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Abstract
There is broad consensus supporting the reciprocal influence of working memory (WM) and attention. Top-down mecha-
nisms operate to cope with either environmental or internal demands. In that sense, it is possible to select an item within the 
contents of WM to endow it with prioritized access. Although evidence supports that maintaining an item in this privileged 
state does not rely on sustained visual attention, it is unknown whether selection within WM depends on perceptual attention. 
To answer this question, we recorded electrophysiological neural activity while participants performed a retro-cue task in 
which we inserted a detection task in the delay period after retro-cue presentation. Critically, the onset of to-be-detected near 
threshold stimuli was unpredictable, and thus, sustained perceptual spatial attention was needed to accomplish the detection 
task from the offset of the retro-cue. At a behavioral level, we found decreased visual detection when a WM representation 
was retro-cued. At a neural level, alpha oscillatory activity confirmed a spatial shift of attention to the retro-cued representa-
tion. We interpret the convergence of neural oscillations and behavioral data to point towards the theory that selection within 
WM could be accomplished through a perceptual attentional mechanism.
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Introduction

Working memory (WM) has been metaphorically defined as 
the sketchpad of conscious thought (Miller et al., 2018) that 
allows us to temporally hold and manipulate mental repre-
sentations in order to accomplish an ongoing task (Cowan, 
2022; Gazzaley & Nobre, 2012; Oberauer, 2019). Although 
there is enough consensus about a close link between 

attention and WM, the nature of this relation is not well 
established, partially due to the multidimensional concept of 
attention (Oberauer, 2019). The models of WM that empha-
size the selective dimension of attention conceptualize WM 
as a top-down process that maintains mental representations 
in an active state in an analogous way to how attention oper-
ates on perceptual stimuli (Chun, 2011; Chun et al., 2011; 
D’Esposito & Postle, 2015; Kiyonaga & Egner, 2013). With 
this view, a key question in order to unravel the nature of the 
connection between WM and attention is to what extent the 
attentional mechanisms that determine what is encoded and 
maintained in WM are superimposed on those employed 
towards external stimuli. Answers to this question come 
from neuroimaging studies and behavioral data. Neuroim-
aging experiments comparing the neural substrates involved 
in spatial attention and mnemonic maintenance have found 
overlapping networks (Awh & Jonides, 2001; Ikkai & Curtis, 
2011; Nee & Jonides, 2008; Nobre et al., 2004; Panichello & 
Buschman, 2021), proposing that the maintenance of WM 
representations is based on an attention-based rehearsal 
mechanism. In an analogous way, the oculomotor system 
seems to be implicated in the maintenance of WM repre-
sentations (Pearson & Sahraie, 2003; Williams et al., 2013). 
In the same vein, behavioral data shows that spatial WM 
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declines when a secondary task demands shifts of spatial 
attention to external locations (Awh et al., 1998; Van Der 
Stigchel et al., 2007). Similar to cited studies that find that 
diverting spatial attention from memory representations 
impairs spatial WM (Awh et al., 1998), other studies find an 
inverse trade-off between memory and perception, finding 
impaired perception of low-contrast stimuli when WM load 
is increased (Balestrieri et al., 2021; Konstantinou et al., 
2014).

