we must reconsider the theoretical assumption of symmetri-
cal processing dynamics—facilitation and interference—on
congruent and incongruent trials in DMC. Facilitation and
interference are two separate effects in the concept of exec-
utive function, but whether they are independent has been
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debated. Kornblum et al. (1990) assumes both effects are
identical in congruent and incongruent trials as automatic
and controlled processing modes are viewed as independent.
However, previous literature, by either implementing neutral
trials (e.g., Craft and Simon 1970; Eriksen and Eriksen 1974,
Simon and Small 1969) or adopting a model-based approach
(e.g., Evans and Servant 2022), has documented the imbal-
ance of the facilitation and interference across conflict tasks.
Specifically, an absence of facilitation on congruent trials has
been observed in the presence of interference on incongruent
trials in both Simon and flanker tasks. In RDMC, automatic
and the controlled channel activations are not independent
as decreasing automatic channel activation necessitates an
increase in the controlled channel activation due to limited
attentional capacity (Egs. 3 and 4). Although distractor infor-
mation may be identical on congruent and incongruent trials,
attentional resources may not be fully reallocated on con-
gruent trials. This is somewhat analogous to how responses
are usually elicited before the attentional spotlight narrows
completely to the central target on congruent flanker trials
in SSP (White et al., 2011). Our findings suggest that the
time course of enacting cognitive control over attentional
resources depends on the interaction between the task-level
response strategy adopted by the individual and bottom-up
stimulus factors. According to RDMC, conflict is not the
sole driver of attention shifts. The allocation of attentional
resources is both sensitive to top-down (i.e., task goals) and
bottom-up (i.e., salience of stimuli and the presence of con-
flict among stimulus elements) influences. To illustrate our
findings, there is rapid attention shifting regardless of the
presence of conflict in the flanker task—potentially reflecting
a strategic policy of attentional control adopted by the indi-
vidual and/or the necessity of attention to resolve fine visual
detail about the target—whereas attention shifting appears
more sensitive to trial-level congruency in the Simon task.
The slow attention shifts observed on congruent trials in the
Simon task might reflect a weaker stimulus-driven conflict
signal to prompt shifting attentional resources across differ-
ent processing channels.

Our finding that attention is slow to shift on congruent
trials in the Simon task might seem to conflict with previous
non-modeling studies that showed no facilitation effect in
both Simon and flanker tasks (Craft and Simon, 1970; Erik-
sen and Eriksen, 1974; Simon and Small, 1969; Evans and
Servant, 2022). The basic idea is that failing to quickly shift
resources away from the automatic channel is tantamount
to facilitating processing of the target on congruent trials.
However, we argue facilitation effects are more nuanced
than this, and that a model-based approach is essential for
understanding them in full. RDMC disentangles the time
course of channel switching from the quality of informa-
tion carried by each channel naturally (i.e., the different
functional roles of the k vs. d parameters). Yet facilitation
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Fig.15 Simulated CDFs and
delta plots of the parameter set
from Table 5. Note that panels
(b) and (e) are identical
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can only be understood when considering both of these fac-
tors in combination (i.e., how base drift rate information
interacts with the time course of attention-driven changes
in channel activation). We found no facilitation effect in the
Simon task since the base drift rates for automatic and con-
trolled channels differed such that d, < d. (see Table 4). It
follows that complete and rapid reallocation of processing
resources on congruent trials would produce a higher overall
drift rate (facilitation) than the far slower and more grad-
ual reallocation we observed (no facilitation). For the flanker
task, we argue that despite d, > d., facilitation remains
absent because of the unconditional speed and completeness
of resource reallocation across congruent and incongruent
trials. For both congruent and incongruent trials, distractor
processing is short-lived as attention resources are rapidly
shifted away from the automatic channel. We argue that
combining use of RDMC with novel experimental designs
to specifically test facilitation is the most instructive way
forward.

