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Abstract
Visual word recognition requires encoding letter identities and positions (orthographic processing). The present study focuses 
on the emergence of the mechanism responsible for encoding letter order in a word: position invariance. Reading experience 
leads to developing a flexible mechanism that encodes the information of the position of letters, explaining why jugde 
and judge are easily confused. Critically, orthographic regularities (e.g., frequent letter co-occurrences) modulate letter 
position encoding: the pseudoword mohter is extremely similar to mother because, in middle positions, the bigram TH 
is much more frequent than HT. Here, we tested whether position invariance emerges rapidly after the exposition to ortho-
graphic regularities—bigrams—in a novel script. To that end, we designed a study with two phases. In Phase 1, following 
Chetail (2017; Experiment 1b, Cognition, 163, 103–120), individuals were first exposed to a flow of artificial words for a 
few minutes, with four bigrams occurring frequently. Afterward, participants judged the strings with trained bigrams as 
more wordlike (i.e., readers quickly picked up subtle new orthographic regularities) than the strings with untrained bigrams, 
replicating Chetail (2017). In Phase 2, participants performed a same–different matching task in which they had to decide 
whether pairs of five-letter strings were the same or not. The critical comparison was between pairs with a transposition of 
letters in a frequent (trained) versus infrequent (untrained) bigram. Results showed that participants were more prone to make 
errors with frequent bigrams than with infrequent bigrams with a letter transposition. These findings reveal that position 
invariance emerges rapidly, after continuous exposure to orthographic regularities.
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Introduction

If we consider reading using architectural terms, its building 
blocks are words, which, in alphabetical languages, are made 
up of letters. There is broad consensus that the identifica-
tion of a written word is mediated by a process in which, 
from sensory input, the word recognition system encodes the 
abstract identities of letters in a specific order, thus allowing 
us to discriminate hiss from kiss and dog from god. 
This bridge between the sensory input and the word level has 
been termed orthographic processing (i.e., the encoding of 
letter identities and positions; see Grainger, 2018).

Previous research has shown that the way the human brain 
encodes the positions of letters in alphabetic languages is 
fairly flexible (see Massol & Grainger, 2022). For instance, 
when participants are asked whether two successive strings 
of letters are the same or different, they respond “different” 
more slowly (and with less accuracy) to transposed-letter 
pairs (e.g., CFLZ–CLFZ) than to control, replaced-letter 
pairs (e.g., CFLZ–CDVZ). Importantly, this effect is also 
sizable for strings of numbers (7586–7856) and symbols 
(£§?@–£?§@), which suggests that there is some general 
uncertainty in assigning the position to objects (e.g., letters) 
in a string. Thus, the letters F and L in CFLZ would activate 
their own and neighboring positions, explaining the diffi-
culty of responding “no” to CFLZ–CLFZ in same–different 
tasks (perceptual-based models; e.g., overlap model, Gomez 
et al., 2008; spatial coding model, Davis, 2010; Bayesian 
reader, Norris & Kinoshita, 2012). Critically, the magnitude 
of transposition effects is larger for strings of letters than for 
strings of other visual objects (Duñabeitia et al., 2012; see 
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also Fernández-López et al., 2021; Ktori et al., 2019; Mas-
sol et al., 2013; Massol & Grainger, 2022). The most suit-
able explanation for this dissociation is that an orthographic 
mechanism operates on top of perceptual uncertainty (see 
Grainger, 2018; Marcet et al.,2019)—this proposal goes 
back to Estes (1975).

The present paper focuses on the emergence of the ortho-
graphic mechanism responsible for encoding the “relative 
positions of a set of object identities” (i.e., position invari-
ance, which is the encoding of the order of visual objects 
[letters] in a string composed of several objects [a word]). 
Reading experience leads to the development of a flexible 
mechanism that, to host a unique word identity, encodes the 
information of the position of the letters with less precision 
(see Grainger & van Heuven, 2004; Whitney, 2001). This 
mechanism is based on a combination of ordered pairs of 
letter co-occurrences (called “open bigrams”). According 
to these models, the word mother would be composed of 
the open bigrams MO-MT-MH-ME-MR-OT-OH-OE-OR-TH-TE-
TR-HE-HR-ER, where MO would refer to “M  to the left of 
O”. If two contiguous letters from mother are switched—as 
in mohter, 93% of the bigrams remain unchanged, thus 
explaining why mohter is confusable with mother—or 
CLFZ with CFLZ.