In apparent incongruency with the presented evidence 
supporting that WM maintenance is accomplished through 
perceptual attention, some studies have suggested that not 
all WM representations are maintained through perceptual 
attention (Gao et al., 2022; Hedge et al., 2015; Hollingworth 
& Maxcey-Richard, 2013; Rerko et al., 2014). In this sense, 
the representation in the focus of attention (FoA), defined as 
the item that through an attentional selective mechanism is 
conferred with a privileged state of accessibility (Larocque 
et al., 2014), would not be affected by a concurrent visual 
attentional task. The study of the interaction between visual 
attention and the internal FoA has been approached through 
two different types of paradigms. Some studies have used 
the object switch paradigm to study the impact of divert-
ing perceptual spatial attention away from the to be updated 
representation, finding that the object switching cost remains 
invariable (Hedge et al., 2015). Therefore, these authors 
conclude that perceptual attention is not responsible for the 
advantage of updating the same memory item, and rather 
conceptualize the link between attention in the mnemonic 
and perceptual domains as a shared spatial priority map 
(Hedge et al., 2015; Van Der Stigchel et al., 2007). Studies 
using the retro-cue paradigm have found that inserting a per-
ceptually demanding task between the retro-cue and memory 
probe does not affect the retro-cue benefit. Consequently, the 
retro-cue benefit seems to not depend on sustained percep-
tual attention (Gao et al., 2022; Hollingworth & Maxcey-
Richard, 2013; Rerko et al., 2014). With both types of para-
digms, the retro-cue and object-repetition benefits could be 
due to the strengthening of the binding of the relevant item 
to its context, providing prolonged accessibility even if the 
FoA is moved (Oberauer, 2019).

Although research proposes that sustained spatial atten-
tion is not needed to maintain a representation in a prior-
itized state, an unresolved question is whether the selection 
of this representation within the memory set, to bring it into 
the FoA, is based on a spatial attentional mechanism, or on 
the contrary, if the selection of the prioritized representa-
tion is independent of visual attention. To shed light into 
this question, we carried out an EEG while participants per-
formed a combined memory retro-cue task and a percep-
tual detection task paradigm. We used a retro-cue paradigm 
because it has provided robust evidence of the internal FoA. 
This paradigm demonstrates that attention can be directed 

to a single representation, boosting WM performance, by 
providing an informative cue during the maintenance period 
(Astle et al., 2012; Poch et al., 2014; Souza & Oberauer, 
2016). To study if the selection of retro-cued representa-
tion is accomplished through visual attention, we presented, 
at an unpredictable onset between retro-cue offset and the 
memory probe, a stimulus that participants had to detect in 
the center of the screen. The informativeness of the retro-cue 
(neutral vs. spatial) and the visual demand of the perceptual 
attentional task (low-contrast vs. high-contrast stimuli) were 
also manipulated. With this design, we intended to prevent 
perceptual switches of spatial attention to the retro-cued rep-
resentation in the high demanding perceptual condition (low 
contrast), to test if the retro-cue benefit would be affected. 
In addition, we explored EEG alpha oscillations, which are 
considered a robust neural correlate of the locus of the exter-
nal or internal attention (Kelly et al., 2006; Kuo et al., 2017; 
LaRocque et al., 2013; van Dijk et al., 2010; van Moorselaar 
et al., 2015; Woodman et al., 2021). At a behavioral level, 
we found that the spatial demanding task did not impact 
the retro-cue benefit. However, the selection of the cued 
representation did negatively affect the low-contrast detec-
tion task. In line with behavioral results, analysis of alpha 
oscillatory activity revealed that the retro-cue triggered a 
shift of spatial attention to the cued memory representation, 
suggesting that perceptual attention is needed to select the 
relevant WM representation.

Methods

Participants

Thirty-one adult subjects (mean age, 24.87 years, standard 
deviation, 2.36, range 19–29; 16 females) without any his-
tory of neurological or psychiatric illness gave written con-
sent, in accordance with the Declaration of Helsinki. Sample 
size was calculated using G*Power (Faul et al., 2007). With 
the aim of detecting an effect size of 0.25 and obtaining 
a statistical power of 0.9 the required sample was for 29 
participants.

