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Abstract
P-values and Bayes factors are commonly used as measures of the evidential strength of the data collected in hypothesis tests. 
It is not clear, however, that they are valid measures of that evidential strength; that is, whether they have the properties that 
we intuitively expect a measure of evidential strength to have. I argue here that measures of evidential strength should be 
stochastically ordered by both the effect size and the sample size. I consider the case that the data are normally distributed 
and show that, for that case, P-values are valid measures of evidential strength while Bayes factors are not. Specifically, I 
show that in a sharp Null hypothesis test the Bayes factor is stochastically ordered by the sample size only if the effect size 
or the sample size is sufficiently large. This lack of stochastic ordering lies at the root of the Jeffreys-Lindley paradox.
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Introduction

P-values (Fisher, 1973) and Bayes factors (Jeffreys, 1948) 
have been proposed and are used as measures of evidential 
strength in statistical hypothesis testing. They measure that 
strength in different ways, and their values are not always 
comparable. Consequently, the last few decades have seen 
a vigorous debate on which of these two measures is most 
appropriate for the task of measuring evidential strength 
(e.g., Dienes & Mclatchie, 2018; Wagenmakers et al., 2008). 
Considering the sometimes acrimonious nature of that 
debate, but also considering the recent and very practical 
problem with replication in many research areas (Camerer 
et al., 2018; Etz & Vandekerckhove, 2016; OSC, 2015), it is 
worth stepping back for a moment from the mere compari-
sons between these measures and reconsider their intrinsic 
validity as measures of evidential strength. Do they have the 
properties that we expect a genuine measure of evidential 
strength to have? Merely comparing their values will not 
tell us that.

Evidential strength is not a very well defined concept. 
Intuitively, it is the extent by which the collected data can 
change our opinion regarding the plausibility of a hypothesis 

of interest; that is, the extent to which, upon the acquisition 
of that evidence, the hypothesis becomes more plausible or 
less plausible, or maybe just less implausible or a bit more 
plausible. Strong evidence can have a large effect on how 
plausible or implausible we finally judge the hypothesis to 
be, while weak evidence has little effect. In order to quantify 
the concept of “evidential strength” we need a measure of 
evidential strength, a precise definition that can be computed 
from the data and that agrees, wherever possible, with our 
intuitions regarding evidential strength.

Evidential strength is important in hypothesis testing 
in which data are collected to gain information about the 
truth or falsehood of one or more selected hypotheses. In 
principle, multiple hypotheses could be considered, but, 
in typical applications, there is one hypothesis of central 
interest, the Null hypothesis, and one catch-all alternative 
hypothesis, usually the negation of the Null hypothesis. 
The data can be observations of natural phenomena, such 
as obtained in astronomy or biology, or outcomes of tar-
geted experiments, such as in psychology or medicine. 
They are typically generated by probabilistic mechanisms 
– planet formation around a star, survival of the offspring 
of some animal of interest, response to a questionnaire, 
the effectiveness of a new drug, etc., and the hypotheses 
concern those probabilistic mechanisms.

Because of the variety of possible data that can be 
collected in different observations or experiments, the 
data themselves are typically not used directly to make 
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informed statements about the hypotheses. Instead, the 
values of functions of the observations are calculated that 
allow for a more or less uniform interpretation across dif-
ferent types of data. These functions are intended to be 
measures of the evidential strength of the data and depend 
on the Null hypothesis. They depend on the data and are, 
therefore, statistics with their own probabilistic distribu-
tions that can be derived from the assumed distributions 
of the data. P-values and Bayes factors are examples of 
such functions

P-values are measures of the incompatibility between 
the Null hypothesis and the observed data; between what 
was expected and what was observed. They have a long his-
tory but have also been attacked as inadequate for the pur-
pose of measuring the strength of evidence (e.g., Hubbard 
& Lindsay, 2008; Wagenmakers, 2007); they have several 
known shortcomings. For example, since they are measures 
of incompatibility, they can only indicate how strongly the 
data undermine the Null hypothesis. Furthermore, P-val-
ues come with no provision for measuring the strength of 
evidence in favor of any hypothesis if it turns out that the 
Null hypothesis is strongly rejected. In addition, they have 
shown themselves to be open to misunderstandings, misuses, 
and abuses (e.g., Goodman, 2008; Greenland et al., 2016). 
Consequently, there has recently been an increasing push 
to deprecate the use of P-values in hypothesis testing (e.g., 
Trafimow & Marks, 2015).

Bayes factors compare how well the Null and alterna-
tive hypotheses predict the data, and they can measure 
the strength of the evidence both for and against the Null 
hypothesis if the alternative hypothesis is the negation of the 
Null hypothesis. They were introduced by Jeffreys (1948) 
and have been suggested as replacement of P-values (e.g., 
Goodman, 1999; Kass & Raftery, 1995; Morey et al., 2016), 
but questions have been raised recently (Tendeiro & Kiers, 
2019) about their appropriateness as measures of evidential 
strength. Their well-recognized main shortcoming, other 
than computational complexity, is that they require prior 
probability distributions for the constituents of the Null and 
alternative hypotheses when those hypotheses are compos-
ite, as well as the prior probabilities of the (possible compos-
ite) Null and alternative hypotheses themselves.