Notably, letter order coding cannot be reduced to an open-
bigram mechanism that encodes pairs of letters in a given 
order but does not distinguish whether the two letters are 
contiguous. In their dual-route model, Grainger and Zie-
gler (2011) proposed that, when encoding frequent complex 
graphemes such as th in mother, readers know that H 
immediately follows T, not just that H is somewhere after 
T (see also Goswami & Ziegler, 2006). Thus, besides a flex-
ible orthographic route where open bigrams help identify a 
word, there is a more precise coding route based on chunking 
recurrent co-occurring letter combinations (e.g., TH, CH, or 
SH). In this scenario, the pseudoword mohter would be 
easily confused with mother not only because of percep-
tual uncertainty (common to all visual objects) or sharing 
many open bigrams, but also because HT is a nonfrequent 
bigram that could be misperceived with the frequent chunk 
TH. The logic is that orthographic knowledge would affect 
the perception of letter strings, so that the information from 
the visual input could be distorted to perceive the stimulus as 
regular (i.e., the “most probable interpretation of the graph-
emic input”; see Rumelhart, 1985, p. 732).

The knowledge of the letter sequences that normally 
occur at different word positions is acquired via repeated 
exposure to printed words. To reduce the amount of informa-
tion to be processed, reading experience and print exposure 
lead to the implicit learning of orthographic regularities 
(e.g., facts about the distribution of letter co-occurrences). 
Indeed, orthographic regularities in the form of two-letter 
co-occurrences modulate the assignment of letter position 

in letter strings and words. In a perceptual identification task 
with briefly presented stimuli, Rumelhart (1985) reported 
that participants tended to commit transposition errors for 
letter strings containing illegal bigrams, such as praikc—
note that KC is not legal at the end of words in English. Par-
ticipants often reported praick instead, which includes the 
frequent complex bigram CK. Similarly, Frankish and Turner 
(2007) observed very high error rates for transposed-letter 
pseudowords like sotrm (base word: storm) in a lexical 
decision task, despite containing illegal bigrams—one might 
have thought that it would be easy to respond “nonword” 
based on this illegality (see also Frankish & Barnes, 2008; 
Perea & Carreiras, 2008, for converging evidence of greater 
transposed-letter effects for stimuli containing illegal trans-
positions using masked priming).

Prior research has shown that readers quickly embrace 
sublexical regularities. This is consistent with the idea that 
to simplify the inherent complexity of reading, orthographic 
processing relies on the regularities of the written system 
and capitalizes on statistical cues like bigram frequency 
(Cassar & Treiman, 1997; Chetail, 2017; Lelonkiewicz et al., 
2020; Mano & Kloos, 2018). Crucially, this ability emerges 
very rapidly throughout the exposure to print. A paradig-
matic case is a study conducted by Pacton et al. (2001). 
They found that French readers were able, from very early in 
their development (i.e., 6 years old), to discriminate a word-
like stimulus from a non-word-like stimulus based on their 
implicit learned knowledge of orthographic regularities. For 
instance, when comparing ommera vs. ovvera, readers 
preferred ommera because v is never doubled in French. 
That is, the participants relied their decision on the fre-
quency of the bigrams mm vs. vv (see also Doignon-Camus 
& Zagar, 2014; O’Brien, 2014). While the above findings are 
very informative, they suffer from an inherent drawback. The 
effects of orthographic regularities such as bigram frequency 
cannot be easily disentangled from other relevant factors that 
influence visual word recognition: pronounceability, famili-
arity, or orthographic neighborhood (Chetail, 2017). Keep in 
mind that the frequency of the bigrams in a given language 
cannot be manipulated but must be selected; thus, the design 
cannot be genuinely experimental.