Experimental task

The experimental task is illustrated in Fig. 1. A retro-cue 
WM task was used. The sample memory set consisted of 
four rectangles, two in each hemifield, with four different 
orientations and located within 3.8° of visual angle. After 
a delay interval, participants were presented with either a 
non-informative cue (neutral cue, 50% of the trials) or an 
informative cue (spatial retro-cue, 50% of the trials) indi-
cating which rectangle was relevant for posterior testing. 
After the presentation of the retro-cue, participants were 
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asked to detect a stimulus whose contrast was either near 
the threshold of perception (low contrast blocks) or clearly 
visible (high contrast blocks). The probe stimulus was a 
number inserted in the fixation square (1–9, except 5), 
randomly presented in the interval of 0–1.2 s after retro-
cue presentation. For both types of blocks, the probe was 
present in 70% of the trials. Perceptual contrast thresh-
old estimation was performed via Palamedes toolbox for 
MATLAB by means of the Psychometric Function (PF). 
The contrast value of the probe for the near-threshold 
blocks corresponded to the 75% value of the PF and was 
re-calculated during the task depending on the visibility 
reported by the participants. After this second retention 
period, participants were presented with a single rectan-
gle and were required to respond whether the orientation 
of the probe was the same as at encoding. Orientation of 
the probe rectangle matched that of the relevant sample 
memory rectangle on 50% of the trials. For non-match tri-
als (50% chance), orientation was randomly selected. Once 
the participants responded reagrding the memory probe, 
they had to report whether they had detected the previ-
ously presented probe. Additionally, if they saw the probe, 
there was a 33% chance that they would be asked if the 
probe was above or below 5. A total of 400 trials, divided 
into ten blocks of 40, were presented. Participants were 
informed at the beginning of the block about visibility of 

the detection stimuli (low or high). The order of the blocks 
was randomized.

EEG data recording

EEG data were recorded using a Biosemi Active Two sys-
tem with 128 electrodes. Additional EOG – vertical and 
horizontal – electrodes and a nose-tip reference were also 
recorded. The data were digitized at a sampling rate of 2,048 
Hz and low-pass filtered at 410 Hz. Finally, data were re-
referenced offline to the nose tip and downsampled to 256 
Hz in MATLAB using Fieldtrip (www- field tript oolbox. org). 
Subsequent preprocessing and analyses were also carried out 
in Fieldtrip toolbox.

Preprocessing and oscillatory analyses

Analysis of oscillatory activity was performed in artifact-
free data. First, data were epoched in segments from -2.6 to 
3 s around retro-cue presentation. Independent Component 
Analysis (‘runica’ EEGlab implemented in Fieldtrip) was 
used to extract the vertical and horizontal eye movements 
out of the signal. Individual epochs were visually inspected 
to discard epochs with gross artifacts and interpolate noisy 
electrodes. Alpha oscillatory activity was then calculated 
using the Hilbert transform. First, artifact-free data were 

Fig. 1  Schematic illustration of the experimental task

http://www-fieldtriptoolbox.org


1445Psychonomic Bulletin & Review (2022) 30:1442–1451 

1 3

bandpass filtered between 8 and 14 Hz. Then, the spectral 
amplitude time course of the signal was extracted from the 
absolute value of the Hilbert transform, and baseline cor-
rected (-300 to 0 pre-memory set). Lateralized alpha activ-
ity was calculated by collapsing the left retro-cue condition 
electrodes with a mirrored version of right condition elec-
trodes. In this way, contralateral activity is represented in 
right electrodes by averaging right electrodes of the left con-
dition with left electrodes of the right condition. In an analo-
gous way, ipsilateral activity is represented in left electrodes.

Statistical analyses

WM accuracy was submitted to a 2 x 2 ANOVA with fac-
tors Probe-contrast (High and Low contrast) and Cue-type 
(Spatial cue and Neutral cue). Performance in the perceptual 
task, in which participants had to indicate if the perceptual 
probe was present or not, was assessed based on Signal 
Detection Theory. Signal discriminability and response bias 
were estimated by the non-parametric indices A’ and B”, 
respectively (Pallier, 2002). These measures were computed 
based on Hits and False alarm rates of only correct memory 
trials. The threshold for declaring statistical significance was 
α = 0.05.

Differences in alpha oscillatory activity were assessed 
by means of a non-parametric cluster analysis implemented 
in Fieldtrip (Maris & Oostenveld, 2007), which controls for 
Type I error. First, a parametric test is conducted for each 
electrode-time pair. Then, clusters of significant electrode-
time pairs adjacent in time or space are formed. A cluster 
statistic is computed as the sum of the parametric statistical 
values forming the cluster, and then tested for significance 
by comparing it with a null distribution. The permutation 
distribution is obtained by randomly assigning the data to 
two subsets and calculating the maximum cluster statistic. 
A histogram of cluster statistics is obtained by repeating the 
previous step 10,000 times. Finally, the cluster’s p-value is 
obtained as the proportion of randomizations that are above 
the observed cluster-level statistic.