The validity of P-values and Bayes factors as measures 
of evidential strength can, of course, be studied from many 
different perspectives. Here, I consider one perspective that 
focuses on the notion of strength and on how that strength 
should vary when different parameters of the hypothesis test 
are varied. The most obvious parameter of a hypothesis test 
that affects evidential strength is the size of the sample that 
is used in the test. If that size increases – if more data are 
collected – the strength of the evidence should increase with 
it, whether the evidence points at the truth or the falsehood 
of the Null hypothesis. In particular, the evidence should 

become overwhelmingly strong in the limit of very large 
samples;1 it should indicate with near certainty that the Null 
hypothesis is true if it is true and false if it is false.

A hypothesis test depends on another parameter than the 
sample size that is equally relevant to the question of the 
validity of proposed measures of evidential strength. When 
the Null hypothesis is false, there is a discrepancy between 
the true state of affairs and what is being hypothesized about 
that state of affairs. Of course, the size of that discrepancy 
is fixed by the actual probabilistic mechanism that produces 
the data, but we can consider the question of what would 
happen if the discrepancy were larger than it actually is. In 
that counter-factual case, the test should produce stronger 
evidence, even if it were otherwise the same.2 Furthermore, 
if the difference between the Null hypothesis and reality is 
very large, the evidential strength of the data should indicate 
with near certainty that the Null hypothesis is false.

In this article, I address the question of whether P-values 
and Bayes factors have the properties of indicating larger 
strength when either the sample size or the discrepancy 
becomes larger. If these measures have those properties, 
I will call them valid. Whether or not P-values and Bayes 
factors are valid in that sense may depend on the details of 
the models that describe the probabilistic mechanisms that 
produce the data. I consider only the simple model in which 
the data are normally distributed, and I confine myself to 
sharp Null hypotheses. Moreover, I focus on the case of a 
false Null hypothesis, because P-values do not measure the 
strength of the evidence in support of the Null hypothesis. 
It turns out that, for that simple model, P-values are valid. 
Bayes factors, on the other hand, are not valid unless the 
discrepancy or the sample size is sufficiently large. In fact, 
the observed values of the Bayes factors may be highly mis-
leading, seeming to indicate that the evidence supports the 
Null hypothesis even though it is false. Moreover, and more 
seriously, this support of the Null hypothesis, even though 
it is false, may actually increase when the sample size is 
still small and more data is collected. This failure of Bayes 
factors raises serious questions as to their appropriateness as 
measures of evidential strength, in particular in situations in 
which both the discrepancy and the sample size are small.

I present the necessary technical details in in the first sec-
tion, as well as the essential statistical properties of P-values 
and Bayes factors. The statistical properties of P-values are, 
of course, well known, and I just summarize them here. The 

1  We can argue that tests that do not lead to correct definite conclu-
sions regarding the truth or falsehood of the Null hypothesis, no mat-
ter how large the sample, are not good tests. If the tests are capable 
of leading to such conclusions when the sample size becomes very 
large, measures of evidential strength should of course respect that 
capability.
2  This amounts to a requirement on the power of the test.
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properties of Bayes factors are not difficult to establish but 
seem to be less well known. I give only as much details as 
is necessary to establish the main results. The data whose 
evidential strength needs to be determined are statistical 
in nature, and the phrase “measure of evidential strength” 
needs to be properly interpreted by taking that statistical 
nature into account. I argue that the distributions of proposed 
measures of evidential strength need to have certain prop-
erties for those measures to qualify as valid. In the second 
section, I discuss two such properties: measures of eviden-
tial strength should be stochastically ordered in the right 
way by the sample size and by the discrepancy between the 
Null hypothesis and the real state of affairs. I summarize the 
conclusions in the third section and I attempt to put the lack 
of validity of the Bayes factor as a measure of evidential 
strength in the broader context of Bayesian statistics.

Notations and definitions

In this section, I briefly introduce the statistics background 
of the analysis to be presented in subsequent sections. Every-
thing in this section is well known (or, at least, easily estab-
lished), and the main purpose of this section is to define 
notations and present important results.

The sample space consists of the possible outcomes of 
an experiment.3 The experiment need not consist of a single 
act of data acquisition. It can consist of a number of repeti-
tions of the same basic experiment or the recording of some 
observations on a number of distinct objects (people, situ-
ations, physical objects, etc.). The number of repetitions or 
distinct objects, the sample size, are indicated by 'n'. In the 
basic problem of Null hypothesis testing considered in this 
article, only the sample average of the individual outcomes,

will be needed, where xi is the outcome of the ith individual 
experiment.