A practical strategy to overcome the above limitation is 
to use artificial scripts. This was the approach that Chetail 
(2017) followed with adult readers, testing what type of 
orthographic regularities emerges quickly with the exposi-
tion of print material in a novel script. Specifically, partici-
pants were first exposed to a flow of five-letter words in an 
unfamiliar script—Phoenician alphabet—for approximately 
9 minutes. There were four trained bigrams, so each word 
was made up of one of these bigrams, always in the same 
position (see Table 1). Thereupon, in a wordlikeness task, 
participants were more likely to judge a new string as simi-
lar to the strings learned in the exposure phase if the string 
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Table 1   Reproduction of materials used in Phase 1: Replication of Chetail’s (2017) protocol

In Experiment 1b, Chetail (2017) used Phoenician alphabet—the database of artificial characters, BACS, was published in 2017. Boldface is 
ours, to emphasize the frequent bigram
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contained one of the trained bigrams in its position (i.e., a 
frequent bigram). A few minutes of exposition were enough 
to develop considerable sensitivity to bigram frequency. 
Chetail (2017) successfully replicated these findings in a 
second experiment in which participants learned 32 artifi-
cial words with a phonological form (i.e., the print-to-sound 
correspondences) before performing the task. Chetail (2017) 
concluded: “The statistical learning operating on the stream 
of artificial words made of a sequence of new shapes may 
be already oriented towards orthographic processing” (p. 
118; see Vidal et al., 2021, for an alternative explanation). 
This study, however, did not test whether participants were 
prone to position-invariant encoding after learning the new 
orthography.

The current experiment scrutinizes the emergence of 
position invariance using a protocol parallel to Chetail’s 
(2017) Experiment 1b. A recent study (Fernández-López 
et al., 2021, Experiment 1) failed to obtain evidence of posi-
tion-invariant processing in an experiment in which partici-
pants learned to fluently read and write in a new script across 
six training sessions. The authors conducted, both before 
and after the training, a same–different matching task where 
the different trials were created by transposing or replacing 
two adjacent letters. Results showed a similar pattern of let-
ter transposition effects posttraining and pretraining. The 
authors concluded that orthographic processing, at least in 
the form of position-invariant processing, does not emerge 
rapidly after learning a new script. However, they did not 
directly manipulate the sublexical properties of the stimuli. 
Here, we directly tested whether bigrams could be a key 
sublexical property helping the emergence of position invari-
ance (see Grainger, 2018).

The present study was composed of two phases. In Phase 
1, we reproduced Chetail’s (Chetail, 2017, Experiment 1b) 
procedure—we replicated the main findings. The novelty 
of our work relies on the addition of Phase 2, including a 
same–different matching task with transposed-letter pairs. 
In this task, the probe was a five-letter string presented for 
300 ms and was immediately followed, one line below, by a 
target that could be the same or different. The critical com-
parison was the following: pairs in which the target was 
created by transposing a trained bigram (e.g., AB; probe: 
ABUVX, target: BAUVX) versus pairs in which the target was 
created by transposing an untrained bigram (e.g., ZX; probe: 
ZXFGU, target: XZFGU).1 As is common in this paradigm, 
we also included replacement-letter pairs: We replaced a fre-
quent bigram with two frequent letters (e.g., probe: ABUVX, 
target: EFUVX) or replaced an infrequent bigram with two 

infrequent letters (e.g., probe: XVFGU, target: MNFGU)—this 
comparison explored whether the replacement of a frequent 
bigram makes the pair less perceptually similar than the 
replacement of an infrequent bigram.