Results

Memory performance

Memory performance was modulated by the cue and by the 
probe contrast. A 2 x 2 repeated-measures ANOVA revealed 
that memory accuracy was significantly higher for spatial 
retro-cued trials than for neutral trials (F(1,30) = 176.93, 
p < 0.001) and for high-contrast probe trials compared to 
low-contrast probe trials (F(1,30) = 6.41, p = 0.01) (Fig. 2). 
The significant interaction of both factors (F(1,30) = 4.25, 
p = 0.04) revealed that probe-contrast affected the two cue 

conditions differently. While in the neutral condition perfor-
mance was better for the high-contrast probe trials (t(30) = 
2.89, p = 0.007; Mdiff = 3.63; Cohen’s d = 0.38), there were 
no differences in accuracy between the two contrast condi-
tions in the spatial retro-cue trials (t(30) = 1.09, p = 0.28; 
Mdiff = 1.05; Cohen’s d = 0.08). The retro-cue benefit was 
found for both contrast conditions (high-contrast condition: 
(t(30) = 11.61, p < 0.001; Mdiff = 12.97; Cohen’s d = 1.16); 
low-contrast condition (t(30) = 11.47, p < 0.001; Mdiff = 
15.56; Cohen’s d =1.43)).

Perceptual probe detection performance

Discriminability of the perceptual stimuli was significantly 
modulated by probe contrast (F(1,30) = 30.756, p < 0.001) 
and by cue type (F(1,30) = 12.906, p = 0.001), with better 
performance for the high-contrast condition (t(30) = 6.026, 
p < 0.001; Mdiff = 0.09; Cohen’s d = 1.20) and neutral cue 
trials (t(30) = 4.198, p < 0.001; Mdiff = 0.03; Cohen’s d 
= 1.00). Critically, probe contrast interacted with cue type 
(F(1,30) = 5.553, p = 0.025), in that discriminability was 
better for the neutral versus spatial trials in the low-contrast 
condition (t(30) = -4.173, p < 0.001; Mdiff = -0.03; Cohen’s 
d = 0.38), but was not significantly different between the two 
cue conditions in the high-contrast condition (t(30) = -0.723, 
p = 0.473; Mdiff = -0.009; Cohen’s d = 0.25).1

Response bias was modulated by probe contrast (F(1,30) 
= 107.04, p < 0.001) but not by cue type (F(1,30) = 1.182, p 
= 0.28). We did not find an interaction between these factors 
(F(1,30) = 2.379, p = 0.13). Response criterium was more 
liberal for high-contrast than for low-contrast blocks after 
both spatial cues (t(30) = -9.230, p < 0.001; Mdiff = -1.05; 
Cohen’s d = 2.3) and neutral cues (t(30) = -7.392, p < 0.001; 
Mdiff = 0.84; Cohen’s d = 1.68). There were no differences 
in response criterium when comparing between spatial and 
neutral cues either for high-contrast (t(30) = -0.179, p = 
0.136; Mdiff = -0.17; Cohen’s d = 0.33) or for low-contrast 
blocks (t(30) = 0.316, p = 0.753; Mdiff = 0.03; Cohen’s d 
= 0.07).