The actual outcomes of the experiments are determined 
by some probabilistic mechanism and the goal of the experi-
ments is to obtain information about that mechanism. The 
starting point of all statistical inferences is the sequence of 
observed outcomes, and the set of hypotheses concerning 
the probabilistic mechanism that produced those outcomes. 
For frequentists, this set is fully described by

(1)m =
1

n

n∑
i=1

xi,

(2)MF = def < {f},Ω >,

where {f} indicates a collection of probability densities4 on 
the sample space, this collection being indexed by the mem-
bers of Ω, the space of hypotheses.

To keep the mathematics simple, I limit the discussion to 
the standard case of normally distributed data with

The standard deviation σ0 is fixed and known. The true value 
of θ, indicated by θ*, is unknown, and the hypotheses will 
concern its value. I only consider the sharp Null hypothesis 
that θ* = 0. The alternative hypothesis, indicated by H1, is 
then that θ* ≠ 0. Furthermore, I only consider the case that 
the Null hypothesis is false. The experimental quantity of 
interest is the sample average. It, too, is normally distributed, 
with mean θ* and variance σ2 = σ0

2/n.
A discrepancy between a Null hypothesis and the real 

state of the world is a vaguely defined quantity, but it can 
be made precise in the present case of normally distributed 
data. It is convenient to define the effect size

The discrepancy between the sharp Null hypothesis and real-
ity is then |δ|.

The P-value will be indicated by 'PS'. As is well known,

where Φ is the standard normal cumulative distribution5. As 
PS is a statistic, it has a cumulative probability distribution 
under the true but unknown effect size δ, indicated by 'Probδ 
(PS ≤ p)', for any p ∈ [0, 1]. This cumulative distribution can 
be calculated easily6 because PS not exceeding p implies that 
|m| is large and m itself is either positive or negative. Under 
the effect size δ, m/σ has the normal distribution with mean 
δ√n and variance 1, and I indicate its cumulative distribu-
tion by Φδ√n. The latter can easily be calculated from the 
standard normal distribution using Φδ√n(z) = Φ(z - δ√n). 
PS equals p when |m|/σ equals -Φ-1(½ p), where Φ-1 is the 
inverse of Φ. Since ½ p does not exceed 0.5, Φ-1(½ p) is 
non-positive and, for PS to be less than or equal to p, m/σ 
should either not exceed Φ-1(½ p) or be at least as large as 
-Φ-1(½ p). Consequently,

(3)f
(
x;�, �2

0

)
=

1√(
2��2

0

)e
−

1

2

(x−�)2

�2
0 .

(4)� =
�∗

�0
.

(5)PS = 2Φ(−|m|∕σ),

3  From now on, I simply say “experiment” rather than “observation 
or experiment.”

4  I will assume that the sample space is continuous. Discrete sample 
spaces can, of course, be handled easily by replacing probability den-
sities by probability functions.
5  There is a suppressed dependence on the sample size n because 
σ2 = σ0

2/n.
6  I assume this expression for the cumulative distribution of the 
P-value in the sharp Null hypothesis test is well known, but I have not 
been able to find a reference for it.
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Using the relationship between Φδ√n and Φ, we finally 
find

For Bayesians, the set of hypotheses is slightly more 
complex:

in which {f} and Ω have the same meaning as before, and 
ψ indicates a probability density on Ω, that is, the space of 
possible values of θ. ψ is generally referred to as the prior.” 
It represents the strengths of the beliefs the agent has in the 
various hypotheses in Ω. I make the simplifying assumption 
that ψ is the weighted average of a point mass centered on θ 
= 0 and a normal distribution7 with mean 0 and variance τ2. 
The weight of the point mass is indicated by 'γ'.

Bayes factors are contrastive in the sense that they com-
pare how well different hypotheses predict the data. Of 
course, a posterior probability can easily be obtained once 
the Bayes factor and the prior probability of the model are 
known. The posterior probability of H0 equals

with the Bayes factor

B01 is a function of the hypothesis and the data, but I will 
suppress that dependence. I use B01 rather than the perhaps 
more standard B10 = 1/B01 because B01 shares with PS the 
property that the evidence against the Null hypothesis is 
stronger the smaller B01: the standard interpretation of B01 
is that the data support H0 if B01 > 1 and undermine it if 
B01 < 1.

In the case of the sharp Null hypothesis, I indicate the 
Bayes factor by 'BS', with (Rouder et al., 2009, Note 38)

in which

Prob
�

�
PS ≤ p

�
= Φ

�
√
n

�
Φ−1

�
1

2
p
��

+ 1 − Φ
�
√
n

�
−Φ−1

�
1

2
p
��

.

(6)
Prob�

�
PS ≤ p

�
= Φ

�
Φ−1

�
1

2
p
�
+ �

√
n
�
+ Φ

�
Φ−1

�
1

2
p
�
− �

√
n
�
.

(7)MB = def < {f},Ω,Ψ >,

(8)�
(
H0|m

)
=

B01�

B01� + 1 − �
,

(9)B01 =

f
(
m|H0

)

f
(
m|H1

) .