Thus, the present experiment examined whether acquiring 
orthographic regularities (i.e., bigram frequency) modulates 
how letter order is encoded in a new orthography. Two out-
comes are possible: If position invariance emerges rapidly 
from the representations created by the trained bigrams in 
the new script (e.g., AB), the sequence BA (BAUVX) could 
be confusable with AB (ABUVX) because of (1) perceptual 
uncertainty and (2) AB (but not BA) having a precise mental 
representation. Instead, ZX (ZXFGU) would produce some 
activation on XZ (XZFGU) based on perceptual uncertainty 
alone. Therefore, it would be more difficult to respond “dif-
ferent” (i.e., more errors, longer response times) for those 
pairs involving the transposition of a frequent bigram like 
AB (position uncertainty + bigram activation) than an infre-
quent bigram like XZ (position uncertainty). This outcome 
would provide the first demonstration of the rapid emergence 
of position invariance. Alternatively, the trained bigrams in 
the exposure phase may not yet have formed stable represen-
tations to allow position invariance. If so, pairs with a letter 
transposition in trained or untrained bigrams would produce 
the same results (i.e., transposition errors would be based on 
perceptual uncertainty alone). This latter outcome would 
suggest that the emergence of position invariance requires 
more extensive reading experience.

Method

Participants

Thirty-six undergraduate students from the University of 
València participated in the experiment. This sample size, 
the same asChetail (2017, Experiment 1b), allowed us to 
have 1,440 observations per condition for the critical com-
parison of transposition of trained versus untrained bigrams, 
which is in line with Brysbaert and Stevens’s (Brysbaert 
& Stevens, 2018) recommendations. We also calculated 
Bayes factors (BFs) to obtain a measure of the evidence for 
or against the effect—of note, we found conclusive evidence 
in favor of a difference between the transposition of fre-
quent versus infrequent bigrams in the accuracy data (BF = 
112.16).2 All participants were native speakers of Spanish 
with normal or corrected vision and no history of reading 

1  Bold and  underlining indicated, in the examples, the frequent 
bigram and the letter manipulation, respectively (see Table  1 for 
examples of the employed stimuli).

2  Bayes factors (BFs) were computed with JZS priors using bfrms 
(Singmann & Gronau, 2021) in R (R Core Team, 2021). BFs above of 
3, 10, and 100 represent moderate, strong, and conclusive evidence, 
respectively.
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or hearing disorders. They signed an informed consent form 
before participating in the experiment, and the study was 
approved by the Experimental Research Ethics Committee 
of the University of València. Participants received a small 
monetary compensation.

Materials

We used 21 letters from the BACS font to devise the stimuli 
(BACS1 and BACS2 serif font; Vidal et al., 2017)—note 
that these characters were matched to the Roman script in 
complexity, number of strokes, junctions, and terminations 
(see Table 1 for an illustrative example of the stimuli).

For the exposure phase, we created 320 items of five 
characters, each including a critical bigram. Eight charac-
ters were used to devise the four frequent bigrams (frequent 
bigrams: , , ,  are repre-
sented in the body of the manuscript as AB___, _CE__, 
__FG_, ___HI; the infrequent bigrams were formed by the 
letters ). Each fre-
quent bigram occurred in a specific position. In this manner, 
we created 80 items with the critical bigram in Positions 1 
and 2 (ABKOR; bold is ours to facilitate the identification of 
the frequent bigram); 80 in Positions 2 and 3 (RCETN); 80 
in Positions 3 and 4 (ZXFGO), and 80 in Positions 4 and 5 
(UFKHI). We also created 16 five-letter strings with Roman 
characters to act as fillers. Importantly, each stimulus con-
tained nonrepeated characters. We created four different lists 
to counterbalance the position of the critical bigrams.

For the wordlikeness phase, as in Chetail (2017), we cre-
ated 120 pairs of new stimuli (40 items per condition). For 
the familiarity condition, the critical item entailed one of 
the frequent bigrams in its corresponding position (based 
on the exposure phase; 10 items per position). The control 
item was composed by five random characters of the pool 
infrequent letters (e.g., UFKHI vs. BNPAO). In the position 
condition, the critical items were paired with control items 
that included the same critical bigram, but in a different 
position than in the trained items (i.e., UFKHI vs. HIBNP). 
Finally, in the letter frequency condition, the critical items 
were paired with control items that entailed two frequent 
letters in their frequent position, but they did not compose a 
critical bigram (UFKHI vs. MOEGB; see Table 1 for an illus-
tration of the materials created for each condition). As in the 
exposure phase, we created four different lists to counterbal-
ance the position of the critical bigrams. We also created six 
five-character string pairs to act as practice trials.