EEG results

Non-parametrical statistical analyses revealed that alpha 
oscillatory activity was modulated by the retro-cue condi-
tion, exhibiting higher amplitude in the neutral cue condition 
than in the spatial cue condition in a cluster of posterior elec-
trodes in the time window from 240 ms until memory probe 
presentation (p < 0.001) (Fig. 3). This load-related alpha 
power modulation speaks in favor of an effective removal 

1 The same pattern of results was found when including correct and 
incorrect WM trials.
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Fig. 2  Behavioral performance. The two contrast conditions are rep-
resented on different lines. Vertical bars represent 95% confidence 
intervals. (A) Line plot of the percentage of correct responses for the 

working memory (WM) task. (B) Line plot of the A’ values for the 
detection task. (C) Line plot of the B” values for the detection task

Fig. 3  Retro-cued bilateral oscillatory dynamics. (A) Topo plot rep-
resenting the difference of bilateral alpha activity of neutral minus 
spatial conditions. Alpha activity is collapsed over stimulus contrasts 
and averaged in the time window conforming the significant cluster. 
Bold circles represent electrodes making up the significant cluster. 
(B) Averaged alpha time-courses of electrodes making up the signif-
icant cluster. Red and blue lines represent spatial and neutral retro-

cue conditions, respectively. The orange squared shadow indicates 
the periods in which statistically significant differences were found. 
Red and blue shadowed areas indicate the SEM. (C) Averaged alpha 
time-courses of electrodes making up the significant cluster for each 
condition. Red and blue lines represent spatial and neutral retro-cue 
conditions, respectively, while solid and dotted lines represent high- 
and low-contrast conditions, respectively
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of no-longer-relevant items from WM after the spatial retro-
cue. No significant alpha modulation was found between the 
two contrast conditions, or the interaction between contrast 
and cue conditions (p > 0.05), meaning that the different 
attentional demands imposed by the expected probe contrast 
did not modulate anticipatory alpha power.

Additionally, alpha oscillatory activity was significantly 
lateralized in spatial retro-cue trials in a cluster of poste-
rior electrodes in the time interval 320–990 ms (p < 0.05). 
Alpha lateralization is a robust correlate of the direction of 
spatial attention, so, accordingly, this result indicates that 
WM prioritization was accomplished through a spatial atten-
tional shift. However, alpha lateralization was not differently 
modulated by Cue Contrast (p > 0.05) (Fig. 4).

Discussion

This study investigated the role of perceptual attention in 
WM selection. We recorded EEG activity while partici-
pants performed a retro-cue task. After memory encoding, 
a spatial (informative) or neutral (non-informative) cue 
was presented. Participants had to detect a visual stimulus 
presented randomly during the interval between retro-cue 
onset and memory probe. Memory performance was com-
pared between blocks with different perceptual attentional 
demands imposed by manipulating the perceptual contrast 
of the to-be-detected stimulus. Analysis of WM accuracy 
revealed a similar retro-cued benefit for the blocks of low- 
and high-contrast perceptual probe. That is, the higher 
spatial attentional demand imposed by the low-contrast 
detection condition did not prevent the prioritization of 
the retro-cued item. On the other hand, memory accuracy 
was significantly impaired in the neutral retro-cue condi-
tion when the detection task demanded more perceptual 
attentional resources. The dissociation in WM performance 

produced by the different perceptual demands in spatial and 
neutral cued trials was reversed in the visual detection task, 
with higher detection rates in the neutral cue condition, 
reflecting a reverse trade-off pattern for the two different 
representational states.

Previous research has found that engaging in a second-
ary task that moves attention from memorized items affects 
memory performance (Awh et al., 1998; Van Der Stigchel 
et al., 2007). This finding, along with data from eye-track-
ing and neuroimaging studies, has led to the proposal that 
memory rehearsal is implemented through a spatial atten-
tional mechanism shared with the perceptual domain. Our 
results add to this evidence, as WM performance, in the 
neutral retro-cued trials, was degraded when shifts of per-
ceptual attention were prevented, probably because the spa-
tial rehearsal mechanism was impeded. However, this was 
not the case for the spatial retro-cue condition, in which we 
found that the retro-cue benefit was not compromised by the 
visual detection task. Previous studies have found no evi-
dence of impaired performance when the focus of attention 
was removed from the relevant WM item (Gao et al., 2022; 
Hedge et al., 2015; Hollingworth & Maxcey-Richard, 2013; 
Rerko et al., 2014). Here, despite the fact that we did find 
an intact retro-cue benefit, we also found a trade-off with 
detection performance, suggesting that selection within WM 
implicates a visual attentional mechanism. As opposed to 
other studies, our secondary attentional task was designed to 
restrict covert shifts of spatial attention from the offset of the 
retro-cue, while other studies did not restrict shifts of spatial 
attention following the retro-cue. Thus, unlike in our study, 
participants in those experiments could indeed have used 
visual spatial attention to prioritize a WM item, and then 
maintained the item in a privileged access status through 
another retention mechanism not implying sustained visual 
attention (Hollingworth & Maxcey-Richard, 2013; Muhle-
Karbe et al., 2021; Myers et al., 2017). Consistent with this 