(10)BS =
�

T
e
−

1

2

m2

�2

T2

�2 .

The range of possible BS values is [0, τ/T]. The cumulative 
distribution of BS given δ can be calculated in essentially 
the same way as the cumulative distribution of PS. BS is 
small if m2/σ2 is large, and BS equals b when m2/σ2 equals 
k(b) with

a non-negative function of b. We then find

Note that, as functions of δ, Probδ (PS ≤ p) and Probδ(BS 
≤ b) are very similar: both are symmetric in δ, showing that 
the two cumulative distribution functions depend only on 
|δ|. Also note that Φ-1(½p) does not depend on n and that 
k(b) depends on n only weakly: for large n, T goes to σ, so 
σ2/T2 goes to 1, τ/T goes to τ√n/σ0, and k(b) goes to ln(n) 
plus a constant. Consequently, for sufficiently large values of 
either |δ| or n, the δ√n term dominates in the arguments of 
the cumulative distributions. This implies that both Probδ(PS 
≤ p) and Probδ(BS ≤ b) go to 1 for any value of p or b, no 
matter how small, if either |δ| or n goes to infinity. In other 
words, both PS and BS go to 0 in probability if the sample 
size or the effect size becomes very large. The only excep-
tion occurs when δ = 0, because then Probδ(PS ≤ p) equals 
p for all n and Probδ(BS ≤ b) goes to 0 for all b.

It will be useful to consider the actual values of BS as 
well, and it is convenient to use the expected value of ln(BS) 
for that purpose. We easily obtain from Eq. (10) that

Since m/σ has the standard normal distribution with mean 
δ√n, m2/σ2 has the non-central chi-squared distribution with 
non-centrality parameter nδ2. The expected value of m2/σ2 
is then 1 + nδ2, and

Measuring evidential strength

The P-value and Bayes factor defined in the preceding sec-
tion have been and are being used as standard measures of 
the strength of the evidence, the vector of trial outcomes 
{xi}. In the introduction, I argued that, in order for P-val-
ues and Bayes factors to be valid measures of evidential 
strength, they should have the following property: if the Null 

(11)T−2 = �−2 + �−2.

(12)k(b) = 2
�2

T
2

(
ln

�

T
− ln(b)

)
,

(13)
Prob�∗

�
BS ≤ b

�
= Φ

�
−
√
k(b) + �

√
n
�
+ Φ

�
−
√
k(b) − �

√
n
�
.

(14)ln
(
BS

)
= −

1

2

m2

�2

T2

�2
+ ln

(
�

T

)
.

(15)Expected value of ln
(
BS

)
= −

1

2

(
1 + n�2

)T2

�2
+ ln

�

T
.

8  I use a slightly different notation than Rouder et al.

7  A more standard assumption, going back to Jeffreys (1948), is to 
use a Cauchy distribution for the prior, but that choice leads to math-
ematical complications that are not germane to the problem at hand.
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hypothesis is false, they should be smaller the larger the 
effect size or the sample size. I do not address the question 
of whether these measures have the desired properties in 
the general case, but only in the case that the data are nor-
mally distributed (Eq. (3)), and look first at the effect size. 
Henceforth, τ will be set equal to σ0 because that choice 
simplifies the mathematics9 and because the corresponding 
prior seems to be reasonably vague in comparison with the 
effect sizes of interest.

The requirement that the evidence against the Null 
hypothesis be stronger the larger the effect size is analo-
gous to what makes a good thermometer: the hotter the 
object whose temperature we are interested in, the higher 
the temperature reading should be. Unfortunately, the 
relationship between the effect size and the outcome of an 
experiment is not as simple as that between the temperature 
of some object and the thermometer reading; in the latter 
case the relationship is one to one, while in the former it 
is not. The statistic m can, in principle, take on any value, 
and, consequently, the P-value and the Bayes factor can 
take on any value in their respective ranges as well. The 
best we can hope for is that these measures are typically 
lower when the effect size is larger, where what is meant 
by “typically” needs further specification.

Since lower values of these measures are associated with 
stronger evidence against the Null hypothesis, the most obvi-
ous and also the strongest specification is that these meas-
ures have the property of being “typically lower when the 
effect size is larger” when smaller values of the measures 
become more probable when the effect size increases. More 
precisely, they should have the property that, for any pos-
sible value t of the measure and any non-zero value of |δ|, 
Probδ(observed measure ≤ t) increases when |δ| increases: 
for any t in the range of the observed measure and any non-
zero δ and δ* with |δ| < |δ*|, Probδ(observed measure ≤ t) 
< Probδ*(observed measure ≤ t). More formally and more 
compactly, the measures should be stochastically ordered by 
the absolute effect size.