For the same–different matching task, we created 320 
five-character string pairs (probe and target) in BACS font. 
All character strings were composed of nonrepeated letters. 
There were 160 same pairs and 160 different pairs. For the 
same pairs, 80 contained a frequent bigram in its standard 
position (ABUVX—ABUVX), and 80 were composed of 

infrequent letters (OVNKM—OVNKM). For the different pairs, 
80 were created by transposing two letters, and 80 were cre-
ated by replacing two letters—all of them contained a fre-
quent bigram in its standard position. The transposed-letter 
pairs were created by transposing two adjacent letters in the 
target, that could be frequent (ABUVX—BAUVX; 40 pairs of 
items) or infrequent (XZFGU—ZXFGU; 40 pairs of items). 
The replaced-letter pairs were created by replacing two adja-
cent letters in the target, which could be frequent (ABUVX—
CGUVX; the replacement letters were other frequent letters 
not constituting a frequent bigram [C from CE and G  FG]; 
40 pairs of items) or infrequent (XVFGU—MNFGU 40 pairs 
of items). Each manipulation occurred in four different posi-
tions (1st-2nd, 2nd-3r, 3rd-4th, and 4th-5th)—there were 10 pairs 
of items per position. To counterbalance the position of the 
frequent bigrams, we created four lists following a Latin 
square. For the practice phase, we created eight additional 
five-character string pairs.

Procedure

Each participant performed the tasks of familiarization, 
exposure, wordlikeness (Phase 1), and same–different (Phase 
2). The tasks of Phase 1 paralleled those employed Chetail 
(2017). Participants were tested either individually or in 
groups of two in a quiet room. DMDX software (Forster & 
Forster, 2003) was used to display the sequence of stimuli 
and to register the timing/accuracy of the responses. All 
stimuli were presented in a monospaced font (15-pt BACS 
for the artificial strings; 15-pt Courier New for the Roman 
letters) in black on a white background. Response times were 
measured from target onset until the participant’s response. 
The whole session lasted about 30–40 min.

The familiarization task consisted of introducing the 
21 new letters, presenting them one by one in a computer 
screen. Participants were told to hand-copy the characters on 
a sheet of paper, without a time deadline. Immediately after, 
all the new letters were presented and participants could look 
at them as long as necessary.

In the exposure phase, the 320 artificial character strings 
were presented individually in the center of the screen. Dis-
play duration and inter-stimuli interval were 1,200 and 500 
ms, respectively. Participants were asked to carefully look 
at the stream of stimuli. To ensure that participants focused 
on the letter strings, 5% of trials were fillers composed of 
five letters in Roman script (e.g., MNRLT). The participants 
were asked to respond to fillers by pressing the space bar.

In each trial of the wordlikeness task, a pair of stimuli 
was presented (critical and control items) on the screen. 
The critical item was on the left part of the screen in 50% 
of the trials and on the right part in the other trials. Par-
ticipants were asked to decide which stimulus was more 
similar to those presented in the exposure phase by pressing 
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the corresponding key on the keyboard. They were asked 
to decide as soon as possible, although there was no time 
boundary.

In the same–different matching task, participants were 
told that they would be presented with two strings of charac-
ters and that they would have to decide if they were the same 
or not by pressing the “yes” and “no” keys. Participants were 
instructed to make this decision as quickly and accurately 
as possible. A fixation point (*) was displayed for 500 ms in 
the center of a computer screen on each trial. Next, the fixa-
tion point was replaced by a probe, which was presented for 
300 ms and positioned 3 mm above the center of the screen. 
Then, the target item appeared one line 3 mm below the 
center of the screen. The target remained on the screen until 
the response or 2,000 ms had passed—in this latter case, the 
trial was categorized as an error response.