Fig. 4  Lateralized alpha activity. (A) Topographic representation of 
the lateralization effect obtained by subtracting contralateral minus 
ipsilateral activity. Bold circles represent electrodes making up the 
significant cluster. (B) Alpha time-course of contralateral and ipsilat-
eral broken down by stimulus contrast. Black and grey lines represent 

high- and low-contrast conditions, respectively, while solid and dotted 
lines represent ipsilateral and contralateral electrodes, respectively. 
The orange shadow indicates the periods where the main effect of lat-
eralization is significant
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hypothesis, neuroimaging studies using multivariate analysis 
to decode the contents of WM have found that neural activity 
tracking the item in the mnemonic FoA dropped to baseline 
levels with an external shift of attention without affecting 
memory performance for the memory item (Lewis-Peacock 
et al., 2012). Nevertheless, the active neural trace could be 
reactivated by again directing attention to the mnemonic 
representation.

With respect to the dissociated trade-off pattern found 
in the spatial versus the neutral cue condition, a reasonable 
hypothesis is not straightforwardly available. On the one 
hand, it could be related to participant strategies. Since no 
instruction was given as to which task was more important, 
participants could have decided to differently prioritize one 
of the two tasks, maximizing mean performance. In the case 
of spatial cued trials, attending to the retro-cued item rather 
than to the to-be-detected stimuli implied a substantial bene-
fit in memory performance. Another option is that providing 
a spatial retro-cue automatically triggered attentional orient-
ing. Arrow cues, as human gaze, are important surround-
ing signals that indicate potential situations that require fast 
shifts of attention, and consequently have been shown to 
cause automatic changes of attention (Hietanen et al., 2008; 
Tipples, 2002). Although it is known that pure symbolic 
cues, such as color cues, also trigger endogenous retrospec-
tive orienting effects (Poch et al., 2017), it is unclear whether 
arrow cues could additionally trigger automatic orienting to 
mnemonic representations.

An alternative explanation, suggested by an anonymous 
reviewer, is that WM selection interferes with perceptual 
detection by competing for a general resource, in which the 
process of selecting a WM representation would take prec-
edence. Detection performance in the low-contrast neutral 
trials would be better, as no selection process is initiated. In 
the same vein, impaired memory performance in the low-
contrast neutral condition would also be explained by a pro-
cessing difficulty within the task, and not by the pre-emption 
of the spatial rehearsal mechanism.

In line with the behavioral results, oscillatory power 
analyses revealed that WM prioritization was in fact accom-
plished through a spatial attentional shift. Following retro-
cue presentation, alpha power decreased in the contralateral 
visual hemisphere compared to the ipsilateral hemisphere 
regardless of the attentional condition. Alpha lateralization 
is a robust correlate of the direction of spatial attention. This 
neural marker has been repeatedly reported when attention 
is directed to a visual stimulus, in anticipation of a stimulus, 
or when attention is directed to a WM item (Capilla et al., 
2014; Poch et al., 2014; Schneider et al., 2019; Schneider 
et al., 2021; Thut et al., 2006; Worden et al., 2000). Simi-
larly, in this study, alpha lateralization indicates that after 
retro-cue representation the FoA is moved to the spatial 
position to select the relevant WM item. In line with other 