Relation to other models and tasks

RDMC can produce positive- and negative-going delta plots
by varying the attention shift rate on congruent trials, k.,
but it is not the only model that can account for different
delta plots. Recently, Miller and Schwarz (2021) developed
a descriptive race model based on the activation suppres-
sion framework proposed by Ridderinkhof (2002a,b). This
new race model can produce negative-going delta plots by
adjusting the conditional probability of inhibition. The new
race model assumes a discrete two-stage decision process,
similar to DSTP (Hiibner et al., 2010), instead of the idea
of continuous attentional selection assumed by SSP (White
et al., 2011) and RDMC. Future research will need to exam-
ine and compare the different properties of these models. For
now, we suggest that a conceptual advantage of models like
RDMC and SSP is that they are mechanistically more well-
defined than the descriptive model of Miller and Schwarz
(2021) that focuses on modeling the finishing times of dif-
ferent processing stages.

In addition to providing good fits to Ulrich et al.’s (2015)
Simon and flanker data, RDMC can be used to examine a
broad range of conflict tasks. For example, negative-going
delta plots are not exclusive to Simon data, but they are typ-
ically found in cuing tasks and masked priming tasks (Burle
et al., 2005; Ellinghaus and Miller, 2018). Future studies
should investigate how well the model can accommodate
data from these different tasks, and if the explanations of
negative-going delta plots in particular are consistent across
them. Given our current examination of RDMC, we would
expect to observe similar conflict dynamics to the Simon

@ Springer

task, that is, relatively slow attentional shifts when tar-
get and distractor information is congruent compared with
relatively faster attentional shifts when this information is
incongruent.

Another issue to address is whether RDMC can fit negative
congruency effects (i.e., RTs that are faster on incongru-
ent than congruent trials) that are commonly seen in cuing,
Simon, and priming tasks (see Burle et al. 2005; Kane et
al. 1997; Marble and Proctor 2000; Schoeberl et al. 2019;
Tipper Tipper (1985); Van Schie et al. 2008; Eimer and
Schlaghecken 1998). Usually, these RT data show negative-
going delta plots with negative congruency effects appearing
at late RT quantiles (i.e., a crossover of congruent vs. incon-
gruent RTs as a function of overall processing time). We ran
anew set of simulations using the same procedure as the pre-
vious simulation of delta plots to show RDMC'’s capability
of producing negative congruency effects. With other param-
eters fixed, the negative congruency effect appears when the
automatic base drift rate, d,;, becomes smaller (See Table 5
and panels (a), (b), (c), (d) of Fig. 15), or the attention shift
rate for incongruent trials, k;, increases (See Table 5 and pan-
els (e), (f), (g), (h) of Fig. 15). These simulations—as well
as the fit to some of the individuals in the Ulrich et al. (2015)
data set—show that RDMC can handle negative congruency
effects without issue. Adjusting either of these parameters
generates congruent and incongruent CDFs that cross over
in the middle to late RT quantiles, producing negative con-
gruency effects in the tail quantiles of the RT distributions.
Within the model, it appears that multiple parameters can
potentially contribute to the negative congruency effect. The
simulations varying d, imply weaker representations of the
distractor information, thus, relatively weaker evidence pro-

Table 5 Data-generating parameters to illustrate the relationship
between the d, (panels (a), (b), (c), (d) of Fig. 15) and k; (panels (e), (f),
(g), (h) of Fig. 15) parameters and the resulting negative congruency
effects predicted by the model

Subplot

Parameters

Ao ke ki da d, a Ter
a 0.8 2 30 0.5 0.6 0.094 300
b 0.8 2 30 0.4 0.6 0.094 300
c 0.8 2 30 0.35 0.6 0.094 300
d 0.8 2 30 0.3 0.6 0.094 300
e 0.8 2 30 0.4 0.6 0.094 300
f 0.8 2 40 0.4 0.6 0.094 300
g 0.8 2 50 0.4 0.6 0.094 300
h 0.8 2 60 0.4 0.6 0.094 300

Note that panels (b) and (e) are identical. For these simulations, non-
decision time variability is set such that s; = 0
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duced by the automatic channel early on in the decision
process. However, we view the latter simulations with k;
varying as more plausible, as these indicate faster attention
shifts on incongruent trials relative to congruent trials. Impor-
tantly, the attention shift rate on congruent trials is as slow
as the rate associated with RDMC’s production of negative
delta plots. This suggests that negative congruency effects
might arise from the same processing dynamics that produce
negative delta plots with positive congruency effects. This is
in line with the current literature (Burle et al., 2014; Pratte,
2021), which has rarely shown the negative congruency effect
in positive delta plots (i.e., the first two RT quantiles are
always positive). We leave the question of which parameter
is most important for explaining the effect to future research.