Consider now Eqs. (6) and (13), and assume a fixed value 
of the sample size and fixed values of p and b, respectively. 
It is then clear that the P-value and the Bayes factor are sto-
chastically ordered by the effect size, because their cumula-
tive distribution functions are increasing functions of |δ|, as 
shown in the Appendix (Eq. A.2). As a specific and impor-
tant example of this stochastic ordering, consider the prob-
ability that the Bayes factor is less than 1. This particular 
value of b is important because it is the separator in the 
range of Bayes factors between support for the alternative 
hypothesis (b < 1) and support for the Null hypothesis (b 

> 1). The probability that BS is less than 1 increases when 
|δ| increases, indicating that low values of the Bayes factor 
become more likely and that support for the Null hypothesis, 
if any, decreases while that for the alternative hypothesis 
increases.

These results show that P-values and Bayes factors are 
valid measures of evidential strength when the sample size 
is kept fixed while the effect size is varied (at least when 
the data are normally distributed). P-values, as we shall see, 
maintain their validity when the sample size is varied rather 
than the effect size, but Bayes factors do not. As with the 
effect size, both the P-value and the Bayes factor should sto-
chastically decrease, if the Null hypothesis is false, when the 
sample size n becomes larger. The dependence on n arises 
from the variance σ2 = σ0

2/n. The cumulative distribution 
of the P-value depends on n only via the product δ√n (see 
Eq. (6)), so the dependence of the cumulative distribution 
on √n is the same as that on |δ|. In other words, the P-value 
is stochastically ordered by √n the same way as it is by |δ|: 
it decreases stochastically when n increases and converges 
to 0 in probability when n goes to infinity.

The Bayes factor does not have that property. It is true 
that it goes to 0 in probability when the Null hypothesis is 
false and n goes to infinity, but its behavior at small sample 
sizes can be highly misleading. This is shown clearly by the 
probability that the Bayes factor is less than 1. Depending 
on k(1), n and δ, that probability may or may not exceed 0.5, 
a probability of 0.5 indicating indifference between large 
and small values of BS. If the probability is less than 0.5, 
small values of the Bayes factor are less likely than large 
values and the Bayes factor is likely to indicate that the 
Null hypothesis is true, even when it is false. I return to that 
case later. Whatever the value of the probability, however, 
if the Bayes factor were a valid measure of the strength of 
evidence, small values of the Bayes factor should become 
more likely if the Null hypothesis is false and the sample 
size increases; the probability of finding a small value of the 
Bayes factor should increase with n.

But that is not what happens, as shown in Fig. 1. The fig-
ure shows Probδ(BS ≤ 1) as a function of the sample size n 
for four different values of the effect size δ. In the upper left 
panel, showing Probδ(BS ≤ 1) as a function of n when δ = 
0.05, the probability starts out at less than 0.5 and decreases 
when n increases. This implies that, for small sample sizes, 
BS is likely to be large (larger than 1, at least) and is likely to 
become larger when n increases. Only when n is sufficiently 
large does Probδ(BS ≤ 1) start to increase.

When the effect size increases (remaining three panels), 
the behavior of Probδ(BS ≤ 1) changes in two ways. First, 
the minimum occurs at progressively smaller sample sizes, 
referred to as 'nmin'. Second, the value of Probδ(BS ≤ 1) at 
nmin increases. The respective decrease and increase con-
tinue until, at δ larger than about 0.5, no minimum occurs at 

9  With that choice, T2 = σ0
2/(n+1) and k(b) = (1+1/n)(ln(n+1) 

-2ln(b)).
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all (see Appendix). On the other hand, at small effect sizes 
nmin can be substantial. For example, it is about 100 at δ = 
0.05, 35 at δ = 0.1 and around 10 at δ = 0.2.

What these panels do not show is the actual value of 
BS. We can get an idea of how these values behave10 by 
considering the expected value of ln(BS) as functions of 
the sample size for various values of the effect size (see 
Fig. 2). To get an idea of what these values mean, it may 
be helpful to note that ln(BS) = 3 corresponds to BS ≈ 
20. The figure clearly shows that smaller values of δ cor-
respond to larger maximum values of (the expected value 
of the logarithm of) BS, and to larger ranges of sample 
sizes at which BS is still substantial. The sample size 

at which the maximum expected value of ln(BS) occurs 
increases rapidly when δ becomes smaller. By taking the 
derivative of Eq. (15) with respect to n, the maximum 
expected value is found to occur at n+2 = δ-2. It becomes 
arbitrarily large when δ decreases because the expected 
value at its maximum goes to ½ln(δ-2-1)  ≈ -ln(δ). In 
other words, the support for the Null hypothesis at small 
sample sizes and effect sizes is not just nominal in the 
sense that Probδ(BS ≤ 1) is larger than 1. The support can 
in fact be very strong in the sense that BS is large.