findings, alpha lateralization was not maintained through 
the delay period (Myers et al., 2015; Poch et al., 2017; Poch 
et al., 2018). In this sense, WM prioritization would be 
accomplished through a selection mechanism that would 
strengthen the binding of the memory item to its context 
with no need of sustained attention (Oberauer, 2019). This 
is also consistent with behavioral studies supporting the idea 
that there is no need for sustained attention to maintain rep-
resentation in a privileged access status (Hedge et al., 2015; 
Hollingworth & Maxcey-Richard, 2013; Rerko et al., 2014). 
Van Moorselaar et al. (2018) explored alpha modulations 
responding to visual and WM demands. Participants had 
to maintain a spatial location in WM while performing a 
spatial task. Alpha activity tracked the WM spatial position 
only until the visual task was presented, at which point alpha 
activity began to track the content of the external FoA. The 
alternate tracking of the internal and external FoA by alpha 
oscillations aligns with the hypothesis of a common atten-
tional mechanism accomplished through neural oscillations 
(van Moorselaar et al., 2018).

Alpha oscillations are believed to reflect the modulation 
of internal representations of upcoming events (Di Grego-
rio et al., 2022; Limbach & Corballis, 2016; Samaha et al., 
2017; Samaha et al., 2020). Consequently, modulations 
of anticipatory alpha power have been shown to correlate 
with different behavioral parameters of visual perception 
(van Dijk et al., 2008; Hanslmayr et al., 2007; Lange et al., 
2014; Mathewson et al., 2011; Romei et al., 2008; Romei 
et al., 2010). In this study, the manipulation of the probe’s 
contrast led to different attentional demands in the visual 
task. Selective attention enhances neural responsiveness 
when low-contrast stimuli are processed or expected (Car-
rasco et al., 2004; Hillyard et al., 1998), and, accordingly, 
it could be expected that when the low-contrast probe 
was expected, selective attention would have enhanced 
sensory neural responsiveness, attenuating alpha power. 
Considering our behavioral results, this would be the case 
in the neutral cue condition, in which visual attention to 
the expected visual probe impaired the maintenance of the 
whole memory set. However, we found that alpha power 
did not differ between the two contrast conditions in the 
detection task, and consequently was not modulated by 
probe expectation. In the same line of argument, it has 
been broadly reported that alpha power scales with WM 
load (Heinz & Johnson, 2017; Poch et al., 2018; Schroeder 
et al., 2018; Tuladhar et al., 2007). Effectively, here we 
found lower alpha power after the spatial retro-cue, reflect-
ing a diminished WM load through the effective removal 
of no-longer-relevant items from WM. It is not clear, how-
ever, why alpha power scales with WM load. On the one 
hand, a prevalent theory links alpha oscillations to the 
protection of WM representations by the endogenous mod-
ulation of distracting input (Bonnefond & Jensen, 2012; 
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Jensen & Mazaheri, 2010). On the other hand, a differ-
ent view relates alpha oscillations to increasing WM load 
internal demands (Bollimunta et al., 2008; Palva & Palva, 
2007; van Diepen & Mazaheri, 2017). With either view, 
we should have expected an alpha modulation related to 
the different attentional demands imposed by the expected 
probe contrast, either reflecting lower internal processing 
of WM representations when maintenance was disturbed 
or reflecting the modulation of visual expectations. In a 
previous experiment, in which we manipulated the contrast 
of the retro-cue, we also failed to find alpha modulation 
upon the expectance of a low-contrast stimulus during 
WM maintenance (Macedo-Pascual et al., 2022). As in 
that experiment, the block design could have impacted 
results due to the lack of variability of expectations within 
the block. Another possible explanation is that, although 
behavioral differences in memory performance between 
the two contrasts in the neutral retro-cue condition were 
significant, differences in visual assignment resources 
were not large enough to be detected in the EEG activity.

In sum, this study investigated whether it is possible 
to prioritize a lateralized WM representation while per-
ceptual attention is needed in an external spatial location. 
Behavioral results showed an attentional trade-off between 
visual and WM selection, suggesting, in our view, that the 
selection of a WM representation could be accomplished 
through perceptual attentional mechanisms.
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