Results

The analyses and results of Phase 1 are available in Appen-
dix A—they essentially replicated Chetail’s (2017) findings: 
Participants were more likely to identify the foil containing 
previously learned bigrams as “wordlike” than that contain-
ing unfamiliar bigrams. For the inferential analyses of Phase 
2 (same–different task), the dependent variables were the 
correct RT and accuracy. Very fast responses (<250 ms: 
nine responses) were omitted from the analyses of the cor-
rect RTs. Following our research goal, we tested the effect of 
the bigram frequency on transposed-letter processing—the 
analyses of “same” pairs and replacement-letter pairs are 
available in Appendix B. We fitted the data with Bayesian 
linear mixed-effects models using brms (Bürkner, 2021) in 
R (R Core Team, 2021). The fixed effect was bigram fre-
quency (frequent vs. infrequent) with the maximal random 
effect structure model for subjects and items. We used the 
Gaussian distribution to model the latency data (−1,000/RT) 
and the Bernoulli distribution to model the accuracy data 
(1 = correct, 0 = incorrect). For each model, we employed 
10,000 iterations in each of the four chains (2,000 warmup + 
8,000 sampling). The chains converged successfully (all R ̂s 
= 1.00). The output indicates the estimate of each effect (the 
mean of the posterior distribution), together with its standard 
error and 95% credible interval (95% CrI). We inferred evi-
dence of an effect when its 95% CrI did not include zero—
this was complemented by its BF. All the analyses are avail-
able online (https://​osf.​io/​nst8w/?​view_​only=​99eda​b0195​
8a4d7​cb8e8​dc0c4​4d001​ea).

The models showed that accuracy was noticeably lower 
when the letter transposition involved a frequent than an 
infrequent bigram (54.7 vs. 62.0, respectively; b = 0.33, SE 
= 0.09, 95% CrI [0.15, 0.50], BF = 112.16). The effect in 
the RTs had the same direction but was marginal (657 vs. 

648 ms for the transpositions with frequent vs. infrequent 
bigrams),b = −0.03, SE = 0.02, 95% CrI [−0.06, 0.01], BF 
= 0.14 (see Table 2).

To scrutinize the effect of bigram frequency on trans-
posed-letter pairs, we conducted two additional analyses. 
In the first analysis, we added the position of the transposed 
letters (1st-2nd, 2nd-3rd, 3rd-4th, 4th-5th) as a polynomial fac-
tor in the design when analyzing accuracy. Results repli-
cated the effect of frequency (b = 0.31, SE  = 0.08, 95% 
CrI [0.15, 0.47]) and also revealed a linear component of 
position (accuracy decreased with position; b = −0.46, SE 
= 0.11, 95% CrI [−0.68, −0.25]) with no signs of an interac-
tion (see Fig. 1, Panel A). Second, we employed conditional 
accuracy functions (Fig. 1, Panel B), which describe how 
the response accuracy for a given condition varies across 
response speed. This allows us to examine whether the effect 
of bigram frequency occurred across the entire range of RTs 
or was limited to early or late responses. As shown in Fig. 1 
(Panel B), the conditional accuracy functions are approxi-
mately similar in the two conditions: regardless of speed 
response, responses were less accurate for the transposition 
of frequent bigrams than infrequent bigrams. Furthermore, 
both functions followed an inverted U, where the fastest and, 
to a lesser degree, the slowest responses were less precise.