It may seem that, for n larger than nmin, BS does behave 
properly, but in fact it still behaves contrary to how a valid 
measure of evidential strength ought to behave. After all, 
Probδ(BS ≤ 1) at sample sizes exceeding nmin can still be 
less than Probδ(BS ≤ 1) as evaluated at n equal to 1. Also, 
comparing Figs. 1 and 2 shows that the expected value on 
ln(BS) can still be large even at sample sizes much larger 
than nmin. BS can only be said to be valid once the sample 
size is large enough that Probδ(BS ≤ 1) exceeds the value 
it had at n = 1. Let us call that sample size neq. It shows 

=0.05 =0.1

=0.2 =0.5

Fig. 1   Probability that BS is less than 1 as function of the sample size, for various values of δ. Note the varying vertical and horizontal scales

10  Plots of ln(BS) are shown in Tendeiro & Kiers (2020, their fig-
ure  9) for different values of  δ. These plots were  obtained by set-
ting x∕�0 equal to δ. A similar plot is shown in Keysers et al. (2020, 
their Extended data Fig. 1b). Keysers et al. provide a log-log plot of 
1/BS rather than of BS and they use a slightly different prior distribu-
tion on the alternative hypothesis space, but, qualitatively, the results 
are the same.
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the true range of sample sizes for which BS is not a valid 
measure of evidential strength and can be quite large. 
Using (13) twice, with b = 1, we find

where k(1) = (1+neq
-1)ln(1+neq). If there is a minimum, nmin 

becomes larger when δ goes to zero (see Fig. 1). Since neq 
is larger than nmin, it will become larger too when δ goes to 
zero. To compute neq using Eq. (16) requires a numerical 
equation solver. The required computations can be simpli-
fied by remembering that, for very small δ, neq will be large 
and k(1) will be roughly equal to ln(neq). In addition, δ can 
then be ignored compared to √(2 ln(2)). As an example, for 
δ = 0.1, neq ≈ 276, which is considerably larger than nmin ≈ 
35 found earlier. Likewise, for δ = 0.05, neq ≈ 1613, much 
larger than nmin ≈ 100.

The anomalous dependence of Probδ(BS ≤ 1) on the sam-
ple size shown in Fig. 1 proves that BS is not stochastically 
ordered by n. There is a substantial range of sample sizes, all 
the way up to neq, for which support for the Null hypothesis 

(16)
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,

does not stochastically decrease with the sample size, even 
when the Null hypothesis is false. This makes BS an inva-
lid measure of evidential strength, at least for small effect 
sizes and for sample sizes that are not too large. Whether 
BS can be considered to be a valid measure of evidential 
strength when the effect size or the sample size is large can, 
of course, not be determined using arguments such as the 
ones given here.

Let us return finally to the case that Probδ(BS ≤ 1) is 
less than 0.5 when n = 1. The Bayes factor is then likely 
to be larger than 1 and to support the Null hypothesis, 
even when the effect size is not zero. Within the Bayes-
ian paradigm, this may be unavoidable. But that implies 
that, like the P-value, the Bayes factor does not in any 
obvious way provide support for the Null hypothesis. 
For any sample size, there is a range of effect sizes that 
cannot be meaningfully distinguished from δ = 0. This 
range can be estimated as follows.

Assume that n is fixed at some value that is not too small. 
If we then investigate what happens to Probδ(BS ≤ 1) when 
we vary the effect size δ, we find that, at some effect size 
δmax, the probability equals 0.5 and increases with increasing 
effect size. Figure 1 demonstrates that such a δmax always 

δ=0.01 δ=0.05

δ=0.1 δ=0.2

Fig. 2   Expected values of ln(BS) as a function of the sample size, for various values of δ. Note the varying vertical and horizontal scales
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exists because, for any sample size n, we can find an effect 
size such that nmin equals n. At that sample size, Probδ(BS 
≤ 1) is less than 0.5 and, to get a larger probability, the 
effect size has to increase. The maximum effect size can 
be obtained from Eq. (13), because, whatever the sign of 
δ, one of the two cumulative distributions on the right will 
be much smaller than the other one. In other words, we can 
write approximately Φ(-√k + |δmax|√n) ≈ 0.5. That is, 
-√k+|δmax|√n = 0, or

This range can be quite large. For example, when n = 100, 
δmax ≈ 0.2, a not uncommon effect size (Szucs & Ioannidis, 
2017)).

Conclusions and comments

P-values are statistics that measure the discrepancy between 
the Null hypothesis and the actual state of affairs. They are 
valid measures of evidential strength in the sense that they 
behave the way we intuitively think measures of evidential 
strength ought to behave: when the Null hypothesis is false, 
P-values are stochastically ordered by both the effect size 
and the sample size.

Of course, the present definition of validity of measures 
of evidential strength does not imply that P-values are reli-
able measures of that strength. As is well known, they have 
many shortcomings. For example, by their very nature they 
cannot provide evidence for the Null hypothesis. Also, they 
do not incorporate either the prior likelihood of the Null 
hypothesis or the power of hypothesis tests to detect discrep-
ancies between the Null hypothesis and reality.

These shortcomings have led many researchers to con-
sider Bayes factors as alternative measures of evidential 
strength. They are valid measures in the sense that they are 
stochastically ordered by the effect size, at least in the simple 
scenario we have studied in this article. But they are not gen-
erally valid measures, because, unlike P-values, they need 
not be stochastically ordered by the sample size.