Concluding remarks

We perceive RDMC as a useful general theoretical tool for
investigating how conflict information is processed across
different conflict tasks. Like other evidence accumulation
models, RDMC highlights the importance of analyzing
conflict data at the level of overall RT distributions. Our
model showed that slopes of delta plots can be examined
rigorously by fitting RT distribution data of congruent and
incongruent trials. We believe that further adapting RDMC
to study executive function will prove helpful to identify the
psychological mechanisms of prominent effects. For exam-
ple, the congruency effect is often found to be smaller for
trials following an incongruent trial than for trials following
a congruent trial (Gratton et al., 1992; Kerns et al., 2004;
Stiirmer et al., 2002), the congruency sequence effect or
Gratton effect. Understanding how different components of
processing are affected by such sequence effects is a chal-
lenge for current theories, but applying well-specified models
like RDMC to these problems provides an opportunity to gain
new insights into them (see Koob et al., 2023 for a recent
DMC-based analysis of the congruency sequence effect).

In sum, we present RDMC as a theoretical alternative to
inhibition-based conflict models that only allows evidence
strength to change monotonically. We showed that RDMC
provides excellent fits to data from Simon and flanker tasks,
and naturally generates appropriate delta plots and CAFs.
The model provides a general explanation of negative-going
delta plots based on the relative speed of reallocation of
attentional resources across different trial types. Importantly,

whether the model produces a positive- or negative-going
delta plot depends on attentional dynamics when target and
distractor information are congruent rather than incongruent.
Slower resource reallocation on congruent trials was associ-
ated with negative-going delta plots. This feature of RDMC
highlights the controlled (or at least non-obligatory) nature
of attentional reallocation in conflict tasks, determined by
interactions between top-down goals and bottom-up stimulus
information. Our research highlights the importance of exam-
ining stimulus-driven factors in conflict tasks more closely,
and opens the door to future research that seeks to under-
stand the specific factors that determine when and whether
people shift attentional resources in a way that depends on
within-trial conflict.
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Appendix A: Model fits to individual subjects
from Ulrich et al. (2015)

Below, we display individual fits of RDMC to the Simon and
flanker RT data from Ulrich et al. (2015). The model-fitting
procedure was the same used for the group-averaged data.
Figures 16 and 17 show individual cumulative RT distribu-
tions for congruent and incongruent trials from the Simon
and flanker tasks, respectively.

@ Springer


https://orcid.org/10.17605/OSF.IO/BS9GF
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

26 Psychonomic Bulletin & Review (2024) 31:1-31

Simon Task
1 1
08 08
06 06
0.4 04
02 02
0 0
700 800 200 700 800 200 300 400 500 600 700 800
1 1
08 08
06 06
04 0.4
02 02
0 0
700 800 200 700 800 200 800
1 1
08 08
06 06
0.4 04
02 02
0 0
700 800 200 700 800 200 700 800
1 1
08 08
06 06
0.4 0.4
02 02
700 800 %00 700 800 %00 700 800
RT

Fig. 16 Observed and RDMC-predicted CDFs for individual RTs in the Simon task. Each panel depicts congruent (green) and incongruent (purple)
RTs separately. Observed RT distributions are shown in dotted lines. Predicted RT distributions are shown in solid lines
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Flanker Task
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Fig.17 Observed and RDMC-predicted CDFs for individual RTs in the flanker task. Each panel depicts congruent (green) and incongruent (purple)
RTs separately. Observed RT distributions are shown in dotted lines. Predicted RT distributions are shown in solid lines
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