Discussion

The present study examined whether a key marker of ortho-
graphic processing, position invariance, emerges quickly 
after the repeated exposition of orthographic regularities—
bigrams—in a novel script. To that end, we designed an experi-
ment that followed, in its first phase, the same procedure as 
Chetail (2017, Experiment 1b). For around 9 minutes, partici-
pants repeatedly received a series of five-artificial-letter strings 
that contained a frequent bigram. Then, in a wordlikeness task, 

Table 2   Parameter estimates in accuracy

Those effects with 95% credible intervals beyond zero are in boldface

Estimate SE 95% credible interval

Intercept 0.19 0.06 [0.08, 0.30]
Bigram frequency 0.31 0.08 [0.15, 0.47]
Position (linear) −0.46 0.11 [−0.68, −0.25]
Position (quadratic) 0.15 0.11 [−0.06, 0.35]
Position (cubic) −0.05 0.11 [−0.26, 0.16]
Position (linear) × Bigram 

freq.
−0.12 0.15 [−0.42, 0.18]

Position (quadratic) × 
Bigram freq.

−0.09 0.15 [−0.39, 0.22]

Position (cubic) × Bigram 
freq.

0.11 0.15 [−0.19, 0.41]

https://osf.io/nst8w/?view_only=99edab01958a4d7cb8e8dc0c44d001ea
https://osf.io/nst8w/?view_only=99edab01958a4d7cb8e8dc0c44d001ea
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participants judged the strings with a trained bigram as more 
wordlike, thus showing that readers picked up subtle new 
orthographic regularities very rapidly (i.e., frequent bigrams 
in a specific position), replicating Chetail (2017).

In the second—novel—phase of our experiment, participants 
performed a same–different matching task in which they had to 
decide whether pairs of five artificial letter strings were the same 
or not. The critical test was whether the pairs involving the trans-
position of the letters of a frequent bigram (ABUVX—BAUVX) 
had a boost in confusability (i.e., position invariance in addition 
to position uncertainty) than those pairs involving the transposi-
tion of an infrequent bigram (XZFGU—ZXFGU) (i.e., position 
uncertainty). Responses to pairs with a letter transposition in a 
frequent bigram were less accurate than those with a letter trans-
position in an infrequent bigram (54.7 vs. 62.0%, respectively), 
thus showing an increase in confusability—the latency data were 
in the same direction.3 Critically, this is the first demonstration of 
the rapid emergence of position invariance in a novel script with 
an experimental design (see Rumelhart, 1985, for comparable 
evidence with legal vs. illegal bigrams in English).

Altogether, these findings favor the view that print expo-
sure alone facilitates the development of orthographic 
regularities (see Chetail, 2017; Chetail & Sauval, 2022). 
Critically, the repeated exposure to patterns of letter co-
occurrences would facilitate the development of internal 
representations of letter clusters (i.e., frequent bigrams), 
inducing position invariance (seeGrainger & Ziegler, 2011, 
for a model of word recognition where chunking frequent 
letter combinations plays a critical role). As a result, when 
individuals are presented with BAUVX, the cognitive system 
would often confuse it with ABUVX because (1) BA has not 
occurred before and AB has a precise mental representation, 
and (2) there is positional noise during order assignment. In 
contrast, only perceptual noise would affect order position in 
the strings that involved infrequent bigrams, such as XZFGU 
and ZXFGU. Thus, the combination of these mechanisms 
can readily explain why BAUVX is more confusable with 
ABUVX than XZFGU is with ZXFGU. A parallel rationali-
zation also applies to the confusability of praikc with 
praick (Rumelhart, 1985).4

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Bigram frequency Frequent Infrequent

Fig. 1   Panel A: Accuracy across the position of the transposed letters for frequent and infrequent bigrams. Panel B: Conditional accuracy func-
tions. The points represent the accuracy and average RT of the responses within equal sized bins (20% of responses per bin)

3  Transposition effects in the same-different matching task are typi-
cally more robust for accuracy than for RTs (e.g., Duñabeitia et  al., 
2012; Fernández-López et al., 2021; Massol et al., 2013). This is not 
surprising when considering that the relatively high number of errors 
for transposed-letter pairs makes the latency data more variable and 
noisy than in paradigms with close-to-ceiling performance.