Bayes factors can in fact be highly misleading: when the 
Null hypothesis is false, the probability that the Bayes factor 
is less than 1 should increase with the sample size. Instead, 
when the sample size is still small and the effect size not too 
large, it decreases. The decrease continues until, for sam-
ple sizes on the order of δ-2, the probability finally starts 
to increase. It does not become larger than its value at n = 
1 until the sample size n is larger than the solution of the 
implicit Eq. (16). Likewise, the expected value of ln(BS) 
remains high until the sample size is much larger than nmin.

(17)�2
max

≈
1

n
ln (n).

This is a serious problem because, when the Null 
hypothesis is false, a valid measure of evidential strength 
should indicate stronger evidence against the Null hypoth-
esis when more data are collected. Instead, when data are 
beginning to be collected and the effect size, although non-
zero, is not too large, the Bayes factor shows increasing 
support for the Null hypothesis (even though it is false), 
and does not distinguish between a true Null hypothesis 
and a false one until the sample size is sufficiently large.

The range of effect sizes for which these various prob-
lems can occur is admittedly rather small, and it might be 
argued that the smallness of that range negates the lack 
of validity of the Bayes factor as a measure of evidential 
strength. In many research areas, after all, small effect 
sizes are not important and the Bayes factor being mislead-
ing may be unfortunate but not disastrous. That argument, 
however, is fallacious for a variety of reasons.

First, there are research areas where any deviation from 
the Null hypothesis, no matter how small, is important. 
For example, when studying the properties of elementary 
particles such as their magnetic moments, any discrepancy 
between the outcomes of theoretical calculations, repre-
senting the Null hypothesis, and experiments is of great 
interest, even when those discrepancies occur in the sev-
enth significant digit (Abi et al., 2021).

Second, a measure of evidential strength is a statistical 
tool that uses the outcomes of hypothesis tests in order to 
justify certain conclusions regarding the truth or falsehood 
of the Null hypothesis. However, each tool has a range of 
applicability and the user of that tool needs to understand 
in what range that tool can be used safely. For example, a 
home thermometer that fails to give correct readings when 
the temperature drops below 10 °C may still be an accept-
able thermometer, but only if the homeowner is aware of 
that limitation and does not care to know exactly how cold 
it is when it is colder than 10 °C. Likewise, the problems 
listed above with Bayes factors are of no consequence to 
someone who can afford to always work with very large 
sample sizes. Nevertheless, the limitation should be under-
stood in order to estimate how large a sample is needed to 
avoid problems.

Finally, even if a researcher really does not care about 
small effect sizes and can defend that attitude as reason-
able and maybe even desirable, she should perform a cor-
rect hypothesis test by formulating a small interval Null 
hypothesis that incorporates the small effect sizes she does 
not care about. However, it is not clear that switching to 
an interval Null hypothesis will make the resulting Bayes 
factor valid. That validity still has to be demonstrated, but 
I do not address that problem here.

There is another reason for taking this lack of valid-
ity seriously: it underlies the Jeffreys-Lindley paradox 
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(Bartlett, 1957; Lindley, 1957). This paradox is gener-
ated by considering a collection of hypothesis tests of the 
same statistical phenomenon with different sample sizes, 
but with the same value of m/σ observed in each test. Con-
sequently, the P-value is the same in all the tests, but the 
Bayes factors differ. In fact, the larger the sample size, 
the larger the Bayes factor.11 Furthermore, in the standard 
account m/σ is sufficiently large and the corresponding 
P-value sufficiently small that it provides strong evidence 
against the Null hypothesis. Lindley's setup demonstrates 
that it is possible for an outcome of a hypothesis test to 
be such that the P-value strongly suggests that the Null 
hypothesis is false while the Bayes factor equally strongly 
suggests that it is true. The standard interpretation of this 
paradox is that it demonstrates the inadequacy of P-values 
as measures of evidential strength.

But we can now see that this standard interpretation is 
erroneous: the cause of the paradox is the Bayes factor, for 
it may give misleading results for small effect sizes. As has 
been noted by many commentators on the Jeffreys-Lindley 
paradox, m needs to decrease when n increases if m/σ is 
supposed to stay constant. In fact, it needs to be fairly small 
if the P-value is set at, say, 0.05 (in which case m√n ≈ 2σ0). 
A useful estimator of δ is m/σ0, the Maximum Likelihood 
estimator, and I indicate it by η. η will become small too 
when the sample size increases because it is approximately 
equal to 2/√n when the P-value is set to 0.05.

That the Bayes factor may give misleading results when 
the effect size is small can now be shown in a number of 
ways. First, δmax

2 is roughly equal to n-1 ln(n) (Eq. (17)), 
which is considerably larger than η2 when n is large.12 In 
other words, the estimated effect size η is well within the 
range of effect sizes where the Bayes factor gives mislead-
ing results.

Second, neq depends on the effect size and becomes very 
large when the latter becomes small. Let us consider a spe-
cific hypothesis test in the collection of tests in the Jeffreys-
Lindley paradox with a large sample size n. It turns out that, 
for sufficiently small δ, n is smaller than neq, as can be dem-
onstrated using Eq. (16). Replacing δ by η = 2/√n, we get

Eq. (18) is still an equation for neq, but now one in which 
the effect size is labeled by the corresponding sample size in 
the collection of hypothesis tests. With some straightforward 
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numerical experimentation, we find that neq is larger than n 
for n greater than roughly 1,500 (corresponding to η ≈ 0.05), 
and that the ratio neq/n increases with increasing n (that is, 
decreasing η). In other words, n as defined in the Jeffreys-
Lindley paradox and in the truly paradoxical limit of very 
small η, is well within the range of sample sizes for which 
the Bayes factor is invalid as a measure of evidential strength.

What exacerbates the paradox is that, for increasingly small 
values of the effect size (increasingly large values of the sam-
ple size), typical values of BS become arbitrarily large (com-
pare Fig. 2). In other words, not only do the Bayes factors in 
the tests in the Jeffreys-Lindley paradox nominally support the 
Null hypothesis, contrary to the verdict of the P-values, they 
do so increasingly strongly when the sample size increases 
and the estimated effect size becomes very small.

The Bayes factor as employed in the Jeffreys-Lindley par-
adox is invalid. It supports the Null hypothesis even though 
the latter may be false, and it supports it to an anomalous 
extent. The paradox is not an argument against the valid-
ity of P-values as measures of evidential strength. It merely 
illustrates the misleading behavior of Bayes factors when the 
Null hypothesis is sharp and the actual effect size is small.

The lack of validity of the Bayes factor extends to Bayes-
ian statistics in general. Oftentimes, when in doubt about 
the meaning of a Bayes factor, switching to the posterior 
probability of the Null hypothesis will clarify that meaning. 
Such a switch does not help with the lack of validity of the 
Bayes factor, however, because the posterior odds of the 
Null hypothesis are equal to the Bayes factor multiplied by a 
constant factor, the prior odds of that hypothesis. As a result, 
whatever misleading behavior is shown by the Bayes factor 
will merely be repeated by the posterior odds: they will be 
as misleading as the Bayes factor itself.

The attraction of Bayesian statistics is that it provides 
for a coherent way of updating one's beliefs upon the acqui-
sition of more information. But, as the case of the sharp 
Null hypothesis shows, coherency is not the same as reli-
ability. The posterior probability, after outcome m has been 
obtained, is coherent and may very well correctly reflect 
what we ought to believe once that outcome was obtained. 
But the Bayesian paradigm does not guarantee that we are 
better informed about the actual state of the world upon the 
acquisition of the new data. It is true that asymptotically 
– that is, for a sufficiently large sample size – the Bayes 
factor and the posterior probability will show that the Null 
hypothesis is false if it is indeed false, but initially, for small 
to moderately large sample sizes, the data provide increasing 
support for the Null hypothesis, even when it is false.

11  Compare Keysers (2020 Extended data Fig.1a), which shows 1/BS 
as a function of n for different values ofm/σ.
12  To be specific, when n >> e4 ≈ 55.



941Psychonomic Bulletin & Review (2023) 30:932–941	

1 3

Appendix

Both Probδ(PS ≤ p) and Probδ(BS ≤ b) have the form Φ(h+δ√n) 
+ Φ(h-δ√n), where h is a negative function of either p or b, and, 
in the case of the Bayes factor, also of the sample size n. The 
derivative of this expression with respect to δ is

where

is the standard normal distribution function. When we use 
the explicit expression for that distribution function, the 
right-hand side of Eq. (A.1) becomes

Since h is negative, this expression is positive when δ 
is positive and negative when δ is negative, showing that 
Probδ(PS ≤ p) and Probδ(BS ≤ b) become larger when |δ| 
becomes larger.

The derivative with respect to n is more complex because 
h may be a function of n. I consider only the case of the 
Bayes factor, in which case h = -√k (see Eq. (12)). The 
derivative of Probδ(BS ≤ b) is then seen to be

with k' the derivative of k with respect to n.
We are interested in the value of n for which this deriva-

tive vanishes, that is, the value of n for which Probδ(BS ≤ b) 
changes from decreasing into increasing. We find this value 
by setting the derivative to 0. Using the explicit expression 
for f0 as in the derivation of Eq. (A.2), we find that the loca-
tion of the minimum value of Probδ(BS ≤ b) is determined by

with a = √kδ√n.
A minimum occurs at a solution of Eq. (A.4), but such 

a solution need not exist for n at least equal to 1. If we set 
n = 1, we determine the maximum effect size for which 
a minimum does in fact occur. At larger effect sizes, no 
minimum occurs at non-trivial values of the sample size (n 
≥ε 1). When b = 1 and n = 1, k = 2*ln(2) and k' = 1-ln(2). 
Numerically solving Eq. (A.4) then gives |δ| ≈ 0.496.
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