4  Notably, although the orthographic regularities modulated the 
encoding of the order of letters, they did not have an effect in the 
encoding of letter identity: replacing a frequent or an infrequent 
bigram produced similar results.
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Our findings also shed light on the early developmen-
tal trajectory of orthographic processing when learning to 
read. Firstly, statistical learning would facilitate acquiring 
orthographic regularities, such as frequently co-occurring 
letter combinations, that support the subsequent processing 
of higher-level linguistic entities. This idea fits well with the 
fact that preschoolers become rapidly sensitive to bigram 
frequency because of its functionality in learning to read 
(Mano & Kloos, 2018). Secondly, the extra confusability of 
transposed-letter pairs of frequent bigrams suggests that, in 
the first moments of learning to read, position-invariant pro-
cessing is tuned to the processing of frequent letter chunks, 
helping the subsequent encoding of words. Repeated expo-
sure to a bigram (e.g., AB) clues us in that it is probably 
present in many new to-be-learned words; hence, position-
invariant processing is adjusted to encode AB for both AB 
and BA, with an optimization purpose. Thus, orthographic 
learning would involve optimizing the mapping of letter-
level information onto higher-level representations.5

To sum up, the present findings demonstrated that ortho-
graphic regularities in the form of bigrams help the rapid 
emergence of position invariance when exposed to a new 
script. Importantly, this mechanism has an adaptive purpose: 
to help encode the to-be-learned words. In short, the abil-
ity to encode the properties of sublexical orthography may 
represent a unique ability within reading development, thus 
opening a window to further experiments examining sensi-
tivity to orthographic regularities in early childhood.

All the raw data and analyses are available online (https://​
osf.​io/​nst8w/?​view_​only=​99eda​b0195​8a4d7​cb8e8​dc0c4​
4d001​ea).

Appendix A

Analyses of Phase 1

For the inferential analyses of Phase 1, we reproduced the 
analyses of Chetail (2017)and employed generalized lin-
ear mixed-effects (GLME) models in R (R Core Team, 
2021) using the lme4 (Version 1.1-27.1) package (seeBates 
et al., 2015) and the lmerTest package (Kuznetsova et al., 
2017). The dependent variable was accuracy, and we fit-
ted GLME models with no fixed factor (comparison with 
chance level in the wordlikeness task: glmer(ACC​URA​
CY~1+(1|PARTICIPANT)). As a short teaser, we essentially 
replicated the findings.

Exposure: The detection rate of fillers was 99.74%.
Wordlikeness: Overall, participants performed above 

chance level (M = 56.94%, see Fig. 2, Panel A), b = 0.28, 
SE = 0.04, z = 6.71, p < .001. The performance was signifi-
cantly higher than chance level in the familiarity condition 
(M = 54.44%), b = 0.18, SE = 0.06, z = 2.63, p = .008, in 
the position condition (M = 58.19%) , b = 0.34, SE = 0.07, z 
= 4.83, p < .001, and in the letter frequency condition (M = 
58.19%), b = 0.33, SE = 0.05, z = 6.19, p < .001 (Figure 2, 
Panel B). Furthermore, performance was significantly higher 
for the initial bigram than for the final one (b = 0.24, SE = 
0.08, = 2.83, p = .005).

Appendix B

Results of replaced-letter trials and same trials in the 
same–different task

Replaced-letter trials. Responses were only 3 ms faster 
for the frequent bigram replacements than for the infrequent 
bigram replacements (613 vs. 615 ms; b = 0.00, SE = 0.02, 
95% CrI [−0.03, 0.04]). Moreover, there were no signs of 
differences in accuracy for the pairs with a replacement of 
frequent bigrams versus infrequent bigrams (76.59 vs. 78.88, 
respectively; b = 0.14 SE = 0.12, 95% CrI [−0.10, 0.37]).

Same trials. There were virtually no differences in 
response times between pairs with frequent and infrequent 
bigrams (603 vs. 608 ms; b = 0.01, SE = 0.01, 95% CrI 
[−0.02, 0.03]). Regarding accuracy, accuracy was higher for 
the pairs containing a frequent bigram than for the pairs con-
taining an infrequent bigram (89.72 vs. 87.55; b = −0.33, 
SE= 0.14, 95% CrI [−0.62, −0.06]).
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